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Overview

The likelihood function or its moments: the
forward problem.

The reverse problem: detection, estimation,
figures-of-merit.

Break

Examples




The General Picture
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In general the imaging system can be viewed as a chain of blocks. The basic
goal is to maximize the transfer of useful information to the interpreter, who
then takes an appropriate action.

The block diagram above is oversimplified in the sense that it does not
include the feedback paths from the interpreter back to each block.




More Concrete Examples

Radiotracer Emission Image Human
in Patient Tomograph Reconstruction Interpretation
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Assuming each system has a random nature, the overall relation of the output
or action can be represented by a likelihood function.




The Likelihood Function

The likelihood function should be the holy grail of the imaging
system engineer

Quantifies randomness in the measurements for a given input

Can be used to quantify imaging system performance in
accomplishing a given task

Can be used to optimize imaging system performance for a given
task

Is integral to recovering the desired information from the
measurements

Never know the true likelihood, but we attempt to model it




System Representations

Very often we only see deterministic blocks in system diagrams

X — Y
Y (X)=E(Y|X) :I_vam X)dY

In this presentation, more attention will be given to blocks in which the
observations are only statistically related to the input.

The relationship in the second boxaboveis represented as a condtional
probability density function (pdf) where the output, hopefully, bears ssme
relationship to theinput. It could just as easily be a @ndtional probability
mass function a even the distribution function.




Examples

Deterministic Blocks Random Blocks

Image reconstruction (hopefully) Radiotracer injected into patient

Digital processing (almost) SPECT or PET cameras
e Scintillation cameras

« Radiation detectors

« etc




Cascade of Blocks

Information X
Source

—> Z Measurements

f(Z|X) = [HZIYV)f(Y [ X)dY
=E[f(Z]Y)|X]

The desired likelihood describing the statistics of the measurements as a function of the
unknown parameters of the information source is obtained by averaging the conditional
pdf in the second block over that in the first. These conditional expectations will prove
central for determining the overall likelihood function as well as its moments. Note that
the expectation operator can be iterated to give the likelihood function for any number
of blocks.




Parallel Blocks

fY 1X)

— Y,Z Measurements

Information f(Z | X)

Source

f(Y,Z | X) =f(Y | X)xf(Z | X)

If the measurements are conditionally independent given the unknown parameters, the joint-
likelihood function assumes a patrticularly simple form. A common example is the Poisson
likelihood function used to model PET and SPECT systems. If the measurements are not
conditionally independent, things get complicated very quickly. A common trick to simplify
the likelihood in this case is to condition on enough parameters such that the measurements
are independent. The unknown values of these “nuisance” parameters are estimated
simultaneously with the desired parameters.




Poisson Likelihood

N, Numberof eventsn interval[0,T]
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« Sum of Poisson random variables is again Poisson distributed with mean and
variance equal to the sum of the rates or intensities. (Tomography)

¢ A thinned Poisson process in which events are randomly deleted with probability 1-P
is again Poisson distributed with new rate = P X old rate. (Photoelectron emission in
a phototube with quantum efficiency P).

< In a Poisson point process occurrence times, spatial locations, or some other
parameter may be recorded in addition to the count. If these points are randomly
translated (in space, for example), the resulting point process is again Poisson but
with a rate function that has been “smeared” by the uncertainty. (Effect of detector
resolution in a PET or SPECT system).

Refer to Random Point Processes by DL Snyder and MI Miller




Gaussian Likelihood

_(y-y(6))?

f(ylo)=Cxe =

y(8) Meanasafunctionof 8

o®  Variance

Completely characterized by its first two moments

Sum of independent Gaussian distributed random variables is again Gaussian. The
output of a cascade of blocks if the means are linear functions of the parameters is
again Gaussian distributed.

Limiting probability distribution in many cases




Moments

Often the likelihood function can be difficult to deal with directly. It is usually
relatively straightforward to either calculate or approximate its moments.

The two most significant moments are the mean and variance (or covariance).

