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Most obvious place for machine learning is in post-processing (image analysis).
Numerous special issues and surveys in medical imaging journals, e.g., [1-9].
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Machine learning for scan design (k-space sampling):

» Choose best k-space phase encoding locations (usually Cartesian sampling)
» Uses “ground truth” (fully sampled) training images

» Hot topic in MRI research recently, e.g., [10-15]

» Precursor by Yue Cao and David Levin, MRM Sep. 1993 [16-18]
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Machine learning in medical image reconstruction:
» June 2018 special issue of IEEE Trans. on Medical Imaging [19].
» Surveys: [20-27]

P Possibly easier than diagnosis due to lower bar:
e current reconstruction methods based on simplistic image models;

e human eyes are better at detection than at solving inverse problems.
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A holy grail for machine learning in medical imaging?

» CT sinogram to vessel diameter [28, 29]
» k-space to 777
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Joint optimization of sampling and reconstruction Uefi O

raw data images
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“B-spline parameterized joint optimization of reconstruction and k-space trajectories

(BJORK) for accelerated 2D MRI,” arXiv 2101.11369 [30]
Guanhua Wang, T. Luo, J.-F. Nielsen, D. Noll, J. Fessler

Preview:

Related work: “PILOT" by Weiss et al. [31]; J-MoDL work of Aggarwal et al. [14]
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All clinical MRI scans currently use “hand-crafted” sampling patterns:

Cartesian Partial Under-sampled
0 0 0
0 0 0
Variable density Spiral Radial
0 0 0
0 0 0

» Reducing k-space sampling = reduced scan time / improved temporal resolution

» Under-sampled data benefits from advanced reconstruction methods
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Overview:
» image-domain learning [32-34]...
P k-space or data-domain learning
e.g., [35], [36], [37]
» transform learning (direct from k-space to image)
e.g., AUTOMAP [38], [39-41]
» hybrid-domain learning (unrolled loop, e.g., variational network)

alternate between denoising/dealiasing and reconstruction from k-space
e.g., [36, 42-46] ...
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Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast

— aliasing is spatially widespread, requires deep network
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Investigating Robustness to Unseen Pathologies in Model-Free Deep Multicoil Reconstruction

Gopal Nataraj' and Ricardo Otazo'?
Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center
2Dept. of Radiology, Memorial Sloan Kettering Cancer Center

Introduction

Speed is often claimed as a key advantage of deep learning (DL) for
undersampled parallel MRI reconstruction [1]. However, the only DL
approach that to our knowledge has studied generalizability to pathologies
unseen in training [2] requires repeated application of the MR acquisition
model and its adjoint, just as in iterative methods. In contrast, model-free
DL reconstruction has the potential to be much faster. Prior model-free DL
wark 21 nrannses ta learn a mannina directly fram k-enace  hit with

[47] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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Reference SPARSE-SENSE

Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare
malignant brain tumor. SPARSE-SENSE and DL reconstructions are from
the same 4x-accelerated retrospectively undersampled acquisition. DL
achieves lower whole-volume MAE than SPARSE-SENSE, but fails to
properly reconstruct regions near the tumor.
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» Use NN output as a “prior” for iterative reconstruction [32, 48]:

kg = argmin | Ax — y[3 + B [x — xun 3 = (AA+ B (A'y + Bxun)

» For single-coil Cartesian case:
no iterations are needed (solve with FFTs)

limg_,0 X replaces missing k-space data with FFT of xyn
> lterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

» Learn residual (aliasing artifacts), then subtract [49, 50]
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Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast (“nonlinear GRAPPA")
+ “database-free” : learn from auto-calibration data [35], [36], [37]

— perhaps harder to represent local image features?
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Figure courtesy of Jong Chul Ye, KAIST University.

+ in principle, purely data driven; potential to avoid model mismatch

— high memory requirement for fully connected layers [38]
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DL for IR: hybrid domain learning j;,if,isf;;‘:jt M
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Figure courtesy of Jong Chul Ye, KAIST University.

+ physics-based use of k-space data & image-domain priors, e.g., [36, 42-46, 51, 52] ...
+ interpretable connections to optimization approaches

— more computation to due to “iterations” (layers) and repeated Ax, A'r
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Supervised learning of k-space sampling
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Adaptive phase-encode selection Joint Opt [

Reference Sampling BP recon
PSNR=36.09

SSIM=0.920

BP-greedy

» Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using
shearlet transform, at 25% sampling rate.

» Sampling design considers both the training data and the reconstruction method.

