Robust Edge-Preserving Algorithms for PET Image Reconstruction

Jeffrey A. Fessler and Hakan Erdogan

EECS Department
The University of Michigan

Dec. 19, 1997

Outline

- Motivation: PET Image Reconstruction
- Cost Function Description (for a simpler problem)
- Minimization Algorithms
 - Huber Algorithm
 - Optimization Transfer
 - Generalized Huber Algorithm
 - Grouped Coordinate Descent (GCD) Algorithm
- Anecdotal Preliminary Results
- Summary and Future Work

PET Image Reconstruction

Almost all statistical methods for PET image reconstruction are based on the following Poisson statistical model.

$$Y_i \sim \text{Poisson}\{\varepsilon_i s_i \sum_j g_{ij} \lambda_j + r_i\}$$

- Y_i : measured counts in sinogram bins
- λ_i : unknown radiotracer concentration in the jth voxel
- ε_i : ith detector efficiency
- s_i : photon survival probability along ith ray (attenuation)
- g_{ij} : projection matrix
- r_i : random coincidences

Maximum-Likelihood Image Reconstruction

If the Poisson model is valid, it is natural to estimate the emission image λ by finding the "best fit" to the sinogram data, as measured by the log-likelihood:

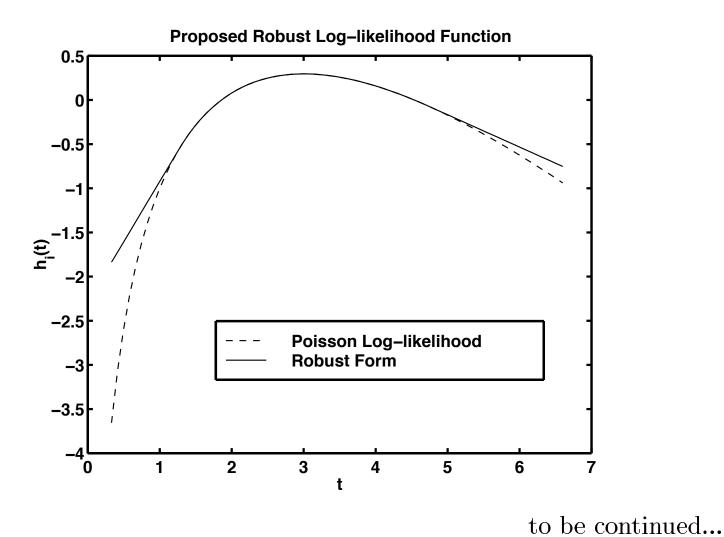
$$\hat{\lambda}_{\mathrm{ML}} \stackrel{\triangle}{=} \arg \max_{\lambda \ge 0} L(\lambda) \quad \text{where} \quad L(\lambda) = \sum_{i} h_{i}(\lambda)$$

$$h_i(\lambda) = Y_i \log \left(\varepsilon_i s_i \sum_j g_{ij} \lambda_j + r_i \right) - \left(\varepsilon_i s_i \sum_j g_{ij} \lambda_j + r_i \right).$$

Problem: although the "Poisson" part may be fine, the ε_i 's, s_i 's, r_i 's and g_{ij} 's all contain model errors and random variability.

Especially the s_i 's due to noisy transmission scans.

Possible Solution: Robust Log-Likelihood



"Linear" Inverse Problem

$$\underline{y} = A\underline{x} + \text{noise}$$

- y: noisy measurements (blurred image or sinogram)
- \underline{x} : unknown object (true image)
- A: known system model (each column is a point response function)
- Errors in *A* partially motivate robust methods

Goal: recover an estimate $\underline{\hat{x}}$ of \underline{x} from \underline{y} .