Information X —> Z Measurements
Source

E(Z|X)=[[ZHZ|Y)f(Y|X)dYdZ =E, [E(Z|Y)|X]
a*(Z|X)=E,[E@? V) IX]-E2[E@ V)| X]

Iterated expectations are again handy, although moment generating functions can
be used for the sake of confusion.
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Example 1. Charge produced by PMT
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Example 1 (cont’'d)

Mean:
EQ, IAJ=E[ESS o 1N A F=EIN A Jo =nA g
Variance:
elQ? 1n B2l 1A,]= #% > 9, IN; g
APA
= E[(N2 - N,)g? + N, E(@)]-n?A% g?
=N°A7g°+ (A =nA)g” =n°Ng” +nAE(9°)
=nNArE(9%) =nA-g° +n/A 0,




Example 2. Charge collected by photodiode

Incident Notse QT = NZT g *tn
Photons &
7 Qr E[n] = Quu
E[Qr 1A-]=1A: g+ Qu
Photodiode 0-(23T :nATE(gz) +O'§
Scintillator

Although the physical device is quite different from the previous, the same model structure
can be used with the addition of an additive noise term.




Multiple Dimensions

Unknown Parameters 0 =[8,,...,6,, |

Measurements y= [yl,. N ]T

Mean measurements  ¥(0) = E[y |8] = [v,(6)....,yy(0)]
Covariance Matrix K, = Ellny |9]— E[y |9]E|-yT |9]

Multidimensional Gaussian log - likelihood

_ o1, T <1, O
|09f(Y|9)—C+E 2(y y(©6)) K (y Y(e))g

We are almost always interested in a multidimensional measurement space. However, the
number of parameters may range from one to hundreds of thousands (image reconstruction)




Multidimensional Poisson Likelihood

Unknown Parameters 0= [91, . QM ]T
Measurements y= [yl,..., Yn ]T

Mean measurements  Y(6) = E[y |9] = [yl(e),..., YN (9)]T
Covariance Matrix K, = diag{y, (6)}

Multidimensional Poisson log - likelihood for count data

logf(y |6)= Z[y. logy;(6) - (6)]+C




Propagating Moments for Linear Processing

Unknown [a]

— y=HXx
Parameters

Processed
Measurements
Mean : E[y|9]:E[HX|9]:HX(9)
Covariance : K, = E [H(x—x(8))(x~x(6))™H " |6]
=HK,H"

For linear processing (matrix multiplication, integral operators, etc.), calculation of
moments is straightforward and exact.




Non-linear Processing

y =H(x)
y =H(X) +OH(X)(x —=x) +H.O.T.
Mean : Ely|6]=H(x(®))
Covariance : K, =[HK J(OH)T
OoH, | oH, O
g% . %
OH=7 ! . i g
DH, | OH,
H0x, oy H

The well-known error propagation formula (here extended to multiple dimensions) is based on
a linearization of the non-linearity.




Scintillation Camera Resolution

8.00
6.00
4.00

2.00

Relative Intensi

0.00 -

-200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00
X Position (mm)

PMT
Array

Scintillator

IZMiXi

Centroid Position

Estimator X=




Variance of Centroid Estimator

Cov(m) = diag{m}
2 mx £

am Zm% ZmD

M ~ppo?=

Ol
e

In this case, the resolution is related to the variance of the shape of the light spread function
divided by the expected number of scintillation photons in the pulse. This relationship does
not hold if the measurement covariance has additional additive noise.




But is the approximation any good ?

Actual vs. Approximate Resolution

45.00

40.00

35.00

30.00

25.00

20.00

Resolution (mm FWHM)

15.00

10.00

5.00

0.00
0.00 500.00 1000.00 1500.00 2000.00 2500.00

Photoelectrons /Pulse

Filled squares represent Monte Carlo estimates. Solid line is approximation vs.
mean scintillation intensity.




