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. . . . J. Fessler
MR image reconstruction via compressed sensing M

MICHIGAN

Measurement model:
y = Ax + ¢, e ~ N(0,5°1)
y k-space data
A system model (gradient encoding, sensitivity encoding, BO map, ...)
(wide matrix for under-sampled data, aka compressed sensing)
x unknown image to be reconstructed
€ complex noise in k-space
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MR image reconstruction via compressed sensing M
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Measurement model:
y = Ax + ¢, e ~ N(0,5°1)
y k-space data
A system model (gradient encoding, sensitivity encoding, BO map, ...)
(wide matrix for under-sampled data, aka compressed sensing)
x unknown image to be reconstructed
€ complex noise in k-space
Regularized image reconstruction formulation: (Lustig, Donoho, Pauly: MRM, 2007) [1]

. 1 2
% = argmin = || Ax — y[ + B1 [ Tx[l; + B2 [|x[lry

T sparsifying transform such as orthogonal wavelets

| x|y total variation (TV) regularizer. In 1D: ||x|[py = >5; [x — xj-1|
[3 regularization parameters

arg min : requires iterative methods

FDA approval for clinical use in commercial systems 2017 & 2018 [2] [3] [4]
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J. Fessler

History: Statistical reconstruction for PET |

Iterative method for emission tomography (Kuhl, 1963)
(earliest iterative method for medical imaging?)

FBP for PET (Chesler, 1971)
Weighted least squares for 3D SPECT (Goitein, NIM, 1972)
Richardson/Lucy iteration for image restoration (1972, 1974)
Poisson likelihood (emission) (Rockmore and Macovski, TNS, 1976)

y ~ Poisson{Ax + b} = L(x) = 1"(Ax + b) — y'log .(Ax + b)

Expectation-maximization (EM) algorithm (Shepp and Vardi, TMI, 1982)

Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

Ordered-subsets EM (OSEM) algorithm (Hudson and Larkin, TMI, 1994)

Commercial release of OSEM for PET scanners circa 1997
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J. Fessler

History: Statistical reconstruction for PET I

» Today, most (all?) commercial PET systems include unregularized OSEM

» Some pre-clinical PET systems use regularized reconstruction
Qi and Leahy et al. 1998

» Some clinical PET systems more recently have used edge-preserving regularizers
Ahn et al. 2015

» Relative difference prior: Nuyts et al. 2002

(a—b)?
(a+b)+~]a—b]

YP(a, b) = (cfTV: Ja—b|)

» 15 years between key EM paper (1982) and commercial adoption (1997)
(25 years if you count the R/L paper in 1972 that is the same as EM)

» 30 years between early MAP methods and clinical regularized methods
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J. Fessler

Key factors in PET

e OS algorithm accelerated convergence by order of magnitude

o Computers got faster (but problem size grew too)

o Key clinical validation papers?

e Key numerical observer studies?

e Nuclear medicine physicians grew accustomed to appearance
of images reconstructed using statistical methods

FBP: ML-EM:
Llacer et al., 1993 9/87



J. Fessler

Whole-body PET example

FBP ML-OSEM

Meikle et al., 1994

Key factor in PET: Poisson model for measurement statistics
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. . J. Fessler
Current PET image reconstruction research M

MICHIGAN

» MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
» Motion-compensated image reconstruction

» Reduced dose PET image reconstruction

>
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Current PET image reconstruction research

» MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
» Motion-compensated image reconstruction
» Reduced dose PET image reconstruction
»  Machine learning methods for PET image reconstruction
Post-process initial reconstructed image [19]
Improve sinogram then apply FBP [20]
Unrolled-loop iterative reconstruction [21, 22, 23]
Direct from sinogram to image: “learned FBP" (2D only, using CNN!) [24]
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Current PET image reconstruction research

» MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
» Motion-compensated image reconstruction
» Reduced dose PET image reconstruction

