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Overview

• The likelihood function o r its moments: the
forward problem.

• The reverse problem: detection, estimation,
figures-of-merit.

• Break

• Examples



The General Picture

Information 
Source

Recording Processing Interpretation

In general the imaging system can be viewed as a chain of blocks.  The basic
goal is to maximize the transfer of useful information to the interpreter, who
then takes an appropriate action.

The block diagram above is oversimplified in the sense that it does not
include the feedback paths from the interpreter back to each block.



More Concrete Examples

Radiotracer
in Patient

Emission
Tomograph

Image 
Reconstruction

Human
Interpretation

Radiation
Source

Detector Ratemeter Alarm

Assuming each sys tem has a random nature, the overall relation of the output
or action can be represented by a likelihood function.



The Likelihood Function

• The likelihood function should be the holy grail of the imaging
sys tem engineer

• Quantifies rando mness in the measurements for a given input

• Can be used to quantify imaging system performance in
accomplishing a given task

• Can be used to optimize imaging sys tem performance for a given
task

• Is integral to recovering the desired information from the
measurements

• Never know the true likelihoo d, but we attempt to model it



System Representations
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Very often we only see deterministic blocks in system diagrams

In this presentation, more attention will be given to blocks in which the
observations are only statistically related to the input.
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The  relationship in the second box above is represented as a conditional
probabilit y density function (pdf) where the output, hopefully, bears some
relationship to the input.  It could just as easily be a conditional probabilit y
mass function or even the distribution function.



Examples

• Image reconstruction (hopefully)

• Digital processing (almost)

• Radiotracer injected into patient

• SPECT or PET cameras

• Scintillation cameras

• Radiation d etectors

• etc

Deterministic Blocks Rando m Blocks



Cascade of Blocks
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The desired likelihood describing the statistics of the measurements as a function of the
unknown parameters of the information source is obtained by averaging the conditional
pdf in the second block over that in the first.  These conditional expectations will prove
central for determining the overall likelihood function as well as its moments.  Note that
the expectation operator can be iterated to give the likelihood function for any number
of blocks.



Parallel Blocks
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If the measurements are conditionally independent given the unknown parameters, the joint-
likelihood function assumes a particularly simple form.  A common example is the Poisson
likelihood function used to model PET and SPECT systems.  If the measurements are not
conditionally independent, things get complicated very quickly.  A common trick to simplify
the likelihood in this case is to condition on enough parameters such that the measurements
are independent.  The unknown values of these “nuisance” parameters are estimated
simultaneously with the desired parameters.

Information
Source

Measurements



Poisson L ikelihood
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• Sum of Poisson random variables is again Poisson distributed with mean and

variance equal to the sum of the rates or intensities.  (Tomography)

• A thinned Poisson process in which events are randomly deleted with probability 1-P
is again Poisson distributed with new rate = P X old rate.  (Photoelectron emission in
a phototube with quantum efficiency P).

• In a Poisson point process occurrence times, spatial locations, or some other
parameter may be recorded in addition to the count.  If these points are randomly
translated (in space, for example), the resulting point process is again Poisson but
with a rate function that has been “smeared” by the uncertainty.  (Effect of detector
resolution in a PET or SPECT system).

Refer to Random Point Processes by DL Snyder and MI Miller



Gauss ian Likelihood

( )

Variance       

 offunction  a asMean     )(

e|f

2

2

))((
2

2

σ
θθ

θ σ
θ

y

Cy
yy−−

×=

• Completely characterized by its first two moments

• Sum of independent Gaussian distributed random variables is again Gaussian.  The
output of a cascade of blocks if the means are linear functions of the parameters is
again Gaussian distributed.

• Limiting probability distribution in many cases



Moments
Often the likelihood function can be difficult to deal with directly.  It is usually
relatively straightforward to either calculate or approximate its moments.

The two most significant moments are the mean and variance (or covariance).

)|f( XYX )|f( YZ ZInformation
Source

Measurements

[ ]
( ) [ ] [ ]XYZXYZXZ

XYZdYdZXYYZZXZ

YY

Y

|)|(EE|)|(EE|

|)|(EE)|f()|f()|(E
222 −=

== ∫∫
σ

Iterated expectations are again handy, although moment generating functions can
be used for the sake of confusion.