Cascade of Linear Blocks with Additive
Noise

v
I

fx|6) H —> Z
x(0)=0 : C; ?
Cov(x) =K,

K

y

E[z|8]=H,H,0  Assumingnoise is zero mean
K, =HoHK H +K,




Signal-to-Noise Ratio
Fisher Information

Define “signal” as the change in the measurements for a given change in the
parameters, i.e.,

signal =0y (8)
Define “noise” by the covariance matrix or autocovariance function:
Noise =K , (9)

Then the Signal-to-Noise ratio, which is also the Fisher Information Matrix for
Gaussian and Poisson conditional pdfs is given by:

Fo =(Oy(6))'K '(6)y(e)

For the previous example, the SNR is:
-1
F, =HTHT[H,(H.K H] +K , HI|"H,H,

Note that processing cannot increase the SNR. At best it stays the same.




Relation to “Classical” System Analysis

In classical imaging system analysis, the processing (or degradation) is assumed linear and
shift-invariant. Assuming that the autocovariance is also shift-invariant allows diagonalization
of both signal and noise via the Fourier transform

HK *H =F(F'HTF)F K 2FFHF )"

H(T)E. :FD\/ITFZ(f)a:*

F
K (F) B HNPS(f)

For the previous example, if the Fourier transform diagonalizes it:

SO LA

B, ()7 K, (F)+ K, (F)B

NR=F




DQE and all that

Detective Quantum Efficiency can be thought of as a transfer function for SNRs

DQE(f):E~ﬁl(f)fﬁ2(f)f %xa*fx(f)E
3, (K (F)+K, ()8 BA.(F) E
B ‘ f B
O A, (f)
_D~ Ky(f)%
S 08

While DQE can be defined the same way for spatially-varying systems, it is not often used.




Part | Summary

The likelihood function can be used to represent how the measurements
in a complex system are related to underlying p arameters of interest.

The overall likelihood function for a system can be obtained using
iterated expectations.

Moments of the likelihood function can be calculated in a similar fashion

Did not mention the important topics of how to construct models for
individual boxes or model validation

Did not yet mention system optimization using the likelihood




Part Il: The inverse problem

OK, we have the likelihood .
So what?
Why is it useful?




General Tasks

Detection Classification Estimation
< >
Sometimes You're wrong You're always wrong.
you’'re wrong more often But how wrong?

Task types can be broken down into roughly three categories. Detection is generally
a binary task that decides whether a signal is present (e.g., a tumor). Classification
assigns the observations to one of N signal categories (a PET block detector, for
example). Estimation generally results in point estimates of continuous parameters
(pixel intensity in image reconstruction).




Detection

Detection Test Statistic
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Hypothesis H1

o
[
o

Likelihood

o
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o

/

Hypothesis HO _—% |

0.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

Decision Threshold

The optimum detector for a binary decision task is the likelihood ratio test, which of course
depends upon the likelihood functions derived previously. ROC curves can be plotted by
sweeping the decision threshold through its range




Receiver Operating Characteristic
(ROC) Curve

ROC Curves

1.00
0.90 A
0.80 -
0.70 A
0.60 -
0.50 A
0.40 A

TPF (Sensitivity)

0.30 A
0.20 A
0.10 A

0.00 T T T T
0.00 0.20 0.40 0.60 0.80 1.00

FPF (1-Specificity)




Ideal Observers for the Signal Known
Exactly Binary Hypothesis Test

For the case in which the signal and background are known exactly (SKE / BKE), the
optimum detector assumes a convenient form. As in more complex detection problems, the
optimum test statistic is the likelihood ratio test (or difference of log-likelihoods); however, it
is relatively easy to calculate for Poisson and Gaussian noise.