»  Machine learning methods for PET image reconstruction
Post-process initial reconstructed image [19]
Improve sinogram then apply FBP [20]
Unrolled-loop iterative reconstruction [21, 22, 23]
Direct from sinogram to image: “learned FBP" (2D only, using CNN!) [24]
cf. (LSI') ANN for SPECT image recon, C. Floyd, IEEE-T-MI Sep. 1991 [25]
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J. Fessler
X-ray CT scans M

MICHIGAN

CT image reconstruction problem:
Determine unknown attenuation map x given sinogram data y using system matrix A.
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J. Fessler

MRI scans

(No moving parts to

animate)

MR image reconstruction problem:
Determine unknown magnetization image x given k-space data y using system matrix A

14 /87
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o . . . J. Fessler
Clinical CT system / instrumentation advances: Classic

» From single slice to multi-slice
1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows
256 - 0.625 = 160mm axial coverage
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J. Fessler

Clinical CT system / instrumentation advances: Classic

» From single slice to multi-slice
1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows
256 - 0.625 = 160mm axial coverage

» From axial scan to helical scans (=~ 1989)
» Faster rotation (= 0.3 sec?)

» Tube current modulation
to reduce dose in helical scans

http://www.ajnr.org/content/27/10/2221

Tube Current (mA)
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.. . . J. Fessler
Clinical CT system / instrumentation advances: Newer

» Dual X-ray source / detector systems (2005)

Rotation

direction @

Detector B

Detector A

https://www.siemens-healthineers.com/no/computed-tomography/news/mso-back-to-the-future.html
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J. Fessler

Clinical CT system / instrumentation advances: Recent

» Dual energy systems (for material separation)
e Slow kVp switching
e Dual source/detectors systems
e Fast kVp switching
e Dual layer detectors

A

B so1sokvpfastswitching G
@

80 kVp
-

—

Detector

[26]
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J. Fessler

CT system / instrumentation research: Source

» X-ray fluence modulation [27]
H] [ —
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: : J. Fess|
CT system / instrumentation research: Detectors =

» photon-counting detectors
cut electronic noise
multi-spectral data
possibly with new contrast agents (e.g., gold nanoparticles)

IEEE Transactions on Radiation & Plasma Medical Sciences
Special issue on
Single photon counting spectral x-ray computed tomography imaging
Call for papers

Guest Editors
Katsuyuki Taguchi, Dimitra G. Darambara, Michael Campbell, and Rafael Ballabriga
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Spectral CT example R M
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Conventiona

1 15§

| — - e— - | —
“color CT" [28]
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J. Fessler M

Dose reduction methods

reduce tube current
X-ray tube-current modulation

>

>

» X-ray fluence modulation

P eliminate electronic noise using photon counting
>
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Dose reduction methods

» reduce tube current

» X-ray tube-current modulation

» X-ray fluence modulation

P eliminate electronic noise using photon counting

>
sparse view CT (cf radial undersampling in MRI)

e Easy for slow flat-panel C-arm systems
e Hard for fast rotating helical systems
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. J. Fessler
Sparse-view CT example M

MICHIGAN

NYU, Muckley et al. [29] 1/8th tube current 1/8 dose multi-slit collimator
multi-slit collimator

Anode

z-Collimator - -
MsC !

4.19% 3.19%

Subject <

Detector M
—

z-Direction
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J. Fessler

Inverse problems

Unknown Imagin Data Image
object — gne 1, — | Recon | — Ag
. system y X

How to reconstruct object x from data y?
Non-iterative methods:
analytical / direct

o Filtered back-projection (FBP) for CT (textbook: Radon transform)
o Inverse FFT for MRI (textbook: FFT)
idealized description of the system (“textbook model”)

o geometry / sampling
o disregards noise and simplifies physics
typically fast
Iterative methods:
model-based / statistical
based on “reasonably accurate” models for physics and statistics
usually much slower
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. L . . J. Fessler
Statistical image reconstruction: CT example

e A picture is worth 1000 words

e (and perhaps several 1000 seconds of computation?)
’ o N 9 '

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

(Same sinogram, so all at same dose)

25 /87



Why statistical /iterative methods for CT?