Example 1: Charge produced by PMT
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Example 1 (cont’d)
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Example 2: Charge collected by photodiode

Noise

Photodiode

Scintillator
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Although the physical device is quite different from the previous, the same model structure
can be used with the addition of an additive noise term.



Multiple Dimensions
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We are almost always interested in a multidimensional measurement space.  However, the
number of parameters may range from one to hundreds of thousands (image reconstruction)



Multidimensional Poisson Likelihood
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Propagating Moments for Linear Process ing
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For linear processing (matrix multiplication, integral operators, etc.), calculation of
moments is straightforward and exact.



Non-linear Process ing
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The well-known error propagation formula (here extended to multiple dimensions) is based on
a linearization of the non-linearity.



Scintillation Camera Resolution
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Variance of Centroid Estimator
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In this case, the resolution is related to the variance of the shape of the light spread function
divided by the expected number of scintillation photons in the pulse.  This relationship does
not hold if the measurement covariance has additional additive noise.



But is the approximation any good ?

Filled squares represent Monte Carlo estimates.  Solid line is approximation vs.
mean scintillation intensity.

Actua l vs. App ro x im ate  Reso lutio n

0.00

5.00

10 .00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 50 0.00 10 00.00 15 00.00 20 00.00 25 00.00

Ph o t o e le c t r o n s  / Pu ls e

R
e

so
lu

tio
n 

(m
m

 F
W

H
M

)



Cascade of Linear Blocks with Additive
Noise
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Signal-to-Noise Ratio
Fisher Information

Define “signal” as the change in the measurements for a given change in the
parameters, i.e.,

Define “noise” by the covariance matrix or autocovariance function:

Then the Signal-to-Noise ratio, which is also the Fisher Information Matrix for
Gaussian and Poisson conditional pdfs is given by:

For the previous example, the SNR is:

Note that processing cannot increase the SNR.  At best it stays the same.
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Relation to “ Class ical” System Analys is
In classical imaging system analysis, the processing (or degradation) is assumed linear and
shift-invariant.  Assuming that the autocovariance is also shift-invariant allows diagonalization
of both signal and noise via the Fourier transform
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For the previous example, if the Fourier transform diagonalizes it:
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DQE and all that

Detective Quantum Efficiency can be thought of as a transfer function for SNRs
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For the previous example:
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While DQE can be defined the same way for spatially-varying systems, it is not often used.



Part I Summary

• The likelihood function can be used to represent how the measurements
in a complex sys tem are related to underlying p arameters of interest.

• The overall li kelihood function for a system can be obtained using
iterated expectations.

• Moments of the likelihood function can be calculated in a similar fashion

• Did no t mention the important topics of how to construct models for
individual boxes or model validation

• Did no t yet mention sys tem optimization u sing the likelihood



Part II:  The inverse problem

OK, we have the likelihood .
So what?

Why is it useful?



General Tasks

Detection Classification Estimation

Sometimes
you’re wrong

You’re wrong
more often

You’re always wrong.
But how wrong?

Task types can be broken down into roughly three categories.  Detection is generally
a binary task that decides whether a signal is present (e.g., a tumor).  Classification
assigns the observations to one of N signal categories (a PET block detector, for
example).  Estimation generally results in point estimates of continuous parameters
(pixel intensity in image reconstruction).



Detection

The optimum detector for a binary decision task is the likelihood ratio test, which of course
depends upon the likelihood functions derived previously.  ROC curves can be plotted by
sweeping the decision threshold through its range

Detection Test Statistic

0.00

0.05

0.10

0.15

0.20

0.25

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00 200.00

Decision Threshold

L
ik

el
ih

oo
d

Hypothesis H0

Hypothesis H1



Receiver Operating Characteristic
(ROC) Curve

ROC Curves
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Ideal Observers for the Signal Known
Exactly Binary Hypothesis Test

For the case in which the signal and background are known exactly (SKE / BKE), the
optimum detector assumes a convenient form.  As in more complex detection problems, the
optimum test statistic is the likelihood ratio test (or difference of log-likelihoods); however, it
is relatively easy to calculate for Poisson and Gaussian noise.

