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. . J. Fessler
Under-determined inverse problems Patch models M
» Applications: compressed sensing MRI, sparse-view CT, PET, inpainting, ...
All have linear forward models for data:

y=Ax+e¢

y: sensor data (e.g., sinogram)
A: wide system matrix (known)
x: latent image (or image series in dynamic problems)
e: noise with known distribution provides likelihood p(y|x)
» Maximum-likelihood estimation (physics-based fitting) is usually non-unique:

x = arg max log p(y|x) = argmin ||Ax — yH%
X X

(for gaussian noise)
> Minimum-norm least-squares solution is unique but usually impractical or useless:
% = Aty = y for inpainting problem
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. J. Fessler
Inverse problem solution methods Patch modelméd

» hand-crafted regularizers:
x = arg min — log p(y|x) +R(x) = argr min — 2 2 1Ax — [ + R(x)
X

» black-box data-driven supervised methods:

A+y—>—>)“(

» unrolled deep learning methods (PNP, RED, MoDL, ...)

» Bayesian methods (e.g., MAP) based on a prior p(x),
lately (?7) relabeled as generative models
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Long history of Bayesian models for inverse problems Patch models M

Markov random field models

(e.g.) Geman & Geman 1984 [1]
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Mostly for inference?

GEMAN AND GEMAN: STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND BAYESIAN RESTORATION 737

@

Fig. 7. (a) Blurred image (roadside scene). (b) Degraded image: Addi-
tive noise. (c) Restoration including line process; 100 iterations. (d)
Restoration including line process; 1000 iterations.
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Long history of generative models and inverse problems Patch modelshm¥

MRF as generators? [2] T-PAMI 1994

An Empirical Study of the Simulation
of Various Models Used for Images

A. J. Gray, J. W. Kay, and D. M. Titterington

Abstract— Markov random fields are typically used as priors in
Bayesian image restoration methods to represent spatial information
in the image. Commonly used Markov random fields are not in fact
capable of representing the moderate-to-large scale clustering present in
naturally occurring images and can also be time consuming to simulate,
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Local vs global priors Patch models M

Gray, Kay, Titterington [2] T-PAMI 1994

. the local properties of spatial Markov
models are undoubtedly plausible descrip-
tors of the local associations typical of
many images, which is the way in which
the models are often used. Nevertheless,
it would be reassuring if models used as
priors did in fact provide a realistic rep-
resentation of our prior assumptions and
if their (empirical) properties were more

: Fig. 4. lizations of two-dimensional, one-p logistic Markov
Wlde/y knOWn. Mesh models: (a) binary, second-order model with 3 = log 5; (b) three-color
second-order model with 3 = log5; (c) binary second-order model with

3 = log 10; (d) binary second-order model with 3 = log 3.
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Generative models are hot in graphics Patch models M

r ' £ =\ T . ™\ 22

Computer (“Al") generated stills from hypothetical movie: Chilean director Alejandro
Jodorowsky's 1976 version of “Tron” using midjourney.com as reported in 2023-01-13
NY Times article “This film does not exist” by director Frank Pavich.
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Generative models are hot in the news Patch modellméa

> 2020-11-21 NY Times “Designed to Deceive: Do
These People Look Real to You?"
Article about generated (aka fake) faces.

> 2022-10-21 NY Times “A Coming-Out Party for
Generative A.l., Silicon Valley's New Craze” y
(about “Stable Diffusion” image generator) Gender Race and Ettnicty
https://nyti.ms/3SjsNOk

> 2023-01-09 NY Times “A.l. Turns Its Artistry to
Creating New Human Proteins”
https://nyti.ms/3I1zY66m
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Generative models are controversial in Art Patch modelshk

Théatre d'Opéra Spatial

Image created with Midjourney genera-
tive Al by Jason M. Allen.

Won 2022 Colorado State Fair fine art

competition.

Wikimedia: “This file is in the public domain be-
cause it is the work of a computer algorithm or ar-
tificial intelligence and does not contain sufficient
human authorship to support a copyright claim.”
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Generative models are hot in imaging / inverse problems Patch mode|s

Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [3]
» Generative adversarial network (GAN) models

» Variation auto-encoder (VAE) models [4]

» Normalizing flows [5, 6]
>

Score-based diffusion models

o Zaccharie Ramzi et al., NeurlPS Workshop 2020 [7]

o Yang Song & Liyue Shen et al., NeurlPS Workshop 2021, ICLR 2022 [8, 9]
o Ajil Jalal et al. ...Jon Tamir, NeurlPS 2021 [10]

o Hyungjin Chung & Jong Chul Ye, MIA, Aug. 2022 [11]

o Luo et al., MRM, 2023 [12]

o ...
» Kazerouni et al. [13] have github catalog, including >20 (!) survey papers
» ... (hopelessly incomplete lists)
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. . . . J. Fessler
Medical example: Low-dose sparse-view X-ray CT imaging  patch models M