Accurate physics models

o X-ray spectrum, beam-hardening, scatter, ...
— reduced artifacts? quantitative CT?

o X-ray detector spatial response, focal spot size, ...
— improved spatial resolution?

o detector spectral response (e.g., photon-counting detectors)
= improved contrast between distinct material types?

Nonstandard geometries

o transaxial truncation (wide patients)

o long-object problem in helical CT

o irregular sampling in “next-generation” geometries

o coarse angular sampling in image-guidance applications
o limited angular range (tomosynthesis)

o “missing” data, e.g., bad pixels in flat-panel systems

J. Fessler

MICHIGAN
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J. Fessler

Why iterative for CT ... continued

o Appropriate models of (data dependent) measurement statistics
o weighting reduces influence of photon-starved rays (cf. FBP)
= reducing image noise or X-ray dose

e Object constraints / priors
nonnegativity

object support

piecewise smoothness

object sparsity (e.g., angiography)
sparsity in some basis

motion models

dynamic models

Henry Gray, Anatomy of the

o
o
o
o
o
o
o
° Human Body, 1918, Fig. 413.

Constraints may help reduce image artifacts or noise or dose.

Similar motivations/benefits in PET and SPECT.
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' i - J. Fessl
Disadvantages of iterative methods for CT? R ™M

» Computation time
» Must reconstruct entire FOV
» Complexity of models and software

» Algorithm nonlinearities
o Difficult to analyze resolution/noise properties (cf. FBP)
o Tuning parameters
o Challenging to characterize performance / assess 1Q

28/87



J. Fessler

Sub-mSv example

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

Statistical

29 /87



MBIR example: Chest CT J. Fessler — j %14

MICHIGAN

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv.

(Health Physics Soc.: http://www.hps.org/publicinformation/ate/q2372.html)

Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare 30,87


 http://www.hps.org/publicinformation/ate/q2372.html 

J. Fessler

History: Statistical reconstruction for X-ray CT*

Iterative method for X-ray CT (Hounsfield, 1968)
ART (Kaczmarz) for tomography (Gordon, Bender, Herman, JTB, 1970)
Roughness regularized LS for tomography (Kashyap & Mittal, 1975)
Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)
EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)
Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)
Ordered-subsets algorithms (Manglos et al., PMB 1995)

(Kamphuis & Beekman, T-MI, 1998)
(Erdogan & Fessler, PMB, 1999)

Commercial OS for Philips BrightView SPECT-CT (2010)

Commercial ICD for GE CT scanners (Veo) (circa 2010)
FDA 510(k) clearance of Veo (Sep. 2011)
First Veo installation in USA (at UM) (Jan. 2012)

(* numerous omissions, including many denoising methods)
3
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. . J. Fessler
5 decades of CT image reconstruction research

1. 70's “Analytical” methods (integral equations): FBP
2. 80's Algebraic methods (as in “linear algebra”)
Solve y = Ax

3. 90's Statistical methods
LS / ML methods
Bayesian methods (Markov random fields, ...)
regularized methods

4. 00's Compressed sensing methods
(mathematical sparsity models)

5. 10's Adaptive / data-driven methods
machine learning, deep learning, ...

32/87



J. Fessler

Statistical image reconstruction for CT: Formulation

Optimization problem formulation:

a . N
x= agmin W(x), W(x) 2 = ||y Ax|[w +BZ S v — x)
20 \—/—/ J=1 keN;

— cost "
optimization function data-fit term
algorithm physics & statistics regularizer

prior models

y : measured data (sinogram)

A : system matrix (physics / geometry)
W : weighting matrix (statistics)

x : unknown image (attenuation map)

B : regularization parameter(s)

Nj @ neighborhood of jth voxel

1 . edge-preserving potential function
(piece-wise smoothness / gradient sparsity)

33/87



o _ J. Fessl
Statistical image reconstruction for CT: Research i M

MICHIGAN

. . 1
% = arg min V(x), W(x)= 3 ly — Ax[3y + >3 B — x)
x> j k

Apparent topics:
regularization design / parameter selection 1, {3
statistical modeling W, |||
system modeling A
optimization algorithms (arg min)
assessing 1Q of X

Other topics:
system design
motion
spectral
dose ...