Step 1: Form the likelihood ratio statistic

t(y) =L(y IH,) —L(y [H,)
L(y [H;) =logf(y |H;)

Step 2: Compare the test statistic value to a decision threshold. If it is greater choose H1
else choose HO. Can evaluate system performance by plotting

f(t(y) IH,) and f(t(y)|H,)

Methods developed previously can be used to calculate the requisite pdfs or moments




Ideal Observer: Gaussian Case

If the likelihoods under both hypotheses are Gaussian distributed the LR test statistic is also
Gaussian:

t(y) =y " (K{'y(H,) - Kgy(Ho))

Elt(y) IH,]= (y(H)) (K" (H,) - K5y (H,))

a2 (t(y) [H;) = (K'Y (H) =K Y (Ho) K (KY(H,) =Ky (H,)
If the covariance is the same for both then more simplification results

t(y) =y 'K 2K Y3(y(H,) ~y(H,))

The data is “pre-whitened” to remove correlations and then filtered with a modified signal
shape (l.e., “Matched Filtering”)




Ideal Observer: Poisson Case

Here, the density of the LR test under either hypothesis is difficult to calculate; however, its
moments can readily be computed. Making the assumption that LR test is approximately
Gaussian distributed allows calculation of detectabiltiy, ROC curves, etc.

t(y) =y ' (logy(H,) —logy(H,))
E[t(y) |H;]= (v(H))" (logy(H,) —logy(H,))
o?(t(y) |H,)=(logy(H,) ~logy(H,))" diag(y(H,))(logy(H,) ~logy(H,))




Detection Example

The image on the right contains a small hot-spot in addition to the background of the image
on the left. We add Poisson noise and empirically estimate the statistics of the LR test.

HO H1




And do es the approximation work?

Detection Test Statistic

0.03

Likelihood

0.00 y T
-85.00 -80.00 -75.00 -70.00

-65.00 -60.00
Decision Threshold

The open circles are histogrammed results of applying 1000 trials of the
ideal observer when the true hypothesis is known.




Problems with Simple Detection Tasks

* SKE binary hypothesis test is too simple. Often leads to useless
optimization results.

¢ Inimaging, the ideal observer does not match human performance
well--especially in correlated noise.

 More complex detection problems can become intractable very
quickly.

One thing’s for sure: if a system does not perform well for the simple
SKE / BKE task, then it's not likely to work better for more complex jobs.




Estimation

Rather than to classify a signal, the goal is to obtain an estimate of the values of unknown
parameters as a function of the measurements (the likelihood function will again play a central
role).

Define:

A

O(y) asanestimate of O

In non-Bayesian parameter estimation, the two most important figures-of-merit for an

estimator are its bias
b,(6)=El6(y)16]-6
and its covariance matrix
K,6)=Ep()6)) 16]-Et)16JE[EV)) 16]
The MSE of the estimate for each parameter is the sum of the variance and the squared bias:
MSE(éi): b® +K;
the overall MSE matrix is given by

K, +bsb)




More Figures-of-Merit

Actual bias is strongly dependent on, say, the source distribution in tomographic reconstruction.
To overcome this problem when approximating system performance one may wish to examine
the tradeoff between variance and resolution, the width of the impulse response, or with some
aspect of the bias-gradient

Oobs (8)= D,EB(y) 16] -1

A column of the first term on the right hand side is the small-signal impulse response of the
estimator for the corresponding element of the parameter vector. A row of the matrix is the
mean estimator gradient. Often the two either are the same or are close, but they don't
have to be!

In an upcoming slide, we’ll use the norm of the bias-gradient as a measure of the width of
the response.




Maximum Likelihood Estimation

There are many reasons likelihood based estimators are preferable over other types. The
basic idea behind ML estimation is to choose the value of the unknown parameters that
maximizes the likelihood of observing the measurements:

0= argmeaxlogf(y 19)

Differentiating the log-likelihood, setting it to zero and solving the resulting estimation
equations for the unknown parameters gives

0°L(6,y)=(0y(6)) diag™(y(6))ly -y(6)]=0

for the Poisson case and

0°L@G,y)=(y(©))' K, [y-y(®)]=0

for the Gaussian likelihood (“least-squares” estimation).




