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Image deblurring J. Fessler
Generative

measurement y estimate x̂

→ CI
algorithm →

6 / 56



Image super-resolution J. Fessler
Generative
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Image inpainting J. Fessler
Generative

measurement y estimate x̂

→ CI
algorithm →

(missing pixel values)
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X-ray computed tomography (CT) J. Fessler
Generative

measurement y estimate x̂

Left image from FDA Right image from [1]
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https://www.fda.gov/radiation-emitting-products/medical-x-ray-imaging/computed-tomography-ct


Sparse-view X-ray CT reduces radiation dose J. Fessler
Generative

Lower dose, but now a highly under-determined inverse problem [2].
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Under-determined inverse problems J. Fessler
Generative

▶ Applications: compressed sensing MRI, sparse-view CT, inpainting, ...
All have linear forward models for data:

y = Ax + ε

y : sensor data (e.g., sinogram)
A: wide system matrix (known)
x: latent image (or image series in dynamic problems)
ε: noise with known distribution provides likelihood p(y |x)

▶ Maximum-likelihood estimation (physics-based fitting) is usually non-unique:

x̂ = arg max
x

log p(y |x) = arg min
x

∥Ax − y∥2
2︸ ︷︷ ︸

(for gaussian noise)
▶ Minimum-norm least-squares solution is unique but usually impractical or useless:

x̂ = A+y = y for inpainting problem
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Inverse problem solution methods J. Fessler
Generative

▶ hand-crafted regularizers

x̂ = arg min
x

− log p(y |x) +R(x) = arg min
x

1
2σ2

ε

∥Ax − y∥2
2 + R(x)

▶ black-box data-driven supervised methods:

A+y → NN → x̂

▶ unrolled deep learning methods (PNP, RED, MoDL, ...)
▶ Bayesian methods (e.g., MAP) based on a prior p(x),

lately (?) relabeled as generative models
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Long history of Bayesian models for inverse problems J. Fessler
Generative

Markov random field models

(e.g.) Geman & Geman 1984 [3]

Mostly for inference?
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Long history of generative models and inverse problems J. Fessler
Generative

MRF as generators? [4] T-PAMI 1994
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Local vs global priors J. Fessler
Generative

Gray, Kay, Titterington [4] T-PAMI 1994
... the local properties of spatial Markov
models are undoubtedly plausible descrip-
tors of the local associations typical of
many images, which is the way in which
the models are often used. Nevertheless,
it would be reassuring if models used as
priors did in fact provide a realistic rep-
resentation of our prior assumptions and
if their (empirical) properties were more
widely known.
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Generative models are hot in graphics J. Fessler
Generative

Computer (“AI”) generated stills from hypothetical movie: Chilean director Alejandro
Jodorowsky’s 1976 version of “Tron” using midjourney.com as reported in 2023-01-13
NY Times article “This film does not exist” by director Frank Pavich.
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https://midjourney.com
https://www.nytimes.com/interactive/2023/01/13/opinion/jodorowsky-dune-ai-tron.html
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Generative models are hot in the news J. Fessler
Generative

▶ 2020-11-21 NY Times “Designed to Deceive: Do
These People Look Real to You?”
Article about generated (aka fake) faces.

▶ 2022-10-21 NY Times “A Coming-Out Party for
Generative A.I., Silicon Valley’s New Craze”
(about “Stable Diffusion” image generator)
https://nyti.ms/3SjsNOk

▶ 2023-01-09 NY Times “A.I. Turns Its Artistry to
Creating New Human Proteins”
https://nyti.ms/3IzY66m
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Generative models are controversial in Art J. Fessler
Generative

Théâtre d’Opéra Spatial
Image created with Midjourney genera-
tive AI by Jason M. Allen.
Won 2022 Colorado State Fair fine art
competition.
Wikimedia: “This file is in the public domain be-
cause it is the work of a computer algorithm or ar-
tificial intelligence and does not contain sufficient
human authorship to support a copyright claim.”
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https://en.wikipedia.org/wiki/Theatre_d'Opera_Spatial
https://en.wikipedia.org/wiki/Generative_artificial_intelligence