Data-Fit Cost Function

One wants $\underline{\hat{x}}$ to "fit the data," i.e. $\underline{y} \approx A\underline{\hat{x}}$ or $\underline{y} - A\underline{\hat{x}} \approx \underline{0}$

Natural cost function for independent measurement errors:

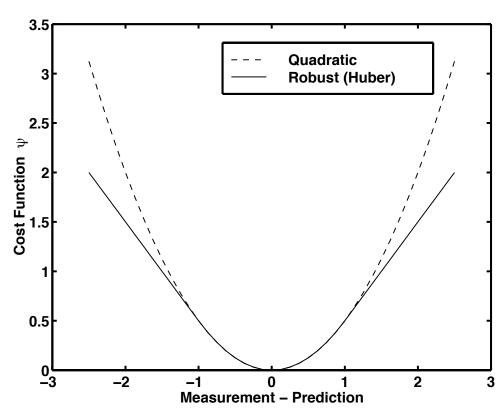
$$\Phi^{\text{data}}(\underline{x}) = \sum_{i=1}^{m_1} \psi_i^{\text{data}}([\underline{y} - \mathbf{A}\underline{x}]_i)$$

$$\bullet [\underline{y} - \mathbf{A}\underline{x}]_i = y_i - \sum_{j=1}^p a_{ij}x_j$$

- m_1 : length of y
- ψ_i : convex function.

Traditional choice: $\psi_i(t) = t^2/2$, which is appropriate for Gaussian noise, but is not robust to noise with heavy-tailed distributions.

Robust Data-Fit Cost Function



Huber function:
$$\psi(t) = \begin{cases} t^2/2, & |t| \leq \delta, \\ \delta|t| - \delta^2/2, & |t| > \delta \end{cases}$$

1D Robust Estimators

Sample Mean:

$$\hat{\mu} = \arg\min_{a} \sum_{i=1}^{n} (X_i - a)^2 = \frac{1}{n} X_i$$

Sample Median:

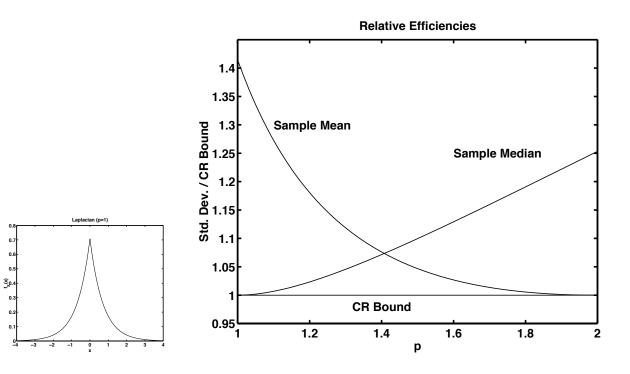
$$\hat{\mu} = \arg\min_{a} \sum_{i=1}^{n} |X_i - a| = \mathrm{median}\{X_i\}_{i=1}^{n}$$

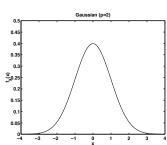
The sample-mean is well known to be very sensitive to outliers. (cf reporting median home prices vs mean home prices)

Mean vs Median

Generalized-Gaussian family of pdfs with unit variance:

$$f_X(x;\mu,p) = \frac{p}{2} \frac{1}{\sqrt{(1/p)}} \sqrt{r_p} e^{-|x-\mu|^p r_p^{p/2}}$$
 where $r_p = \frac{\sqrt{(3/p)}}{\sqrt{\sqrt{(1/p)}}}$.





Regularization

Minimizing Φ^{data} is inadequate for ill-conditioned inverse problems.

Prior "knowledge" of piece-wise smoothness:

$$\bullet x_j - x_{j-1} \approx 0$$

$$\bullet x_{j-1} - 2x_j + x_{j+1} \approx 0$$

•
$$x_j \approx 0$$

• . . .

(piece-wise constant)

(piece-wise linear)

(support constraints)

Combining: $C\underline{x} \approx \underline{z}$

Regularized cost function:

$$\Phi(\underline{x}) = \Phi^{\text{data}}(\underline{x}) + \Phi^{\text{penalty}}(\underline{x}),$$

$$\Phi^{\text{penalty}}(\underline{x}) = \sum_{i=1}^{m_2} \psi_i^{\text{penalty}}([C\underline{x} - \underline{z}]_i)$$

Example: Roughness Penalty (Gibbs Prior)

$$m{D}_n = egin{bmatrix} 1 & -1 & 0 & 0 & 0 \ 0 & 1 & -1 & 0 & 0 \ & & \ddots & \ddots & \ 0 & 0 & 0 & 1 & -1 \ \end{pmatrix} \quad m{C} = egin{bmatrix} m{I}_{n_y} \otimes m{D}_{n_x} \ m{D}_{n_x} \ m{D}_{n_y} \otimes m{I}_{n_x} \ \end{bmatrix}$$

where \otimes denotes the Kronecker matrix product.

