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‘PET Image Reconstruction.

Almost all statistical methods for PET image reconstruction are
based on the following Poisson statistical model.

Y; ~ Poisson{e;s; E gij A\ +1i}
J
e Y;: measured counts in sinogram bins
e )\,: unknown radiotracer concentration in the jth voxel

e ¢;: 1th detector efficiency

e s;: photon survival probability along ith ray (attenuation)

® g;;: projection matrix

e r;: random coincidences




‘Maximum—Likelihood Image Reconstruction'

If the Poisson model is valid, it is natural to estimate the emission

image A by finding the “best fit” to the sinogram data, as measured
by the log-likelihood:

2 JAN
Avir, = arg Iilza(})cL()\) where L(\) = Z hi(\)

hz<)\> =Y, log| ¢;s; Zgi]‘)\j +7r; |l — | €8 Zgi]‘)\j +7r;
' J

J

Problem: although the “Poisson” part may be fine, the ¢;’s, s;’s,

r;’s and g;;’s all contain model errors and random variability.

Especially the s;’s due to noisy transmission scans.




‘Possible Solution: Robust Log—LikelihoodI

Proposed Robust Log-likelihood Function

- Poisson Log-likelihood
Robust Form

to be continued...




‘ “Linear” Inverse Problem.

y = Az + noise

: noisy measurements (blurred image or sinogram)
x: unknown object (true image)

A: known system model

(each column is a point response function)
e Errors in A partially motivate robust methods

Goal: recover an estimate Z of x from y.




‘Data—Fit Cost Function.

One wants T to “fit the data,” i.e.y = Az or |y — Az =0

Natural cost function for independent measurement errors:

(I)da,ta,<£> — Zw?ata([g . A£]7J>

e my: length of y

® 1);: convex function.

Traditional choice: ;(t) = t*/2, which is appropriate for Gaussian
noise, but is not robust to noise with heavy-tailed distributions.




‘Robust Data-Fit Cost Function'
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‘1D Robust Estimatorsl

Sample Mean:

. 1
fit = arg min Z(XZ —a)® = =X
i=1

n

Sample Median:
fL = arg minz |.X; — a| = median{ X;}} ,
i=1
The sample-mean is well known to be very sensitive to outliers.

(cf reporting median home prices vs mean home prices)




‘Mean VS Median.

Generalized-Gaussian family of pdfs with unit variance:

fX(fChuap) — gﬁ Tp€_|x_“

|pr£/2

where r, = -

Relative Efficiencies

Sample Mean

Sample Median

Std. Dev. / CR Bound

CR Bound
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‘ Regularization I

Minimizing ®4*** is inadequate for ill-conditioned inverse problems.

Prior “knowledge” of piece-wise smoothness:
ex;, —x;_1 =0 (piece-wise constant)
or; 1 —2x;+zj41 =0 (piece-wise linear)
ox; ~0 (support constraints)

Combining: Czx = 2

Regularized cost function: |®(z) = &% (g) 4+ Pl (g),

ma

QP (g) = 3 P ([Cx - 2)

1=1




‘Example: Roughness Penalty (Gibbs Prior) I

1

D,, &1,

0

where @ denotes the Kronecker matrix product.

If z =0 and N is the four pixel neighborhood of pixel j, then

OPNIY () =N~ N " bk (wj — )

J kENj

Conventional (Tikhonov-Miller) regularization: (t) = t2/2.
For edge-preserving image recovery, need non-quadratic (-).




‘Uniﬁed Cost Function.

O(z) = Z vi([Bz — ;)

Regularized edge-preserving cost function is a special case:

A
(I)<£> — (I)da,ta,<£> + (I)pena,lty<£>7

Optimization problem:

z =argmin ®(x) or




‘ Optimization I

Simple in quadratic case where v;(t) = t*/2 Vi

1
2 = arg min §||B§ — | =(B'B)'B'c

Good (fast converging) iterative algorithms:
e Preconditioned conjugate gradients

e Coordinate descent (Gauss-Siedel)

Challenging for non-quadratic v;’s
Very challenging for non-convex ;s

Proposition: algorithms tailored to structure of ® can outperform
general purpose optimization methods.

But cannot solve all...




‘ Assumptions I

e B has full column rank, so M >0 = B'MB >0
(Easily achieved with sensible regularization design)

e Fach individual cost-function satisfies:
e 7/ 1s symmetric
e ¢ is everywhere differentiable (and therefore continuous)

o (t) = d/dt (t) is non-decreasing (and hence 1 is convex)

o | wy(t) =1)(t)/t|is non-increasing for ¢ > 0

o wy(0) = limy_.o9)(t)/t is finite and nonzero i.e.
0 < wy(0) < oo

e ® has a unique minimizer
(Easily ensured with perturbation of regularizer)

(rules out entropy, |t|P) to understand w, look at...




‘ Tangent Parabolas I
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wy(to) is the curvature of the parabola that is tangent at t




‘ Unconstrained Solution '

O(z) = Z vi([Bz — ;)

Column gradient:

V&(z) = B'Q(z)(Bz—¢), V&(z)|,_,=0

where € (z) = diag{wy, ([Bz —c:)}

Unconstrained solution:

i = [B'Q@)BBQ)

1
argmin (¢ — Bz)'Q2()(c — Bz)

(ala WLS, but weights depend on estimate Z, hence nonlinear)

Therefore need iterative algorithm...