From Song & Shen et al., ICLR 2022 [9].
Trained with 47K 2D images; 23 projection views (% 17-fold dose reduction)

A=P(A

X Sinogram  diag(A

PSNR: 20.30, SSIM: 0.778 PSNR: 22.94, SSIM: 0.552 PSNR: 22.78, SSIM: 0.603 PSNR: 31.76, SSIM: 0.882 PSNR: 35.23, SSIM: 0.912

(a) FISTA-TV (b) cGAN (c) Neumann  (d) SIN-4c-PRN (e) Ours (f) Ground truth 18/50
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Bayesian methods (generative models) Patch modelslméa

P> Bayesian inference methods use the posterior:

p(xly) = p(ylx) p(x) / p(y)
—_—— —~—

physics prior

» Here the prior p(x) is for quantifying (prior) probability,

not necessarily for generation.
» A model for the posterior p(x|y) opens many doors:
» Maximizing p(x|y) is maximum a posteriori (MAP) estimation

» The conditional mean E[x|y] = [ x p(x|y) dx is the MMSE estimator
» Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference

» All these methods require the prior p(x), i.e., a prior model p(x; 8).

| 2
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Bayesian methods (generative models) Patch modelslméa

P> Bayesian inference methods use the posterior:

p(xly) = p(ylx) p(x) / p(y)
—_—— —~—

physics prior

» Here the prior p(x) is for quantifying (prior) probability,

not necessarily for generation.
» A model for the posterior p(x|y) opens many doors:
» Maximizing p(x|y) is maximum a posteriori (MAP) estimation

» The conditional mean E[x|y] = [ x p(x|y) dx is the MMSE estimator
» Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference

» All these methods require the prior p(x), i.e., a prior model p(x; 8).

» Or do they?
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Sampling via Langevin dynamics Patch modellméa

Sampling from a prior p(x; @) just needs its score function Vy logp(x; @),
using Langevin dynamics, aka stochastic gradient ascent of log-prior:

Xt = X¢—1 + Oétv |Og p(thl; 9) + 61_-./\/’(0, I), t = 1, ey T.
—_———
score function

o Draws samples from p(x; @) for suitable choices of {a:}, {S:}, and (large) T [14].
o If a; =0 and 8; = 3, then akin to (isotropic) diffusion or Brownian motion
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Distribution learning vs score learning Patch models M

» Typical distribution models: p(x;0) = ﬁe_u(’“e).
Goal: learn @ from training data xy, ..., X7

» For IID samples {x;}, one could try to learn 8 by ML estimation:

A

0 = argmax p(xy,...,x7;60) = arg maxz log(p(x¢; 0))
o

= arg max ( Z U(x:; 0 ) .
0

Typically intractable due to the partition function Z(8).
>
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.. . . . J. Fessler
Distribution learning vs score learning Patch models M

» Typical distribution models: p(x;0) = ﬁe_u(’“e).
Goal: learn @ from training data xy, ..., X7

» For IID samples {x;}, one could try to learn 8 by ML estimation:

A

0 = argmax p(xy,...,x7;60) = arg maxz log(p(x¢; 0))
o
= arg max ( Z U(x:; 6 ) )
o

Typically intractable due to the partition function Z(8).

» |n contrast, the score function is easier to handle:

s(x;0) = Vylogp(x;0) = Vx (—log Z(0) — U(x;0)) = —VxU(x; 0).
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Score matChing Patch modelsfgim
» Given training data xi, ..., x7, learn score function s(x; 8) LV, log p(x; 6)
>
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Score matching M

vVvyYyyvyy

Patch modelsiEzEm

Given training data xy, ..., xT, learn score function s(x; ) LV, log p(x; 6)
Explicit score matching (ESM) (Hyvérinen, 2005 [15])

Implicit score matching (ISM)

Denoising score matching (DSM) (Vincent, 2011 [16])

Noise-conditional score matching (NCSM) (Song, 2019 [17, eqn. (5)]):

s(x+2z0,0)+

1 z|?
0(0;0) £ 5 Eqo(x) [Ego(z) [ s 2H , L(0;{0/}) = ZO’/ (0;0),
where s(x; 0, 0) denotes a noise-conditional score network (NCSN).
d(x;0) = x + 0°s(x;0,0) : equivalent image denoiser by Tweedie's formula [18]