Step 1:  Form the likelihood ratio statistic
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Step 2:  Compare the test statistic value to a decision threshold.  If it is greater choose H1
else choose H0.  Can evaluate system performance by plotting
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Methods developed previously can be used to calculate the requisite pdfs or moments



Ideal Observer: Gauss ian Case

If the likelihoods under both hypotheses are Gaussian distributed the LR test statistic is also
Gaussian:
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The data is “pre-whitened” to remove correlations and then filtered with a modified signal
shape (I.e., “Matched Filtering”)



Ideal Observer: Poisson Case

Here, the density of the LR test under either hypothesis is difficult to calculate; however, its
moments can readily be computed.  Making the assumption that LR test is approximately
Gaussian distributed allows calculation of detectabiltiy, ROC curves, etc.
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Detection Example

The image on the right contains a small hot-spot in addition to the background of the image
on the left.  We add Poisson noise and empirically estimate the statistics of the LR test.

H0 H1



And do es the approximation work?

Detection Test Statistic
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The open circles are histogrammed results of applying 1000 trials of the
ideal observer when the true hypothesis is known.



Problems with Simple Detection Tasks

• SKE binary hypothesis test is too simple.  Often leads to useless
optimization results.

• In imaging, the ideal observer does not match human performance
well--especially in correlated noise.

• More complex detection p roblems can become intractable very
quick ly.

One thing’s for sure:  if a sys tem does not perform well for the simple
SKE / BKE task, then it’s not likely to work better for more complex jobs.



Estimation
Rather than to classify a signal, the goal is to obtain an estimate of the values of unknown
parameters as a function of the measurements (the likelihood function will again play a central
role).

Define:

In non-Bayesian parameter estimation, the two most important figures-of-merit for an
estimator are its bias

and its covariance matrix

The MSE of the estimate for each parameter is the sum of the variance and the squared bias:

the overall MSE matrix is given by
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More Figures-of-Merit

Actual bias is strongly dependent on, say, the source distribution in tomographic reconstruction.
To overcome this problem when approximating system performance one may wish to examine
the tradeoff between variance and resolution, the width of the impulse response, or with some
aspect of the bias-gradient

( ) ( )[ ]    Iyb −∇=∇ θθθθθθθθ |ˆEˆ θθ

A column of the first term on the right hand side is the small-signal impulse response of the
estimator for the corresponding element of the parameter vector.  A row of the matrix is the
mean estimator gradient.   Often the two either are the same or are close, but they don’t
have to be!

In an upcoming slide, we’ll use the norm of the bias-gradient as a measure of the width of
the response.



Maximum Likelihood Estimation

There are many reasons likelihood based estimators are preferable over other types.  The
basic idea behind ML estimation is to choose the value of the unknown parameters that
maximizes the likelihood of observing the measurements:

Differentiating the log-likelihood, setting it to zero and solving the resulting estimation
equations for the unknown parameters gives

for the Poisson case and

for the Gaussian likelihood (“least-squares” estimation).
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Generalized Least-Squares

Often the likelihood function is not completely known; however, the first and second
moments as a function of the parameters are.  In this case, Generalized least-
squares estimation is often an alternative.  Because the covariance model may vary
as a function of the parameters, we specify the GLS estimator through its estimator
equations.

( ) ( )( ) ( ) ( )[ ] 01T10 =−∇=∇ − θθθθθθθ,θ, yyKyy yL

Note that this is the same as the least-squares estimator in the previous slide except
that the covariance can be a function of the parameters.  Although it will not be
shown here, GLS estimators have good asymptotic bias and variance properties.



The Cramer-Rao Lower Bound

Surprisingly enough, the covariance matrix of any unbiased estimator can be lower-bounded
by a function depending only on the log-likelihood.   Define first the Fisher Information Matrix
as ( )
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Application to Scintillation Camera Example

CR bound vs . Centro id Re s o lution
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At the higher photon rates the ML estimator will nearly achieve the CR bound in this
case



Yet Another Covariance Approximation

Begin by linearizing the estimator around the mean value of the measurements
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Now recognizing that the estimator is an implicit function of the measurements
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With little more effort, this technique can be used to approximate the covariance of
implicitly defined penalized estimators.