If $\underline{z} = \underline{0}$ and \mathcal{N}_j is the four pixel neighborhood of pixel j, then

$$\Phi^{\text{penalty}}(\underline{x}) = \sum_{j} \sum_{k \in \mathcal{N}_j} \psi_{j,k}(x_j - x_k)$$

Conventional (Tikhonov-Miller) regularization: $\psi(t) = t^2/2$. For edge-preserving image recovery, need non-quadratic $\psi(\cdot)$.

Unified Cost Function

$$\Phi(\underline{x}) = \sum_{i=1}^{m} \psi_i([\underline{B}\underline{x} - \underline{c}]_i)$$

Regularized edge-preserving cost function is a special case:

$$\Phi(\underline{x}) = \Phi^{\mathrm{data}}(\underline{x}) + \Phi^{\mathrm{penalty}}(\underline{x}), \quad \boldsymbol{B} = \left[egin{array}{c} \boldsymbol{A} \\ \boldsymbol{C} \end{array}
ight], \quad \underline{c} = \left[egin{array}{c} \underline{y} \\ \underline{z} \end{array}
ight]$$

Optimization problem:

$$\underline{\hat{x}} = \arg\min_{\underline{x}} \Phi(\underline{x}) \quad \text{ or } \quad |\underline{\hat{x}} = \arg\min_{\underline{x} \ge \underline{0}} \Phi(\underline{x}).$$

Optimization

Simple in quadratic case where $\psi_i(t) = t^2/2 \ \forall i$

$$\underline{\hat{x}} = \arg\min_{\underline{x}} \frac{1}{2} ||\boldsymbol{B}\underline{x} - \underline{c}||^2 = (\boldsymbol{B}'\boldsymbol{B})^{-1} \boldsymbol{B}'\underline{c}$$

Good (fast converging) iterative algorithms:

- Preconditioned conjugate gradients
- Coordinate descent (Gauss-Siedel)

Challenging for non-quadratic ψ_i 's

Very challenging for non-convex ψ_i 's

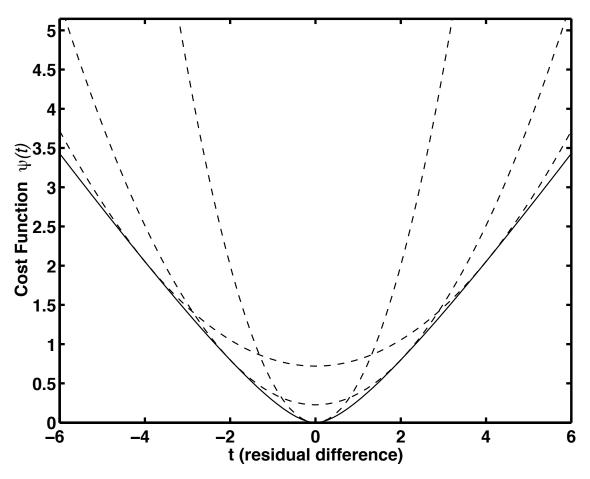
Proposition: algorithms tailored to structure of Φ can outperform general purpose optimization methods.

But cannot solve all...

Assumptions

- B has full column rank, so $M > 0 \Rightarrow B'MB > 0$ (Easily achieved with sensible regularization design)
- Each individual cost-function satisfies:
 - ψ is symmetric
 - ψ is everywhere differentiable (and therefore continuous)
 - $\dot{\psi}(t) = d/dt \, \psi(t)$ is non-decreasing (and hence ψ is convex)
 - $\left| \omega_{\psi}(t) = \dot{\psi}(t)/t \right|$ is non-increasing for $t \geq 0$
 - $\omega_{\psi}(0) = \lim_{t\to 0} \dot{\psi}(t)/t$ is finite and nonzero *i.e.* $0 < \omega_{\psi}(0) < \infty$
- Φ has a unique minimizer
 (Easily ensured with perturbation of regularizer)
 (rules out entropy, |t|^p) to understand ω, look at...