Generative models are hot in imaging / inverse problems J. Fessler
Generative

Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [5]
▶ Generative adversarial network (GAN) models
▶ Variation auto-encoder (VAE) models [6]
▶ Normalizing flows [7, 8]
▶ Score-based diffusion models

◦ Zaccharie Ramzi et al., NeurIPS Workshop 2020 [9]
◦ Yang Song & Liyue Shen et al., NeurIPS Workshop 2021, ICLR 2022 [10, 11]
◦ Ajil Jalal et al. . . . Jon Tamir, NeurIPS 2021 [12]
◦ Hyungjin Chung & Jong Chul Ye, MIA, Aug. 2022 [13]
◦ Luo et al., MRM, 2023 [14]
◦ . . .

▶ Kazerouni et al. [15] have github catalog, including >20 (!) survey papers
▶ . . . (hopelessly incomplete lists)
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https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging


Medical example: Low-dose sparse-view X-ray CT imaging J. Fessler
Generative

From Song & Shen et al., ICLR 2022 [11].
Trained with 47K 2D images; 23 projection views (≈ 17-fold dose reduction)
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Bayesian methods (generative models) J. Fessler
Generative

▶ Bayesian inference methods use the posterior:

p(x|y) = p(y |x)︸ ︷︷ ︸
physics

p(x)︸︷︷︸
prior

/ p(y)

▶ Here the prior p(x) is for quantifying (prior) probability,
not necessarily for generation.

▶ A model for the posterior p(x|y) opens many doors:
▶ Maximizing p(x|y) is maximum a posteriori (MAP) estimation
▶ The conditional mean E[x|y ] =

∫
x p(x|y) dx is the MMSE estimator

▶ Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference
▶ All these methods require the prior p(x), i.e., a prior model p(x;θ).
▶

Or do they?
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Sampling via Langevin dynamics J. Fessler
Generative

Sampling from a prior p(x;θ) just needs its score function ∇x log p(x;θ),
using Langevin dynamics, aka stochastic gradient ascent of log-prior:

xt = xt−1 + αt∇ log p(xt−1;θ)︸ ︷︷ ︸
score function

+ βtN (0, I), t = 1, . . . , T .

◦ Draws samples from p(x;θ) for suitable choices of {αt}, {βt}, and (large) T [16].
◦ If αt = 0 and βt = β, then akin to (isotropic) diffusion or Brownian motion
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Distribution learning vs score learning J. Fessler
Generative

▶ Typical distribution models: p(x;θ) = 1
Z(θ) e−U(x;θ) .

Goal: learn θ from training data x1, . . . , xT
▶ For IID samples {xt}, one could try to learn θ by ML estimation:

θ̂ = arg max
θ

p(x1, . . . , xT ;θ) = arg max
θ

∑T
t=1

log(p(xt ;θ))

= arg max
θ

(
−TZ (θ) +

∑T
t=1

−U(xt ;θ)
)

.

Typically intractable due to the partition function Z (θ).
▶

In contrast, the score function is easier to handle:

s(x;θ) ≜ ∇x log p(x;θ) = ∇x (− log Z (θ) − U(x; θ)) = −∇xU(x; θ).
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Score matching J. Fessler
Generative

▶ Given training data x1, . . . , xT , learn score function s(x;θ) ?= ∇x log p(x;θ)
▶

Explicit score matching (ESM) (Hyvärinen, 2005 [17])
▶ Implicit score matching (ISM)
▶ Denoising score matching (DSM) (Vincent, 2011 [18])
▶ Noise-conditional score matching (NCSM) (Song, 2019 [19, eqn. (5)]):

ℓ(θ; σ) ≜ 1
2 Eq0(x)

[
Egσ(z)