Recommended choice [19]: s(x; 8,0) £ 3(x; 8)/c, where § is unitless

17/50



. .- . . . J. Fessler
Noise-conditional score network training / sampling Patch mode|s

Shen & Song et al., NeurlPS 2021 [8]
Data Forward SDE Noise

X0 dx; = f(t)x: dt + g(t) dw,

> X1

re function

dx, = [f(t)x: — g(t)* th 10gpt(xt)! 1dt + g(t) dw,

Samples Reverse-time SDE Prior
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Score-based diffusion models: trade-offs Patch mode|s

» No adversarial training needed
» High quality sample generation (if enough training data)
>

19/50


https://en.wikipedia.org/wiki/Stable_Diffusion
https://github.com/Stability-AI/stablediffusion

. . J. Fessler
Score-based diffusion models: trade-offs Patch mode|s

» No adversarial training needed
» High quality sample generation (if enough training data)

» Expensive sample generation (vs GAN models)
o Distillation methods [20]
o Consistency models [21]
o Geometric decomposition [22]
o Multi-scale [23, 24] and pyramidal [25] and coarse-to-fine [26] models
o Faster ODE solvers [27]
o Warm starts [28]
o Latent diffusion models: use VAE and diffuse in latent space [29-31].
Used in Stable Diffusion by start-up Stability Al
o 3D image reconstruction using 2D models [32, 33]

» Learning 3D (or 3D+T) whole-image generative models is challenging
(training data, GPU memory, ...)
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. J. Fessler
Whole images vs patches? Patch models M
Jan. 2023 survey paper on generative models [3] does not mention “patch” once!?

MRI k-space sampling:

s [35] [36]

Patch-based models have long history in inverse problems, e.g.,
patch GAN [37-39]

patch dictionary models [40, 41]
non-local means, BM3D

Wasserstein patch prior [42, 43] ...
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Motivating questions Patch modelsjig

» Could patch-based generative models provide better robustness to distribution
shifts, perhaps at the cost of reduced in-distribution performance?

» Especially in applications with very limited training data?
e.g., dynamic MRI

> Can we use the “latest” generative models, namely score-based models, for patches?

21/50



Patch diffusion model: Simple version

Warm up:
simple, but less effective, approach:
Fixed patch size
Fixed patch grid
No position information
(Fessler, Hu, Xu, BASP 2023 [46])

J. Fessler M

Patch modelsiEzEm
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Patch-based score modeling Patch models M

» Start with MRF formulation, aka fields of experts model [51-53] for image x:

L oS vxe) L —Ve(x:6)
PO = Z6)° =z L1

0 : parameter vector that describes the prior
V. : clique potential for the cth image patch
Z(0) : (intractable) partition function

» Assume (temporarily) statistical spatial stationarity (image shift invariance):
Ve(x;0) = V(Gcx; 0)

G, : wide binary matrix that grabs pixels of the cth patch from image x

V(v; 0) : common patch clique function
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Patch-based score modeling (simple) Patch modelkn

P Resulting log-prior:
log p(x;0) = —log Z(0) — ZC V(Gcx; 0)
» Corresponding overall image score function arises from patch score function:
s(x;0) = Vxlogp(x; 0) Z Gl.sy(Gcx;0), sy(v;0) £ =V, V(v; ).

» All we must learn is the patch score function sy (v;0) : R” — R", e.g., a UNet.
P For non-overlapping patches:

H ( + z; 9 +Z/0' H *HZ GSV );9)4—2/02“2

image “denoise”

A
, 2z =Gz

- ZC Hsv(xc +2.); 0) + 25/02‘ 2

patch “denoise”
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Patch-based score learning (simple) Patch models M

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2‘|‘| '

n

1l T 2 1
6 = argmin T thl Eg'Np(a') lff EzNN(O,a2ln) [2

z
sv(ve +2;0,0) + —
0

g

» Final patch score model is sy (v; é,amin).
| 2
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. . J. Fessler
Patch-based score learning (simple) Patch models M

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2‘|‘| '

n

1l T 2 1
6 = argmin T thl Eg'Np(a') lff EzNN(O,a2ln) [2

V4
SV(Vt‘|‘Z;030)‘|'72
0

g

» Final patch score model is sy (v; é,amin).

> Network input is just image patches, never the entire image
= scales to large 2D images, 3D, 4D, etc.

>
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. . J. Fessler
Patch-based score learning (simple) Patch models M

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2]‘| '

0 = argmin ? Zt:l anp(a) [O‘ EZNN(O,JZI,,) [2 Sv(Vt +z0, U) + ;

0

» Final patch score model is sy (v; é,amin).
> Network input is just image patches, never the entire image
= scales to large 2D images, 3D, 4D, etc.