Generalized Least-Squares

Often the likelihood function is not completely known; however, the first and second
moments as a function of the parameters are. In this case, Generalized least-
squares estimation is often an alternative. Because the covariance model may vary
as a function of the parameters, we specify the GLS estimator through its estimator
equations.

0°Le.y)=(Oy(e)) K, @)y -y@©)=0

Note that this is the same as the least-squares estimator in the previous slide except
that the covariance can be a function of the parameters. Although it will not be
shown here, GLS estimators have good asymptotic bias and variance properties.




The Cramer-Rao Lower Bound

Surprisingly enough, the covariance matrix of any unbiased estimator can be lower-bounded
by a function depending only on the log-likelihood. Define first the Fisher Information Matrix

as
(9% logf (y |8 )L
F, =—Ep 29 V19)
K=" 90,06, ¢

The CR boundllower bounds the covariance matrix of any unbiased estimator in the sense
that K ;, —F;" ispositive definite.

For both the Gaussian and Poisson likelihoods presented, the Fisher Information takes the

following form: Fe — (DV(@))T K ;1 DV(@)

K y = diag(y(@)) for Poisson measurements




Application to Scintillation Camera Example

CRbound vs. Centroid Resolution
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At the higher photon rates the ML estimator will nearly achieve the CR bound in this

case




Yet Another Covariance Approximation

Begin by linearizing the estimator around the mean value of the measurements

A

6(y)=0(y(6))+06(y6))y-y(6))
El(y)16]=6(7(6))
K, =06(y©)K,[O6(y6)
Now recognizing that the estimator is an implicit function of the measurements
0%°L(,y) 0,8(y)+0"L(6,y) =0
K, =[0%L@. )] TUL@.y)K, ([0L©.) [07°Le.n)]*

With little more effort, this technique can be used to approximate the covariance of
implicitly defined penalized estimators.




Variance of ML Estimator

Now apply the appropriate technique to the Poisson likelihood function:
0*°L(6,y) = (Oy(6))" diag*(y(6))y - y(6)] =0
K, = [0%L@.y)] 0MLe,y)K, ([0*Le.y)) [0*°Le.y)]*
0%L(8.y) = (Oy(6)) diag™(y(6))0y (6) =F,

O0"L(6,y) = (Oy ()  diag™(y(6))
K,=F"

In other words, the approximate covariance of the ML estimate for Poisson (Gaussian
too) distributed measurements is given by the CR bound.




Stabilizing the Estimation Problem

More often than not, some form of stabilization has to be applied to the estimator. This is
especially true in image reconstruction (as we've seen). There are several methods of
stabilization. Virtually all of them work through the action of adding some bias to the
parameter estimator. The following techniques are commonly used:

« Restriction of allowable estimates through equality constraints on the parameter
vector

« Use of inequality constraints, such as non-negativity
¢ Post-smoothing the estimate

« Bayesian methods can be used if an actual a priori pdf of the random parameters is
known (exponential decay on depth-of-interaction probability in a scintillator)

« Penalized methods, where certain undesirable properties of the estimates are
discouraged in the objective function (many examples in the image reconstruction
section)

There are more. Practical estimators often use combinations of these methods.




Covariance of Penalized Estimators

A common Poisson likelihood term augmented with a quadratic penalty on the
parameter vector leads to the following estimator equations:

0*L(8,y) =[Oy (@))' dlag (y@)ly -y(@6)]+BRE =0
=6(y(6))
K, =[0*L@ ,y)]‘lm“L(e YK, ©)OL@.y)) [0?L@.n]”
0°L@.y) = (0y(@)) diag™(y(@))oy (6)+ BR
0"L@y) = [0y(6)) diag™(y(6))
Note that this is almost the same as the previous derivation with the exception that the

expression now depends on the penalty matrix as well as on both true and estimated
parameter values




CR Bound for Biased Estimators

Sometimes a small estimator bias will significantly reduce variance. The previous CR bound
presented was only for unbiased estimators. Another form of the CR bound is applicable to
biased estimators:

K,2(+0b, )2 +0b,)

Note that the bound in its nascent form is not extremely useful. It is only a lower bound on
the covariance for the class of estimators having the same bias-gradient. Not likely a very
interesting class of functions.