Tangent Parabolas



 $\omega_{\psi}(t_0)$ is the curvature of the parabola that is tangent at t_0

Unconstrained Solution

$$\Phi(\underline{x}) = \sum_{i=1}^{m} \psi_i([\underline{B}\underline{x} - \underline{c}]_i)$$

Column gradient:

$$\nabla \Phi(\underline{x}) = \mathbf{B}' \mathbf{\Omega}(\underline{x}) (\mathbf{B}\underline{x} - \underline{c}), \quad \nabla \Phi(\underline{x})|_{\underline{x} = \hat{\underline{x}}} = \mathbf{0}$$
where
$$\mathbf{\Omega}(\underline{x}) = \operatorname{diag}\{\omega_{\psi_i}([\mathbf{B}\underline{x} - \underline{c}]_i)\}$$

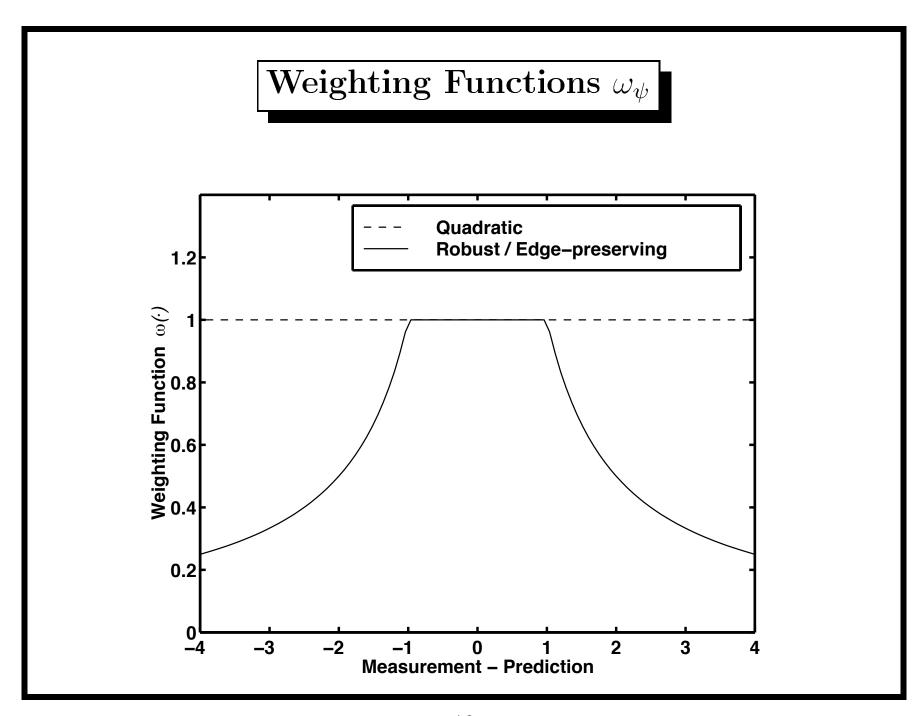
Unconstrained solution:

$$\frac{\hat{x}}{\hat{x}} = [\mathbf{B}'\Omega(\hat{x})\mathbf{B}]^{-1}\mathbf{B}'\Omega(\hat{x})\underline{c}$$

$$= \arg\min_{\underline{x}} \frac{1}{2}(\underline{c} - \mathbf{B}\underline{x})'\Omega(\hat{x})(\underline{c} - \mathbf{B}\underline{x})$$

(ala WLS, but weights depend on estimate \hat{x} , hence nonlinear)

Therefore need iterative algorithm...



Newton-Raphson Algorithm

$$\underline{x}^{n+1} = \underline{x}^n - [\mathbf{B}' \mathbf{\Lambda}(\underline{x}^n) \mathbf{B}]^{-1} \nabla \Phi(\underline{x}^n)$$

where

$$\mathbf{\Lambda}(\underline{x}^n) = \operatorname{diag}\left\{ \ddot{\psi}_i([\mathbf{B}\underline{x} - \underline{c}]_i) \right\}$$

Advantage:

• Super-linear convergence rate (if convergent)

Disadvantages:

- Requires twice-differentiable ψ_i 's
- Not guaranteed to converge
- ullet Not guaranteed to monotonically decrease Φ
- Does not enforce nonnegativity constraint
- Impractical for image recovery due to matrix inverse

Generic remedy: bound-constrained Quasi-Newton algorithms

Huber Algorithm (1981)

Recall
$$\underline{\hat{x}} = [\mathbf{B}'\mathbf{\Omega}(\underline{\hat{x}})\mathbf{B}]^{-1}\mathbf{B}'\mathbf{\Omega}(\underline{\hat{x}})\underline{c} = \underline{\hat{x}} - [\mathbf{B}'\mathbf{\Omega}(\underline{\hat{x}})\mathbf{B}]^{-1}\nabla\Phi(\underline{\hat{x}})$$

Successive Substitutions:

$$\underline{x}^{n+1} = \underline{x}^n - [\mathbf{B}'\mathbf{\Omega}(\underline{x}^n)\mathbf{B}]^{-1}\nabla\Phi(\underline{x}^n)$$

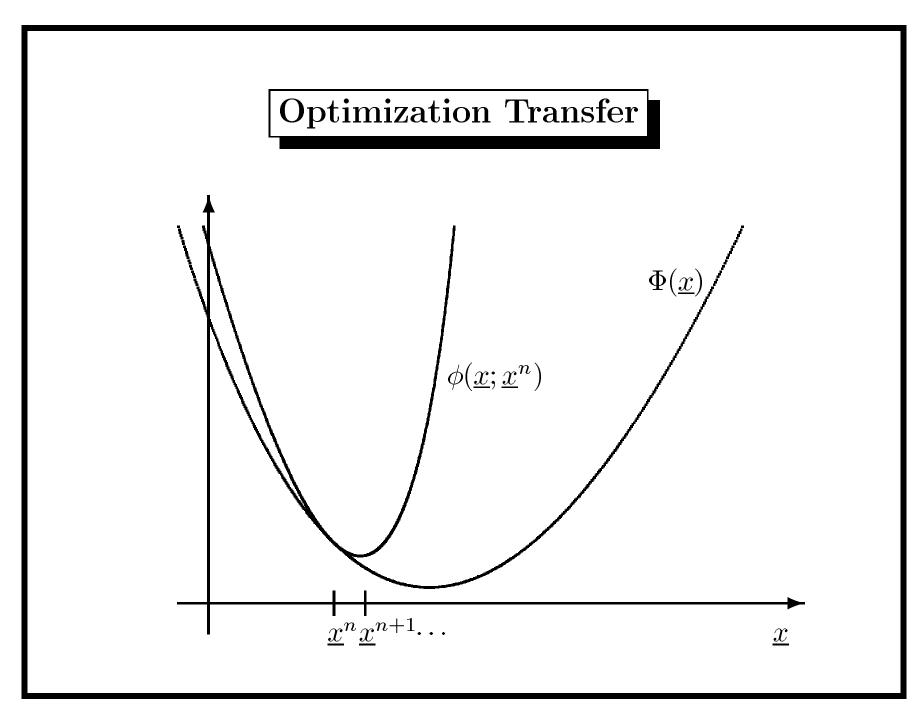
Advantages:

- \bullet Monotonically decreases Φ
- Converges globally to unique minimizer (not shown by Huber)

Disadvantages:

- Does not enforce nonnegativity constraint
- Impractical for image recovery due to matrix inverse

Successive substitutions is often not convergent. Why here?



Monotone Decrease in Φ

Minimizing surrogate function ϕ ensures a monotone decrease in the original cost function Φ if:

$$\bullet \ \phi(\underline{x}^n;\underline{x}^n) = \Phi(\underline{x}^n)$$

$$\bullet \nabla_{\underline{x}} \phi(\underline{x}; \underline{x}^n) \big|_{\underline{x} = \underline{x}^n} = \nabla \Phi(\underline{x}) \big|_{\underline{x} = \underline{x}^n}$$