‘Weighting Functions w¢I
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‘ Newton-Raphson Algorithm I

2" =a" — [B'A(z")B]7'V®(z")

where

A(2") = diag{Vi([Ba — o)}

Advantage:

e Super-linear convergence rate (if convergent)

Disadvantages:
e Requires twice-differentiable 1;’s
e Not guaranteed to converge
e Not guaranteed to monotonically decrease ®
e Does not enforce nonnegativity constraint

e Impractical for image recovery due to matrix inverse

Generic remedy: bound-constrained Quasi-Newton algorithms




‘Huber Algorithm (1981) I

Recall 2 =[B'Q(2)B]'B'Q2)c =2 — [B'Q2)B]'V&(2)

Successive Substitutions:

2" =a" — [B'Q(z")B] 7 Ve(2")

Advantages:
e Monotonically decreases ®

e Converges globally to unique minimizer (not shown by Huber)

Disadvantages:
e Does not enforce nonnegativity constraint

e Impractical for image recovery due to matrix inverse

Successive substitutions is often not convergent. Why here?




‘ Optimization Transfer I




‘Monotone Decrease in <I>I

Minimizing surrogate function ¢ ensures a monotone decrease in
the original cost function & if:
® p(z";z )— q’(£">
. chb(
B(z) <
Huber’s Algorithm:

" = argmin ¢

Huber(

z;x")

(5 a") = (e~ BeYQUa")(e ~ Bz) + k(z")

e The above 3 (sufficient) conditions are satisfied by @tuber !

o pHUPer s quadratic form in , so the surrogate is a paraboloid




‘Optimization Transfer in ZDI




‘Generalized Huber Algorithm.

xn—l—l — £n . M;lvq)<£n>

M, > B'Q(2")B

Advantages:
e Monotonically decreases ®
e Converges globally to unique minimizer

e Can choose M ,, to be easily invertible, e.g. diagonal.

(Or splitting matrices more generally)

Disadvantages:
e Does not enforce nonnegativity constraint in general

e Converges slower than Huber algorithm




‘ Separable Paraboloid I

One can use the convexity of the Huber surrogate function to
define a second surrogate function that is separable:

uper n n A n n
M (5 2") < @5 (252) =D qj(wy — a2

Minimizing the separable paraboloid ¢°% is trivial, especially

compared to minimizing a paraboloid.




‘Separable Paraboloid Algorithm'

1

G;(0; 2™) } Vé(gn)] +

Advantages:
e Monotonically decreases ®
e Converges globally to unique minimizer
e No matrix inversion required
e Can enforce nonnegativity constraint

e Parallelizable (all pixels updated simultaneously)

Disadvantages:
e Very slow convergence (ala EM algorithm)

Solution: update only a subset of the pixels simultaneously




‘Grouped Coordinate Descent Algorithm'

Construct a separable paraboloidal surrogate function but for only

a (large) subset of the pixels.

Pixel Groups (2x3)

3 | 1 5|3 | 1

6 | 4| 2|6 |4

3 | 1 53| 1

6

1 5|3 |1 5|3 |1 5

4 | 2 | 6| 4|2 |6 | 4|2

Pixels separated => decoupled => fast convergence
Many pixels per subiteration => parallelizable




‘Grouped Coordinate Descent Algorithm'

Advantages:
e Monotonically decreases ®
e Converges globally to unique minimizer
e No matrix inversion required

e Can enforce nonnegativity constraint

e Parallelizable (all pixels updated simultaneously)

e Fast convergence

Disadvantages:
e Slightly less parallelizable.
e Slightly more complicated implementation
e More complicated to explain...
e Difficult to exploit structure of B
(e.g. FFTs for shift-invariant PSF, separable blur in PET)




‘PET Transmission Examplel

e 12 minute transmission scan from ECAT EXACT (single slice)

e 0.921M prompt coincidences
e 160 radial by 192 angular samples
e 128 x 128 attenuation map with 4.5 mm pixel size




‘Normalized RMS Distance.

x" — x>
| 2| where £°°: 400 iterations of single-coordinate descent

=]
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LBFGS: Limited Memory Bound Constrained Quasi-Newton Method
(R. Byrd, P. Lu, J. Nocedal, R. Schnabel, C. Zhu)

(Thanks to Web Stayman for interfacing LBFGS with ASPIRE.)




‘ Summary I

Grouped Coordinate Descent Algorithm

e Accommodates non-quadratic cost function

(for noise robustness and preserving edges)

e Monotonically decreases ®

e Converges globally to unique minimizer

e Fasily accommodates nonnegativity constraint

e Parallelizable

e Converges faster than a general-purpose optimization method

Future Work:

e Convergence proof for multiple minima: ¢
e PET emission reconstruction problem




‘ Convergence I

From R. Meyer “Sufficient conditions for the convergence of monotonic

mathematical programming algorithms,” J. Comput. System. Sci., 1976.

Let M be a point to set mapping such that on G M is uniformly
compact, upper semi-continuous, and strictly monotonic with respect to
the function ®.

If {z"} is any sequence generated by the algorithm corresponding to M,
then

e all accumulation points of {z"} will be fixed points,

o &(z") — P(2*) where 2 is a fixed point,

o |[z" " —2"|| = 0, and

e either {z"} converges or the accumulation points of {z"} form a

continuum.