The Uniform CR Bounds

While the biased bound itself is somewhat restrictive, it serves as a basis for the
development of a more useful lower bound for biased estimators. By solving a constrained
minimization problem, where the objective is to minimize the covariance over the class of all
estimators having a specific bias-gradient norm, the Uniform CR Bound is obtained. This
form lower bounds the covariance matrix for all estimators with a bias-gradient norm equal to
or less than the specified norm.

A particularly useful form of the Uniform CR bound is given by the following pair of
parametric equations:

5,0,1)= H(l +AF,)"e Bias - gradient norm
B (6.1)=2%€" (1 +AF,)"F, (1 +AF,) e,
€= [{5 }]

1]

The bound is calculated by sweeping the parameter A through the range of 0 to infinity.
Although the above formulation uses the Euclidian norm to measure the bias-gradient, other
norms can be used with appropriate modification.




What are CR bounds good for?

CR Bounds are excellent tools for indicating when an estimation
task is not possible (or practical) given the measurements

It serves as a performance yardstick for suboptimal estimators. If
the estimator already has performance close to the bound, why
bother to look further?

The ML estimator (penalized ML) estimator will asymptotically
achieve the CR bound (uniform CR bound).

Can be used, with a great deal of caution, for optimizing system
performance




And what might they not be good for?

< CR Bounds are often overly optimistic. Especially true when either
the noise level is high or when the second (or higher) derivatives of
the expected measurements w.r.t. the parameters are large.

« While the ML estimator will achieve the bound asymptotically, it
may approach the bound on ly at unrealistically low noise levels. At
high noise levels estimator performance can be significantly worse
than predicted.




Calculating Covariance and Other
Performance Measures

Most of the covariance expressions have a form similar to
— -1 -1
Ke=Q7ZQ
While for small problems the matrix can be calculated directly, for larger problems such as
image reconstruction, obtaining the entire covariance matrix is impractical. In this case, an

entire row of the matrix can be computed by solving two successive Ax=b type problems.
For example, to calculate the covariance corresponding to the i-th parameter:

K,e =Q7ZQ7e
Solve: e =Qm,
z,=Zm,

Solve: z =Qk;.

Other performance measures can be calculated in a similar way.




Summary Part Il

« Thelikelihood is an integral part of evaluating performance in
detection, classification, and estimation tasks

« Detection performance can be quantified via ROC curves and
related measures. Ideal observers for Poisson and Gaussian
distributed measurements presented for SKE / BKE task.

« Estimation performance quantified by bias and covariance.
Approximations presented for penalized and unpenalized
estimators. CR lower bounds on covariance.




Part Ill: Examples and Applications

Is this stuff good for anything?




Scintillation Cameras
What resolution can be achieved?
How is it affected by PMT size?
Can depth--of-interaction b e estimated?

What's the effect of photodetector noise?

This LSF was used in the following calculations. All scintillator surfaces were black
except for the detection surface.

1 E
LSF (X, Y% Yo. %, E) =2n(zg+(X_X0)fj(y_y e Ocosy
0




Scintillation Cameras

Crystal Size 40 x 40 cm
Thickness 25 mm
# Photoelectrons ~400

Depth-of-Interaction 10 mm from entrance

6 =[x, Yo, E]
LSF and PMT Array K 6 2 [(DY(Q))T diag_l(Y(e))DY(e)]_l

Approximate Spatial and Energy Resolution




LSF and Gradients

20mm 15mm 25mm




Resolution Scan for Various Size PMTs

Resolution vs. Source Position
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Estimating Depth-of-Interaction

Shown below are the CR bound matrices for the case where the depth is known (top) and
where the depth must be estimated (bottom).