[∥∥∥∥s(x + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
, L(θ; {σl}) = 1

L

L∑
l=1

σ2
l ℓ(θ; σl),

where s(x;θ, σ) denotes a noise-conditional score network (NCSN).
▶ d(x;θ) ≜ x + σ2s(x;θ, σ) : equivalent image denoiser by Tweedie’s formula [20]
▶ Recommended choice [21]: s(x;θ, σ) ≜ s̃(x;θ)/σ, where s̃ is unitless
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Noise-conditional score network training / sampling J. Fessler
Generative

Shen & Song et al., NeurIPS 2021 [10]
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Score-based diffusion models: trade-offs J. Fessler
Generative

▶ No adversarial training needed
▶ High quality sample generation (if enough training data)
▶

Expensive sample generation (vs GAN models)
◦ Distillation methods [22]
◦ Consistency models [23]
◦ Geometric decomposition [24]
◦ Multi-scale [25, 26] and pyramidal [27] and coarse-to-fine [28] models
◦ Faster ODE solvers [29]
◦ Warm starts [30]
◦ Latent diffusion models: use VAE and diffuse in latent space [31–33].

Used in Stable Diffusion by start-up Stability AI
◦ 3D image reconstruction using 2D models [34, 35]

▶ Learning 3D (or 3D+T) whole-image generative models is challenging
(training data, GPU memory, ...)

26 / 56

https://en.wikipedia.org/wiki/Stable_Diffusion
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Whole images vs patches? J. Fessler
Generative

Jan. 2023 survey paper on generative models [5] does not mention “patch” once!?

MRI k-space sampling:

[36] [37] [38]

Patch-based models have long history in inverse problems, e.g.,
• patch GAN [39–41]
• patch dictionary models [42, 43]
• non-local means, BM3D
• Wasserstein patch prior [44, 45] . . . 27 / 56



Motivating questions J. Fessler
Generative

▶ Could patch-based generative models provide better robustness to distribution
shifts, perhaps at the cost of reduced in-distribution performance?

▶ Especially in applications with very limited training data?
e.g., dynamic MRI

▶ Can we use the “latest” generative models, namely score-based models, for patches?
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Patch diffusion model: Simple version J. Fessler
Generative

Warm up:
simple, but less effective, approach:
• Fixed patch size
• Fixed patch grid
• No position information

(Fessler, Hu, Xu, BASP 2023 [48])
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Patch-based score modeling J. Fessler
Generative

▶ Start with MRF formulation, aka fields of experts model [53–55] for image x:

p(x;θ) = 1
Z (θ) e−

∑
c Vc(x;θ) = 1

Z (θ)
∏
c

e−Vc(x;θ) .

• θ : parameter vector that describes the prior
• Vc : clique potential for the cth image patch
• Z (θ) : (intractable) partition function

▶ Assume (temporarily) statistical spatial stationarity (image shift invariance):

Vc(x;θ) = V (Gcx;θ)

• Gc : wide binary matrix that grabs pixels of the cth patch from image x
• V (v ;θ) : common patch clique function
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Patch-based score modeling (simple) J. Fessler
Generative

▶ Resulting log-prior:

log p(x;θ) = − log Z (θ) −
∑

c
V (Gcx;θ)

▶ Corresponding overall image score function arises from patch score function:

s(x;θ) ≜ ∇x log p(x;θ) =
∑

c
G ′

csV (Gcx;θ), sV (v ;θ) ≜ −∇vV (v ;θ).

▶ All we must learn is the patch score function sV (v ;θ) : Rn 7→ Rn, e.g., a UNet.
▶ For non-overlapping patches:∥∥∥s(x + z;θ) + z/σ2

∥∥∥2

2︸ ︷︷ ︸
image “denoise”

=
∥∥∥∑c

G ′
csV (Gc(x + z);θ) + z/σ2

∥∥∥2

2

=
∑

c

∥∥∥sV (xc + zc);θ) + zc/σ2
∥∥∥2

2︸ ︷︷ ︸
patch “denoise”

, zc ≜ Gcz
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Patch-based score learning (simple) J. Fessler
Generative

▶ For training image patches {v1, . . . , vT }, apply denoising score matching (DSM) of
Vincent, 2011 [18], typically for a range of noise variances σ2 [16]:

θ̂ = arg min
θ

1
T
∑T

t=1
Eσ∼p(σ)

[
σ2 Ez∼N (0,σ2In)

[
1
2

∥∥∥∥sV (vt + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
.