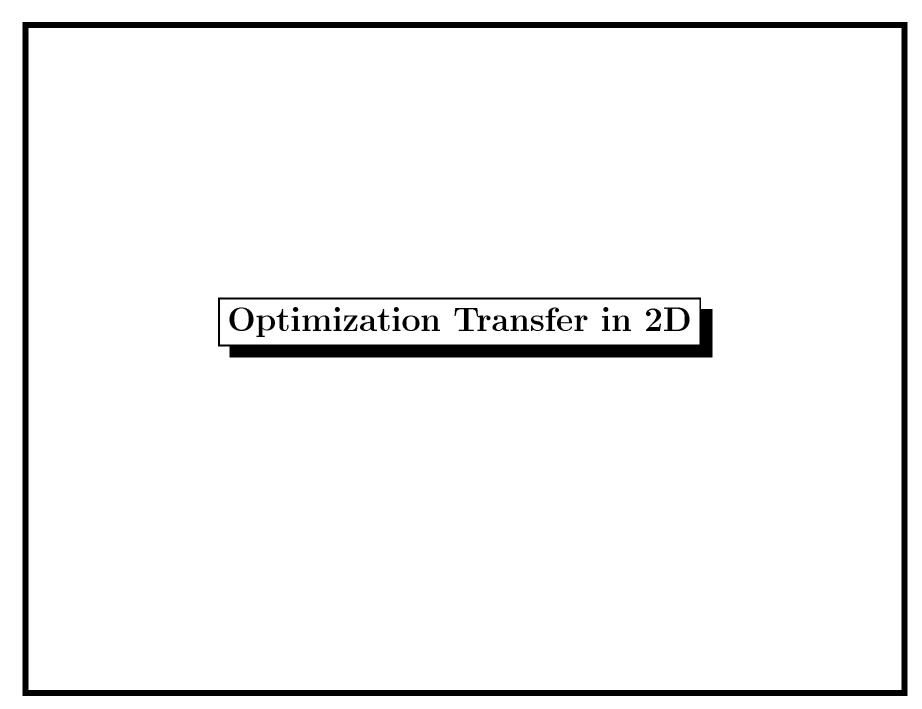
$$\bullet \ \Phi(\underline{x}) \le \phi(\underline{x}; \underline{x}^n)$$

Huber's Algorithm:

$$\underline{x}^{n+1} = \arg\min_{\underline{x}} \phi^{\text{Huber}}(\underline{x}; \underline{x}^n)$$

$$\phi^{\text{Huber}}(\underline{x};\underline{x}^n) = \frac{1}{2}(\underline{c} - \mathbf{B}\underline{x})'\mathbf{\Omega}(\underline{x}^n)(\underline{c} - \mathbf{B}\underline{x}) + k(\underline{x}^n)$$

- The above 3 (sufficient) conditions are satisfied by ϕ^{Huber} !
- ϕ^{Huber} is quadratic form in \underline{x} , so the surrogate is a paraboloid



Generalized Huber Algorithm

$$\underline{x}^{n+1} = \underline{x}^n - \boldsymbol{M}_n^{-1} \nabla \Phi(\underline{x}^n)$$

where

$$M_n \geq B'\Omega(\underline{x}^n)B$$

Advantages:

- Monotonically decreases Φ
- Converges globally to unique minimizer
- Can choose M_n to be easily invertible, e.g. diagonal. (Or splitting matrices more generally)

Disadvantages:

- Does not enforce nonnegativity constraint in general
- Converges slower than Huber algorithm

Separable Paraboloid

One can use the convexity of the Huber surrogate function to define a second surrogate function that is **separable**:

$$\phi^{\text{Huber}}(\underline{x};\underline{x}^n) \le \phi^{SP}(\underline{x};\underline{x}^n) \stackrel{\triangle}{=} \sum_j q_j(x_j - x_j^n;\underline{x}^n)$$

where

$$q_j(t;\underline{x}^n) = \sum_{i=1}^m \alpha_{ij}\omega_i([\underline{\boldsymbol{B}}\underline{x}^n - \underline{c}]_i) \frac{1}{2} \left(\frac{b_{ij}}{\alpha_{ij}}t + \underline{\boldsymbol{B}}\underline{x}^n - \underline{c}\right)^2,$$

$$\alpha_{ij} = \frac{|b_{ij}|}{\sum_{j=1}^{p} |b_{ik}|}.$$

Minimizing the separable paraboloid ϕ^{SP} is trivial, especially compared to minimizing a paraboloid.