X 1.14 -7.20E-17 1.11E-14

Y -7.20E-17 1.14 -9.42E-16

ENERGY 1.11E-14 -9.42E-16 432

X 1.14 -7.20E-17 -1.76E-15 1.08E-13
Y -7.20E-17 1.14 1.25E-16 -7.83E-15
z -1.76E-15 1.25E-16 1.18 -65.2
ENERGY 1.08E-13 -7.83E-15 -65.2 4030

Note the strong correlation between the depth and energy estimates for this LSF!




Effects of Additive Detector Noise

The effects of additive, independent photodetector noise on the resolution can be modeled
by adding the detector noise variance to the variance of the “self-noise”:

K s 2|(Oy@)) diag™(y(8)+ o2 oy (@)

10.00

9.00 1
8.00 1
7.00
6.00
5.00 1
4.00
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Uncertainty (std dev mm)
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0.00 T T T
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Is It Better to Deconvolve or to use a High
Resolution Collimator in the First Place?

In mechanically collimated systems, there’s a fund amental tradeoff between resolution
and efficiency. Given that the data can be processed, it it better to use a high-efficiency,
low-resolution system and then process the data to the desired resolution or to use a
high-resolution collimator?

Approach: Model resolution and efficiency of collimators using common expressions.
Use Uniform CR bound to compare performance as a function of desired smoothing.

8In2 HgleArea Efficiency = F x HoIe_Area
T Thickness 4rrx Thicknes$

FWHM —-\/




Uniform CR Bound for Collimators

Collimator Comparison
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At least for this simple task, the higher resolution collimator should be used.




Choosing a Scattering Detector for a
Compton-Scatter Camera

Problem: Different scattering materials will exhibit different angular
uncertainties due to the effect of Doppler broadening. Which material is
best?




Ring Scatter Camera Geometry




Anatomy of Doppler-Broadened Spectrum
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* The narrow central peak (valence electrons) is important for imaging high spatial
frequencies

* The broad base (core electrons) degrades performance




Broadening for Several Materials at 140 keV
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Object Parameterization

Planar objects, 64x64 pixel grid
30 x 30 cm field-of-view
Objects located 10 cm from collimator or scatter-ing detector

Bound calculations focused on estimating cen- tral pixel intensity




Bound Calculations

Compared performance at 141 and 364 keV for several detector materials
(diamond, c-silicon, c-germanium, neon).

Ignore potential energy resolution of each material (second detector can have
good energy resolution).

Determined ability to estimate the intensity of the central pixelina 7.5 cm
diameter disk source 10 cm from detector.

Calculated using scattering angles from 45 through 90 degrees.

Calculations performed on 8 nodes of IBM SP2 computer. Approximately one
week for each lower bound curve.




Performance at 141 keV
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Limiting €
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FWHM vs. Bias Gradient Length
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Thinking Outside the Box

Problem: Pixellated detectors can
suffer a variety of ills including
significant gain variations among
pixels as well as totally unres-
ponsive pixels.

Pictured at right is a simulated
detector in which 10% of the
pixels are unresponsive and two
entire rows are missing.




Solution

Develop a statistical model describing the measurements, their noise,
and potentially other degradations. Use a penalized |least-squares
method to estimate the incident image.

0L6.y) = ([Cy(6))' K,y -y(6)]+ BRE
=GK,'[y-G6]+BrO =0
G =diag(PixelGains)
K, =diag(PixelNoise)
This technique would not be very interesting if it weren’t for the penalty

matrix, which penalizes the differences between pixels to the North,
Sourh, East, and West.




Corrected for Gain Variations and Dead

Pixels

Applying the method to the pre-
vious image not only corrects for
gain variations but also eliminates
the effects of dead pixels.
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Even More Problems

Regions of the detector may contain
some pixels having significantly
more noise than others.

In the central region, half the pixels
have an additive (electronic) noise
level 10x higher than others.




Corrected

This too, can be corrected by statis-
tically modeling the measurements and
using a correction method consistent
with the model