Variance of ML Estimator

Now apply the appropriate technique to the Poisson likelihood function:
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In other words, the approximate covariance of the ML estimate for Poisson (Gaussian
too) distributed measurements is given by the CR bound.



Stabilizing the Estimation Problem

More often than not, some form of stabilization has to be applied to the estimator.  This is
especially true in image reconstruction (as we’ve seen).  There are several methods of
stabilization.  Virtually all of them work through the action of adding some bias to the
parameter estimator.  The following techniques are commonly used:

• Restriction of allowable estimates through equality constraints on the parameter
vector

• Use of inequality constraints, such as non-negativity

• Post-smoothing the estimate

• Bayesian methods can be used if an actual a priori pdf of the random parameters is
known (exponential decay on depth-of-interaction probability in a scintillator)

• Penalized methods, where certain undesirable properties of the estimates are
discouraged in the objective function (many examples in the image reconstruction
section)

There are more.  Practical estimators often use combinations of these methods.



Covariance of Penalized Estimators

A common Poisson likelihood term augmented with a quadratic penalty on the
parameter vector leads to the following estimator equations:
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Note that this is almost the same as the previous derivation with the exception that the
expression now depends on the penalty matrix as well as on both true and estimated
parameter values



CR Boun d for Biased Estimators
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Sometimes a small estimator bias will significantly reduce variance.  The previous CR bound
presented was only for unbiased estimators.  Another form of the CR bound is applicable to
biased estimators:

Note that the bound in its nascent form is not extremely useful.  It is only a lower bound on
the covariance for the class of estimators having the same bias-gradient.  Not likely a very
interesting class of functions.



The Uniform CR Bounds

While the biased bound itself is somewhat restrictive, it serves as a basis for the
development of a more useful lower bound for biased estimators.  By solving a constrained
minimization problem, where the objective is to minimize the covariance over the class of all
estimators having a specific bias-gradient norm, the Uniform CR Bound is obtained.  This
form lower bounds the covariance matrix for all estimators with a bias-gradient norm equal to
or less than the specified norm.

A particularly useful form of the Uniform CR bound is given by the following pair of
parametric equations:
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The bound is calculated by sweeping the parameter λ through the range of 0 to infinity.
Although the above formulation uses the Euclidian norm to measure the bias-gradient, other
norms can be used with appropriate modification.



What are CR boun ds good for?

• CR Bounds are excellent tools for indicating when an estimation
task is not poss ible (or practical) given the measurements

• It serves as a  performance yardstick for subop timal estimators.  If
the estimator already has performance close to the bound , why
bother to look further?

• The ML estimator (penalized ML) estimator will asymptotically
achieve the CR boun d (uniform CR boun d).

• Can be used, with a great deal of caution, for optimizing sys tem
performance



And what might they not be good for?

• CR Bounds are often overly optimistic.  Especially true when either
the noise level is high or when the second (or higher) derivatives of
the expected measurements w.r.t. the parameters are large.

• While the ML estimator will achieve the bou nd asymptotically, it
may approach the bound on ly at unrealisticall y low noise levels.  At
high no ise levels estimator performance can be significantly worse
than predicted.



Calculating Covariance and Other
Performance Measures

Most of the covariance expressions have a form similar to

While for small problems the matrix can be calculated directly, for larger problems such as
image reconstruction, obtaining the entire covariance matrix is impractical.  In this case, an
entire row of the matrix can be computed by solving two successive Ax=b type problems.
For example, to calculate the covariance corresponding to the i-th parameter:
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Other performance measures can be calculated in a similar way.



Summary Part II

• The likelihood is an integral part of evaluating performance in
detection, class ification, and estimation tasks

• Detection p erformance can be quantified via ROC curves and
related measures.  Ideal observers for Poisson and Gaussian
distributed measurements presented for SKE / BKE task.

• Estimation p erformance quantified by bias and covariance.
Approximations presented for penalized and unpenalized
estimators.  CR lower bou nds on covariance.



Part III:  Examples and Applications

Is this stuff good for anything?



Scintillation Cameras
What resolution can be achieved?

How is it affected by PMT size?

Can depth--of-interaction b e estimated?

