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Most obvious place for machine learning is in post-processing (image analysis).
Numerous special issues and surveys in medical imaging journals, e.g., [1–9].
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Machine learning for scan design (k-space sampling):
I Choose best k-space phase encoding locations (usually Cartesian sampling)
I Uses “ground truth” (fully sampled) training images
I Hot topic in MRI research recently, e.g., [10–15]
I Precursor by Yue Cao and David Levin, MRM Sep. 1993 [16–18]
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Machine learning in medical image reconstruction:
I June 2018 special issue of IEEE Trans. on Medical Imaging [19].
I Surveys: [20–27]
I Possibly easier than diagnosis due to lower bar:
• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than at solving inverse problems.
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ML-based
“magic”

A holy grail for machine learning in medical imaging?
I CT sinogram to vessel diameter [28, 29]
I k-space to ???
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“B-spline parameterized joint optimization of reconstruction and k-space trajectories
(BJORK) for accelerated 2D MRI,” arXiv 2101.11369 [30]
Guanhua Wang, T. Luo, J.-F. Nielsen, D. Noll, J. Fessler

Preview:

Related work: “PILOT” by Weiss et al. [31]; J-MoDL work of Aggarwal et al. [14]
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MR sampling and under-sampling J. Fessler
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All clinical MRI scans currently use “hand-crafted” sampling patterns:

I Reducing k-space sampling =⇒ reduced scan time / improved temporal resolution
I Under-sampled data benefits from advanced reconstruction methods
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Overview:
I image-domain learning [32–34]...
I k-space or data-domain learning

e.g., [35], [36], [37]
I transform learning (direct from k-space to image)

e.g., AUTOMAP [38], [39–41]
I hybrid-domain learning (unrolled loop, e.g., variational network)

alternate between denoising/dealiasing and reconstruction from k-space
e.g., [36, 42–46] ...
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DL for IR: image-domain learning J. Fessler
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Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast
− aliasing is spatially widespread, requires deep network
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Dangers of image-domain learning: Method J. Fessler
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[47] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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Image-domain learning variations J. Fessler
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I Use NN output as a “prior” for iterative reconstruction [32, 48]:

x̂β = arg min
x
‖Ax − y‖22 + β ‖x − xNN‖22 = (A′A + βI)−1(A′y + βxNN)

I For single-coil Cartesian case:
• no iterations are needed (solve with FFTs)
• limβ→0 x̂β replaces missing k-space data with FFT of xNN

I Iterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

I Learn residual (aliasing artifacts), then subtract [49, 50]
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DL for IR: k-space / sinogram domain learning J. Fessler
Joint Opt

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast (“nonlinear GRAPPA”)
+ “database-free” : learn from auto-calibration data [35], [36], [37]
− perhaps harder to represent local image features?
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DL for IR: transform learning J. Fessler
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Figure courtesy of Jong Chul Ye, KAIST University.

+ in principle, purely data driven; potential to avoid model mismatch
− high memory requirement for fully connected layers [38]
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DL for IR: hybrid domain learning J. Fessler
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Figure courtesy of Jong Chul Ye, KAIST University.

+ physics-based use of k-space data & image-domain priors, e.g., [36, 42–46, 51, 52] ...

+ interpretable connections to optimization approaches
− more computation to due to “iterations” (layers) and repeated Ax, A′ r
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Adaptive phase-encode selection J. Fessler
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Reference Sampling BP recon

I Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using
shearlet transform, at 25% sampling rate.

I Sampling design considers both the training data and the reconstruction method.
I No high spatial frequencies!? (Images from Gözcü et al. [12].)
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Problem formulation J. Fessler
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I MRI measurement model:
y = A(ω)x + ε

• y ∈ CM : k-space data; M ∼ 10− 30K
• ω ∈ RM×2 : k-space sampling pattern (“trajectory”): 2D in this work
• x ∈ CN : unknown true image, N ∼ 100K
• A(ω) ∈ CM×N : encoding matrix (coil sensitivity, etc.)
• ε ∈ CM : measurement noise

I Reconstruction method:
x̂ = f (y ;ω,θ)

• θ: model parameters of reconstruction method (e.g., CNN weights)
• Deep iterative down-up CNN (DIDN) has ∼ 165M learned parameters [53]