» Drawbacks:
o Visible patch boundaries
o Fixed patch size slows learning
o Suboptimal stationarity assumption (cf. vertebrae)
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Improved patch modeling Patch modellméa

P> zero-pad image x A

» use multiple grid locations

7

Random
patch
location

N+2M

Inspirations:

o Wavelet ‘“cycle spinning”

[47, 54-57]
o Wang, NeurlPS 2023 [58]
V
< =
N+2M

26 /50
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Probability model with padding & grids & positions pat:ssr:;dds M

> N; x Ny : original image size

» P; X P, : patch size
> K; 21+ |N;/P;|, i =1,2: # non-overlapping patches for original image

» (Ny +2M) x (No 4 2M,) : padded image size; M; = K;P; — N;
» Product probability model:

£ - X ym,
== pm,B(xm,B) pm7k(xm7k)> = — e m, k1T
z m=1 k=1

p(x) = -
m=1 k=1 .
—— border position
grid region patches encoding
shifts

o Xm g : border pixels for mth shift (all zero)
© Xm k : kth patch for mth shift

| 2
27 /50
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Probability model with padding & grids & positions pat:ssni;dds M

> N; x Ny : original image size

» P; X P, : patch size
> K; 21+ |N;/P;|, i =1,2: # non-overlapping patches for original image

» (Ny +2M) x (No 4 2M,) : padded image size; M; = K;P; — N;
» Product probability model:

£ - X ym,
== pm,B(xm,B) pm7k(xm7k)> = — e m, k1T
z m=1 k=1

p(x) = -
m=1 k=1 .
—— border position
grid region patches encoding
shifts

o Xm g : border pixels for mth shift (all zero)
© Xm k : kth patch for mth shift

» Learn position-dependent patch score function s(v; 8, m, k) = -V, V(v; m, k)
27 /50
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Patch Diffusion Inverse Solver (PaDIS): Training S M

Traini NeurlPS
raining 1\ 2024 [60]
-AE= -5

Denoising
score
matching

\ Y position
1
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Training images (CT) J. Fessler

Patch modelsjggzss

AAPM 2016 CT chal-
lenge data [61];
10 3D volumes,
rescaled to 2563

Example slices:
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Image generation (unconditional sampling from prior) Patch modelshmém

o Top: generation with a network trained on whole images (2D...)
o Middle: patch-only version of [58] (non-overlapping patches).
o Bottom: proposed PaDIS method.
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Training time results Patch modelméd

2 A40 GPUs using PyTorch and ADAM
» whole image model: 24 — 36 hours
» patch-based model: =~ 12 hours
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Patch Diffusion Inverse Solver (PaDIS): Reconstruction Patch models M

Reconstruction

=B
11

=T Measurement

Final output

Measurement

= Em
B2
L 4

Diffusion posterior sampling (DPS) (Chung et al., ICLR 2023 [62]) with Langevin
dynamics, modified to use patch score with random grid shifts.

32/50



PaDIS algorithm (modified from DPS) IJD'athsS::;dds
Input: y, A, T, 01 <0< ...<or,e>0, {¢: >0}, P1, P, My, My,
trained noise-conditional, position-encoded patch denoiser d(-; 6., m, k, o)
Initialize random image x ~ N(0,031)
fort=T:1do

Randomly select grid integer m € {1,..., M; My}
for k =1: (K1K>) do (parallelizable)

Extract patch x, «

Denoise patch: dp, « = d(Xm k; 0+, m, k, o)
end for
Combine denoised patches to get denoised image d
Compute image score function: s = (d — x)/o?
Data term: x := x — (:Vx||A d(x) — y||3
Sample z ~ N(0,021)
Step size a; = € o?
Langevin update: x := x + %'s + \/a;z

end for 33/50



: J. Fessl
CT Experiments N M

Patch modelsiEzEm

Default setup:
9 of 10 volumes for training = 2304 slices

25 slices of 10th volume for testing

512 element parallel-beam CT detector

A from Operator Discretization Library (ODL)
56 x 56 patch size

U-Net of Karras 2022 [59]

Step size (¢ = ¢/||Ad(x¢) — y/|2

1000 neural function evaluations (NFEs) [59]
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https://github.com/odlgroup/odl

. . . . J. Fessler
Quantitative results on three different inverse problems Patch models M