Separable Paraboloid Algorithm

$$\underline{x}^{n+1} = \left[\underline{x}^n - \frac{\dot{q}_j(0; \underline{x}^n)}{\ddot{q}_j(0; \underline{x}^n)}\right]_+ = \left[\underline{x}^n - \operatorname{diag}\left\{\frac{1}{\ddot{q}_j(0; \underline{x}^n)}\right\} \nabla \Phi(\underline{x}^n)\right]_+$$

Advantages:

- ullet Monotonically decreases Φ
- Converges globally to unique minimizer
- No matrix inversion required
- Can enforce nonnegativity constraint
- Parallelizable (all pixels updated simultaneously)

Disadvantages:

• Very slow convergence (ala EM algorithm)
Solution: update only a subset of the pixels simultaneously

Grouped Coordinate Descent Algorithm

Construct a separable paraboloidal surrogate function but for only a (large) **subset** of the pixels.

Pixel Groups (2x3)

1	5	3	1	5	3	1	5
4	2	6	4	2	6	4	2
1	5	3	1	5	3	1	5
4	2	6	4	2	6	4	2
1	5	3	1	5	3	1	5
4	2	6	4	2	6	4	2

Pixels separated => decoupled => fast convergence Many pixels per subiteration => parallelizable

Grouped Coordinate Descent Algorithm

Advantages:

- Monotonically decreases Φ
- Converges globally to unique minimizer
- No matrix inversion required
- Can enforce nonnegativity constraint
- Parallelizable (all pixels updated simultaneously)
- Fast convergence

Disadvantages:

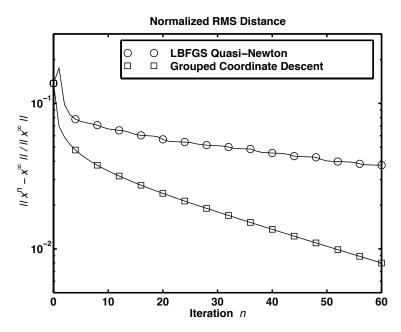
- Slightly less parallelizable.
- Slightly more complicated implementation
- More complicated to explain...
- Difficult to exploit structure of **B**(e.g. FFTs for shift-invariant PSF, separable blur in PET)

PET Transmission Example

- 12 minute transmission scan from ECAT EXACT (single slice)
- 0.921M prompt coincidences
- 160 radial by 192 angular samples
- 128×128 attenuation map with 4.5 mm pixel size

Normalized RMS Distance

 $\frac{\|\underline{x}^n - \underline{x}^\infty\|}{\|\underline{x}^\infty\|}$ where \underline{x}^∞ : 400 iterations of single-coordinate descent



LBFGS: Limited Memory Bound Constrained Quasi-Newton Method (R. Byrd, P. Lu, J. Nocedal, R. Schnabel, C. Zhu) (Thanks to Web Stayman for interfacing LBFGS with ASPIRE.)

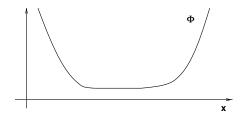
Summary

Grouped Coordinate Descent Algorithm

- Accommodates non-quadratic cost function (for noise robustness and preserving edges)
- Monotonically decreases Φ
- Converges globally to unique minimizer
- Easily accommodates nonnegativity constraint
- Parallelizable
- Converges faster than a general-purpose optimization method

Future Work:

- Convergence proof for multiple minima:
- PET emission reconstruction problem



Convergence

From R. Meyer "Sufficient conditions for the convergence of monotonic mathematical programming algorithms," J. Comput. System. Sci., 1976.

Let \mathcal{M} be a point to set mapping such that on G \mathcal{M} is uniformly compact, upper semi-continuous, and strictly monotonic with respect to the function Φ .

If $\{\underline{x}^n\}$ is any sequence generated by the algorithm corresponding to \mathcal{M} , then

- all accumulation points of $\{\underline{x}^n\}$ will be fixed points,
- $\Phi(\underline{x}^n) \to \Phi(\underline{x}^*)$ where \underline{x}^* is a fixed point,
- $\bullet \|\underline{x}^{n+1} \underline{x}^n\| \to 0$, and
- either $\{\underline{x}^n\}$ converges or the accumulation points of $\{\underline{x}^n\}$ form a continuum.