I Image quality goal:
x̂ = f (y ;ω,θ) = f (A(ω)x + ε;ω,θ) ≈ x

19 / 41



Supervised approach J. Fessler
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I Define training loss function such as `(x̂, x) = ‖x̂ −x‖1 + α ‖x̂ − x̂‖2
I Select Ntrain fully sampled training images x1, x2, . . .
I Jointly optimize k-space trajectory ω and image reconstruction method θ

(ω̂, θ̂) = arg min
ω,θ

1
Ntrain

Ntrain∑
n=1

`(f (A(ω)xn + εn;ω,θ), xn)

I Details:
• Reconstruction using MoDL method [51]
• Can use multiple noise realizations ε per training image
• Enforce gradient amplitude and slew-rate limits for ω
• Use B-spline parameterization of k-space trajectory
• Coarse-to-fine search of trajectory to avoid poor local minimizers
• Eddy current correction
• Fast NUFFT Jacobian approximation [54]
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BJORK Diagram J. Fessler
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Data J. Fessler
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NYU/FAIR fastMRI brain and knee data
16 radial spokes of 640 points for initialization
22cm FOV, Gmax = 5 Gauss/cm, slew rate ≤ 15 Gauss/cm/ms
2.5ms readout duration radial, 16ms spiral
Comparison with SPARKLING approach of [55] using its default density
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Trajectory is tailored to anatomy J. Fessler
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PSF results J. Fessler
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Learned conjugate symmetry J. Fessler
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Phantom study J. Fessler
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(no phantoms in training data!) 26 / 41



Prospective in-vivo study (GE scanner) J. Fessler
Joint Opt

27 / 41



Gradient constraints J. Fessler
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MRI gradient amplifiers have maximum amplitude and slew rate
I gradient amplitude is 1st derivative of k-space trajectory:

‖D1ωd‖∞ ≤ gmax

I slew rate is 2nd derivative of k-space trajectory:

‖D2ωd‖∞ ≤ smax

I Box constraints relaxed to penalty functions that rise rapidly above 1 on

‖D1ωd‖∞ /gmax and ‖D2ωd‖∞ /smax

0 1
Facilitates (sub)gradient-based optimization using Adam
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Coarse-to-fine parameterization and evolution J. Fessler
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Quadratic B-spline kernels for non-Cartesian k-space trajectory:

ωd = Bcd , d = 1, 2, cd ∈ RM/Decim

Highly non-convex problem in ω.
• Coarse-to-fine search may find better local minimizers
• However, parameterization/decimation does not save much computation
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Unrolled-loop image reconstruction method J. Fessler
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Motivated by model-based image reconstruction with variable splitting of the form

x̂ = arg min
x
‖A(ω)x − y‖22 + R(x)

= arg min
x

min
z
‖A(ω)x − y‖22 + R(z), s.t. z = x

Alternating minimization:

xt+1 = arg min
x
‖A(ω)x − y‖22 + µ ‖x − zt‖22 (data consistency, solved via CG)

zt+1 = arg min
z

R(z) + µ ‖xt+1 − z‖22 (denoising)

“ = ”Dθ(xt+1) (CNN denoiser)

• CNN weights θ shared across iterations, per MODL [51]
• 6 outer iterations for results shown, with augmented Lagrangian parameter µ = 2
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Efficient NUFFT backpropagation I J. Fessler
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Data consistency block has steps like

xt+1 = xt + α
(
A′(ω) (A(ω)x − y) + µ(x − zt)

)
A(ω) is dense and huge:

aij = e−ı~ωi ·~rj (1)

I Fast approach to A(ω)x uses NUFFT approximation:
zero-padding, over-sampled FFT, interpolation [56, 57].

I Backpropagation for ω update through NUFFT steps via autodifferentiation is slow.
31 / 41
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Derive Jacobian matrix for exact form (1):

∂

∂ωd
A(ω)x = −ıDiag{A(ω)(x � rd)} .

Applying this Jacobian to a vector v ∈ CM during backpropagation yields(
∂

∂ωd
A(ω)x

)
v = −ıDiag{A(ω)(x � rd)} v = −ı (A(ω)(x � rd))� v .

Implemented efficiently using NUFFT applied to x � rd

Similar idea for Jacobian of adjoint of A.
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Summary / future directions J. Fessler
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I Machine learning methods have much potential for both scan design and image
reconstruction

I Quantitative results in paper demonstrate synergy of jointly optimizing both
I Anatomy specific trajectories: pro or con?
I Self-supervised methods when training data unavailable
I Extensions to 3D and 3D+time are planned, and challenging
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Talk and code available online at
http://web.eecs.umich.edu/~fessler
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