Method CT, 20 Views CT, 8 Views Deblurring Superresolution
PSNRt SSIM?T | PSNRT  SSIM?T | PSNRT  SSIM1 | PSNRT  SSIM1
Baseline 24.93 0.595 | 21.39 0.415 | 24.54 0.688 | 25.86 0.739
ADMM-TV 26.82 0.724 | 23.09 0.555 | 28.22 0.792 | 25.66 0.745
PnP-ADMM [63] 26.86 0.607 | 22.39 0.489 | 28.82 0.818 | 26.61 0.785
PnP-RED [64] 27.99 0.622 | 23.08 0.441 | 29.91 0.867 | 26.36 0.766

Whole image diffusion | 32.84 0.835 | 25.74 0.706 | 30.19 0.853 | 29.17 0.827
Langevin dynamics [17] | 33.03 0.846 | 27.03 0.689 | 30.60 0.867 | 26.83 0.744
Predictor-corrector [11] | 32.35  0.820 | 23.65 0546 | 2842 0.724 | 2697 0.685

VE-DDNM [65] 31.98 0.861 | 27.71 0.759 | - - 26.01 0.727
Patch Averaging [50] 33.35 0.850 | 28.43 0.765 | 29.41 0.847 | 27.67 0.802
Patch Stitching 32.87 0.837 | 26.71 0.710 | 29.69 0.849 | 27.50 0.780
PaDIS (Ours) 33.57 0.854 | 29.48 0.767 | 30.80 0.870 | 29.47 0.846

(Averages across all test images.)
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More inverse problem experiments

J. Fessler M

Patch modelsjEes

Method CT, 60 Views CT, Fan Beam | Heavy Deblurring
PSNR? SSIM?T | PSNRT  SSIM1T | PSNRT  SSIM1
Baseline 25.89 0.746 | 20.07 0.5621 | 21.14 0.569
ADMM-TV 30.93 0.833 | 25.78 0.719 | 26.03 0.724
Whole image diffusion | 35.83 0.894 | 26.89 0.835 | 28.35 0.808
PaDIS (Ours) 39.28 0.941 | 29.91 0.932 | 28.91 0.818

36 /50



. J. Fessler
Example images Patch models

whole image
diffusion

baseline FBP ADMM-TV PaDIS ground truth

Top: 60 view CT
Bottom: fan-beam CT ~ 400 HU window width

37/50
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Effect of patch size P and positional encoding: CT patfssr:;dds

Positional encoding

Patchsize

P PSNRtT SSIM?T
8 32.57 0.844
16 32.57 0.829
32 32.72 0.853
56 33.57 0.854
96 33.36 0.854
256  32.84 0.835

PSNRT  SSIMT

no position enc.  23.25  0.459
no position+init  24.51 0.518
with position 33.57 0.854
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. . . . J. Fessler
Effect of training dataset size on CT reconstruction Patch models M

Dataset Patches Whole image
size 56 x 56 256 x 256
PSNRt SSIM?T | PSNRT  SSIM?T
144 3228 0.841 | 29.12  0.804
288 3243 0837 | 31.09 0.829
576 33.03 0846 | 3181 0.835
1152 33.01 0849 | 3136 0.834
2304 33.57 0854 | 32.84 0.835
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Patch modelsiEzEm

20 view CT reconstruction: training dataset sizes

Size=144 Size=288 Size=576 Size=1152 Size=2304 Ground truth

Top : PaDIS
Bottom : whole image diffusion model
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PET? J. Fessler M

Patch modelsiEzEm

v

Training whole-image generative models for 3D or dynamic PET would be
challenging

Patch-based models should be feasible if suitable training data available
Ideally use the best resolution / senstivity scanner, e.g., total-body PET
Challenge: out-of distribution test data

vvyyy

Patch-based diffusion models beat whole-image models for mismatched distribution
inverse problems arXiv 2410.11730 [66]
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http://arxiv.org/abs/2410.11730

J. Fessler
Patch modelsiEzEm

Summary / future directions

Generative models are promising for under-determined inverse problems
Learning patch score models is feasible with denoising score matching

For limited training data, patch-models can outperform whole-image models
Integrate invariances: amplitude scale / rotation / flip / DC offset ...
Explore trade-offs between generalizability and in-distribution performance
Extend to 3D, 3D+Time, 3D+Multicontrast

VVvVvYVvYyVvYVvy

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching. jl
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https://github.com/JeffFessler/ScoreMatching.jl

Linear Algebra amt
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Patch modelsiEzEm

Online demos:
https://github.com/JeffFessler/
book-la-demo

Topics include: low-rank matrix approximation,
robust PCA, photometric stereo,

video foreground/background separation,
spectral clustering, matrix completion, ...

Available from Cambridge Univ. Press
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J. Fessler
Resources Patch models

Talk and code available online at
http://web.eecs.umich.edu/~fessler

YR
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