▶ Final patch score model is sV (v ; θ̂, σmin).
▶

Network input is just image patches, never the entire image
=⇒ scales to large 2D images, 3D, 4D, etc.

▶ Drawbacks:
◦ Visible patch boundaries
◦ Fixed patch size slows learning
◦ Suboptimal stationarity assumption (cf. vertebrae)
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Improved patch modeling J. Fessler
Generative

▶ zero-pad image x
▶ use multiple grid locations

Inspirations:
◦ Wavelet “cycle spinning”

[49, 56–59]
◦ Wang, NeurIPS 2023 [60]
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Probability model with padding & grids & positions J. Fessler
Generative

▶ N1 × N2 : original image size
▶ P1 × P2 : patch size
▶ Ki ≜ 1 + ⌊Ni/Pi⌋, i = 1, 2 : # non-overlapping patches for original image
▶ (N1 + 2M1) × (N2 + 2M2) : padded image size; Mi ≜ KiPi − Ni
▶ Product probability model:

p(x) ≜ 1
Z

M1M2∏
m=1︸ ︷︷ ︸
grid

shifts

(
pm,B(xm,B)︸ ︷︷ ︸

border
region

K1K2∏
k=1

pm,k(xm,k)︸ ︷︷ ︸
patches

)
= 1

Z

M1M2∏
m=1

K1K2∏
k=1

e−V (xm,k ;m,k)︸ ︷︷ ︸
position
encoding

◦ xm,B : border pixels for mth shift (all zero)
◦ xm,k : kth patch for mth shift

▶

Learn position-dependent patch score function s(v ;θ, m, k) = −∇vV (v ; m, k)

34 / 56
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Patch Diffusion Inverse Solver (PaDIS): Training J. Fessler
Generative

NeurIPS
2024 [62]
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Training images (CT) J. Fessler
Generative

AAPM 2016 CT chal-
lenge data [63];
10 3D volumes,
rescaled to 2563

Example slices:
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Image generation (unconditional sampling from prior) J. Fessler
Generative

◦ Top: generation with a network trained on whole images (2D...)
◦ Middle: patch-only version of [60] (non-overlapping patches).
◦ Bottom: proposed PaDIS method.
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Training time results J. Fessler
Generative

2 A40 GPUs using PyTorch and ADAM
▶ whole image model: 24 − 36 hours
▶ patch-based model: ≈ 12 hours
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Patch Diffusion Inverse Solver (PaDIS): Reconstruction J. Fessler
Generative

Diffusion posterior sampling (DPS) (Chung et al., ICLR 2023 [64]) with Langevin
dynamics, modified to use patch score with random grid shifts.
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PaDIS algorithm (modified from DPS) J. Fessler
Generative

Input: y , A, T , σ1 < σ2 < . . . < σT , ϵ > 0, {ζt > 0} , P1, P2, M1, M2,
trained noise-conditional, position-encoded patch denoiser d(·;θ∗, m, k, σ)

Initialize random image x ∼ N (0, σ2
T I)

for t = T : 1 do
Randomly select grid integer m ∈ {1, . . . , M1M2}
for k = 1 : (K1K2) do (parallelizable)

Extract patch xm,k
Denoise patch: dm,k ≜ d(xm,k ;θ∗, m, k, σt)

end for
Combine denoised patches to get denoised image d
Compute image score function: s = (d − x)/σ2

t
Data term: x := x − ζt∇x∥A d(x) − y∥2

2
Sample z ∼ N (0, σ2

t I)
Step size αt ≜ ϵ σ2

t
Langevin update: x := x + αt

2 s + √
αtz

end for 40 / 56



CT Experiments J. Fessler
Generative

Default setup:
• 9 of 10 volumes for training =⇒ 2304 slices
• 25 slices of 10th volume for testing
• 512 element parallel-beam CT detector
• A from Operator Discretization Library (ODL)
• 56 × 56 patch size
• U-Net of Karras 2022 [61]
• Step size ζt = ζ/∥Ad(xt) − y∥2