What’s the effect of photodetector noise?
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This LSF was used in the following calculations.  All scintillator surfaces were black
except for the detection surface.



Scintillation Cameras

Crystal Size 40 x 40 cm

Thickness 25 mm
# Photoelectrons ~400

Depth-of-Interaction 10 mm from entrance
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LSF and Gradients

20mm 15mm 25mm

X Y Z



Resolution Scan for Various Size PMTs
Resolution vs. Source Position
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Estimating Depth-of-Interaction

Shown below are the CR bound matrices for the case where the depth is known (top) and
where the depth must be estimated (bottom).

Note the strong correlation between the depth and energy estimates for this LSF!

X 1.14 -7.20E-17 -1.76E-15 1.08E-13

Y -7.20E-17 1.14 1.25E-16 -7.83E-15

Z -1.76E-15 1.25E-16 1.18 -65.2

ENERGY 1.08E-13 -7.83E-15 -65.2 4030

X 1.14 -7.20E-17 1.11E-14

Y -7.20E-17 1.14 -9.42E-16

ENERGY 1.11E-14 -9.42E-16 432



Effects of Additive Detector Noise
The effects of additive, independent photodetector noise on the resolution can be modeled
by adding the detector noise variance to the variance of the “self-noise”:
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Is It Better to Deconvolve or to use a High
Resolution Coll imator in the First Place?

In mechanically collimated sys tems, there’s a fund amental tradeoff between resolution
and eff iciency.  Given that the data can be processe d, it it better to use a high-eff iciency,
low-resolution sys tem and then p rocess the data to the desired resolution o r to use a
high-resolution collimator?

Approach:  Model resolution and efficiency of coll imators using common express ions.
Use Uniform CR boun d to compare performance as a function o f desired smoothing.
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Uniform CR Bound for Coll imators
Co l l im ato r Co m p ar is o n
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At least for this simple task, the higher resolution collimator should be used.



Choo sing a Scattering Detector for a
Compton-Scatter Camera

Problem:  Different scattering materials will exhibit different angular
uncertainties due to the effect of Dopp ler broadening.  Which material is
best?



Ring Scatter Camera Geometry

50 cm 38.4 cm



Anatomy of Doppler-Broadened Spectrum

• The narrow central peak (valence electrons) is important for imaging h igh spatial
frequencies

• The broad base (core electrons) degrades performance
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Broadening for Several Materials at 140 keV

Normali zed to equal area
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Object Parameterization

• Planar objects, 64x64 pixel grid

• 30 x 30 cm field-of-view

• Objects located 10 cm from collimator or scatter-ing detector

• Bound calculations focused on estimating cen- tral pixel intensity



Boun d Calculations

• Compared performance at 141 and 364 keV for several detector materials
(diamond, c-silicon, c-germanium, neon).

• Igno re potential energy resolution o f each material (second detector can have
good energy resolution).

• Determined ability to estimate the intensity of the central pixel in a 7.5 cm
diameter disk s ource 10 cm from detector.

• Calculated using scattering angles from 45 through 90 degrees.

• Calculations performed on 8 nodes of IBM SP2 computer.  Approximately one
week for each lower bound curve.



Performance at 141 keV
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Performance at 364 keV
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FWHM vs. Bias Gradient Length
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Thinking Outside the Box

Problem:  Pixellated detectors can
suffer a variety of ills including
significant gain variations among
pixels as well as totally unres-
ponsive pixels.

Pictured at right is a simulated
detector in which 10% of the
pixels are unresponsive and two
entire rows are miss ing.



Solution

Develop a statistical model describing the measurements, their noise,
and potentially other degradations.  Use a penalized least-squares
method to estimate the incident image.
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This technique would no t be very interesting if it weren’t for the penalty
matrix, which penali zes the differences between pixels to the North,
Sourh, East, and West.



Corrected for Gain Variations and Dead
Pixels

Applying the method to the pre-
vious image not only corrects for
gain variations but also eliminates
the effects of dead pixels.



Even More Problems

Regions of the detector may contain
some pixels having significantly
more noise than others.

In the central region, half the pixels
have an additive (electronic) noise
level 10x higher than others.



Corrected

This too, can be corrected by statis-
tically modeling the measurements and
using a correction method consistent
with the model