» No high spatial frequencies!? (Images from Gézcii et al. [12].)
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» MRI measurement model:
y=Aw)x+e
y € CM : k-space data; M ~ 10 — 30K
w € RM*2 : k-space sampling pattern (“trajectory”): 2D in this work
x € CN : unknown true image, N ~ 100K
A(w) € CM*N . encoding matrix (coil sensitivity, etc.)
e € CM : measurement noise
» Reconstruction method:
x=f(y,w,0)
0: model parameters of reconstruction method (e.g., CNN weights)
Deep iterative down-up CNN (DIDN) has ~ 165M learned parameters [53]
» Image quality goal:

x=1f(y;w,0)=f(A(w)x +&,w,0) =~ x
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» Define training loss function such as {(%, x) = || X —x||; + o ||x — X,
» Select Nipain fully sampled training images xi, xo, . ..
» Jointly optimize k-space trajectory w and image reconstruction method 6

Ntrain

U(F(A(w)Xn + n; w, 0), Xp)

(&, ) = argmin

w,0 train ;74

> Details:
Reconstruction using MoDL method [51]

Can use multiple noise realizations € per training image

Enforce gradient amplitude and slew-rate limits for w

Use B-spline parameterization of k-space trajectory
Coarse-to-fine search of trajectory to avoid poor local minimizers
Eddy current correction

Fast NUFFT Jacobian approximation [54]

20/41



BJORK Diagram
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Update CNN denoiser (with parameters 8) and sampling pattern w

N iterations

Quadratic roughness L CNN Denoiser - Data J_>
penalized least-squares —_ .
reconstruction o consistency

A good initialization Unrolled reconstruction network Fully-sampled

Similarity losses

N iterations

Quadratic roughness
penalized least-squares 9
reconstruction

L CNN Denoiser Data
— -

consistency

Unrolled reconstruction network,
tuned in the training phase
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NYU/FAIR fastMRI brain and knee data

16 radial spokes of 640 points for initialization

22cm FOV, Gmax = 5 Gauss/cm, slew rate < 15 Gauss/cm/ms

2.5ms readout duration radial, 16ms spiral

Comparison with SPARKLING approach of [55] using its default density

22/41



c . ] J. Fessler
Trajectory is tailored to anatomy Joint Opt

MICHIGAN

( \
{ ‘
\
\ \
)
s -
)
|
[
- |
- ’\
\_
N\ D
N\
N =
| . / —~
I \ { N
| ) -
/ 4 N N
/ ,/
et (
\ \
) )
/ (
/ \
k\

23/41



J. Fessler
PSF results it O

a3
&
B3
Zg

Radial-under 12000

6000

SPARKLING 12000

6000

12000

24 /41



Learned conjugate symmetry

SN

J. Fessler
Joint Opt ot

25 /41



J. Fessler
Phantom study Joint Opt

SPARKLING Radial-full

(no phantoms in training datal)
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MRI gradient amplifiers have maximum amplitude and slew rate

P gradient amplitude is 1st derivative of k-space trajectory:
[D1wl| o < Bmax

P> slew rate is 2nd derivative of k-space trajectory:
1D2wql| o < Smax

P> Box constraints relaxed to penalty functions that rise rapidly above 1 on

||D1wd||oo/gmax and ”D2wd||oo/5max i

01
Facilitates (sub)gradient-based optimization using Adam
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Quadratic B-spline kernels for non-Cartesian k-space trajectory:

wyg = Bcy, d=1,2,¢4 € RI\/I/Decim

Init. Decim=32 Decim=16 Decim=8 Decim=4 Nonparametric

Highly non-convex problem in w.
o Coarse-to-fine search may find better local minimizers

e However, parameterization/decimation does not save much computation
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Motivated by model-based image reconstruction with variable splitting of the form
% = argmin | A(w)x — [} + R(x)
= argxmin min || A(w)x — yl34+ R(2), st z=x
Alternating minimization:
Xey1 = argxmin |A(w)x — y||5 4 i ||x — z:]|5 (data consistency, solved via CG)
Zi1 = argzmin R(z) + 1t || xe21 — 2|3 (denoising)
“ = "Dg(xt+1) (CNN denoiser)

CNN weights @ shared across iterations, per MODL [51]

6 outer iterations for results shown, with augmented Lagrangian parameter y = 2
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Efficient NUFFT backpropagation | Joint Opt

Training:
aining Update CNN denoiser (with parameters ) and sampling pattern w
N iterations

| ForwardNuFFT | L . Quad: L CNN Denoiser | Data Jﬂ
A(w) penai e 0 consistency

A good initialization Unrolled reconstruction network Fully-sampled

Simulated k-space

Fully-sampled 5
signal

training data Similarity losses

Data consistency block has steps like
Xe11 = X + o (A'(w) (A(w)x — y) + p(x — zt))

A(w) is dense and huge: o
aj =e "l (1)

» Fast approach to A(w)x uses NUFFT approximation:
zero-padding, over-sampled FFT, interpolation [56, 57].

» Backpropagation for w update through NUFFT steps via autodifferentiation is slow.
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Efficient NUFFT backpropagation Il Joint Opt

Derive Jacobian matrix for exact form (1):

0 A(w)x =~ Disg{ Aw)(x © 1)}
Wy

Applying this Jacobian to a vector v € CM during backpropagation yields

(;A(w)x) v = —1Diag{A(w)(x O ry)}v=—1(A(w)(x O ry)) O v.
Wy

Implemented efficiently using NUFFT applied to x ® ry

Similar idea for Jacobian of adjoint of A.
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» Machine learning methods have much potential for both scan design and image
reconstruction

Quantitative results in paper demonstrate synergy of jointly optimizing both

>

» Anatomy specific trajectories: pro or con?

> Self-supervised methods when training data unavailable
>

Extensions to 3D and 3D-+time are planned, and challenging
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Talk and code available online at
http://web.eecs.umich.edu/~fessler
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