• 1000 neural function evaluations (NFEs) [61]
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Quantitative results on three different inverse problems J. Fessler
Generative

Method CT, 20 Views CT, 8 Views Deblurring Superresolution
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 24.93 0.595 21.39 0.415 24.54 0.688 25.86 0.739
ADMM-TV 26.82 0.724 23.09 0.555 28.22 0.792 25.66 0.745
PnP-ADMM [65] 26.86 0.607 22.39 0.489 28.82 0.818 26.61 0.785
PnP-RED [66] 27.99 0.622 23.08 0.441 29.91 0.867 26.36 0.766
Whole image diffusion 32.84 0.835 25.74 0.706 30.19 0.853 29.17 0.827
Langevin dynamics [19] 33.03 0.846 27.03 0.689 30.60 0.867 26.83 0.744
Predictor-corrector [13] 32.35 0.820 23.65 0.546 28.42 0.724 26.97 0.685
VE-DDNM [67] 31.98 0.861 27.71 0.759 - - 26.01 0.727
Patch Averaging [52] 33.35 0.850 28.43 0.765 29.41 0.847 27.67 0.802
Patch Stitching 32.87 0.837 26.71 0.710 29.69 0.849 27.50 0.780
PaDIS (Ours) 33.57 0.854 29.48 0.767 30.80 0.870 29.47 0.846

(Averages across all test images.)
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More inverse problem experiments J. Fessler
Generative

Method CT, 60 Views CT, Fan Beam Heavy Deblurring
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 25.89 0.746 20.07 0.521 21.14 0.569
ADMM-TV 30.93 0.833 25.78 0.719 26.03 0.724
Whole image diffusion 35.83 0.894 26.89 0.835 28.35 0.808
PaDIS (Ours) 39.28 0.941 29.91 0.932 28.91 0.818
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Example images J. Fessler
Generative

baseline FBP ADMM-TV whole image
diffusion PaDIS ground truth

1

0

Top: 60 view CT
Bottom: fan-beam CT ≈ 400 HU window width
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Effect of patch size P and positional encoding: CT J. Fessler
Generative

Patchsize

P PSNR↑ SSIM↑
8 32.57 0.844
16 32.57 0.829
32 32.72 0.853
56 33.57 0.854
96 33.36 0.854
256 32.84 0.835

Positional encoding

PSNR↑ SSIM↑
no position enc. 23.25 0.459
no position+init 24.51 0.518

with position 33.57 0.854
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Effect of training dataset size on CT reconstruction J. Fessler
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Dataset
size

Patches
56 × 56

Whole image
256 × 256

PSNR↑ SSIM↑ PSNR↑ SSIM↑
144 32.28 0.841 29.12 0.804
288 32.43 0.837 31.09 0.829
576 33.03 0.846 31.81 0.835
1152 33.01 0.849 31.36 0.834
2304 33.57 0.854 32.84 0.835
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20 view CT reconstruction: training dataset sizes J. Fessler
Generative

Top : PaDIS
Bottom : whole image diffusion model
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Summary / future directions J. Fessler
Generative

▶ Generative models are promising for under-determined inverse problems
▶ Learning patch score models is feasible with denoising score matching
▶ For limited training data, patch-models can outperform whole-image models
▶ Integrate invariances: amplitude scale / rotation / flip / DC offset ...
▶ Explore trade-offs between generalizability and in-distribution performance
▶ Extend to 3D, 3D+Time, 3D+Multicontrast

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching.jl
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New book J. Fessler
Generative

• Online demos:
https://github.com/JeffFessler/
book-la-demo

• Topics include: low-rank matrix approximation,
robust PCA, photometric stereo,
video foreground/background separation,
spectral clustering, matrix completion, ...

• Available from Cambridge Univ. Press
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Resources J. Fessler
Generative

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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