34/87



J. Fessler

Regularization in CT

"q generalized gaussian” potential function with tuning parameters: (3,9, p, g:

By(t) =B

Al

P E— (Thibault et al., Med. Phys., Nov. 2007) [44]
1+ |t/o|P71

p=qg=2 p=2,g=126=10 HU p=qg=1.1

noise (HU): 11.1 10.9 10.8
(#lp/cm): 4.2 7.2 8.2

35/87



SIR for CT: Optimization challenges J. Fessler 74

MICHIGAN

N
% =argminW(x), W) 2 2 lly — Axly + D030 Byatil — x)
x20 =1 k
Optimization challenges:

large problem size: x € R512X512X600, y€ [R888x64x7000
A is sparse but still too large to store; compute Ax on-the-fly
W has enormous dynamic range (1 to exp(—9) ~ 1.2-10~%)
Gram matrix A’ WA highly shift variant
V is non-quadratic but convex (and often smooth)
nonnegativity constraint
data size grows: dual-source CT, spectral CT, wide-cone CT, ...
Moore’s law insufficient
more cores/threads, not faster clock speeds
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Optimization transfer (Majorize-Minimize) methods: 2D

o ()

J. Fessler

M (x(M) = W(x(M)
¢ (x) > W(x)
cf. ML-EM

XD

= arg min ¢!"”(x)
X
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Optimized gradient method (OGM1) ) Fessler B 41

MICHIGAN

New approach by optimizing step-sizes {h, x} analytically
Initialize: tp =1, z0 = x© (Donghwan Kim and JF; 2014-2016)

1
2D y(m I Vv (x\™) (usual GD update)

1
th+1 = 5 (]. +4/1+ 41.',21) (momentum factors)

XD — oty BT 1 (z(n+1> _ z(n)) 4t (Z<n+1> _ x(”’)
th+1 th+1

Nesterov new momentum

Smaller (worst-case) convergence bound than Nesterov by 2x:

1L [|x© — x5
(n+1)2

Recently Y. Drori [48] found a matching lower bound for any first-order method in high dimensions.

W (M) — W (x™) <

38/87



J. Fessler

Ordered subsets approximation

» Data decomposition (aka incremental gradients, cf. stochastic GD, mini-batch):

M
1 1
V)= S Vn(), V()2 L llym — Anxlfy, + 17 R(3)
m=1
1/Mth of measurements
» Key idea. For x far from minimizer: VW(x) =~ M VWV ,(x) [13]
> SQS (MM): [42]

XD = % D77y (x(™)
> OS-SQS:
for n=0,1,... (iteration)
form=1,..., M (subset)

xkKtl = xk DM V\IJm<xk>, k = nM + m (subiteration)

N————
less work

» Applied coil-wise in parallel MRI (Muckley, Noll, JF, ISMRM 2014) [50]

39/87



Ordered subsets version of OGM1

For more acceleration, combine OGM1 with ordered subsets (OS).

0S-OGM1:
Initialize: to = 1, 2@ = x©
for n=0,1,... (iteration)

form=1,...,M (subset)

k = nM + m (subiteration)
Zk = [xk - D‘II\JV\IJ,,,(xk>Lr (typical 05-5QS)

1
ti1 = 5 (1+\/1+4t,3)

ty —1 t
k1 g+l k (zk+1 . zk) + k (zk+1 _ xk)
k1 eyt

X

J. Fessler

[51]
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OS-OGML1 properties b Fessler B

MICHIGAN

. 1
> Approximate convergence rate for V: 0(22>
n*M
(Donghwan Kim and JF; IEEE T-MI 2015 [51])

> Same compute per iteration as other OS methods

(One forward / backward projection and M regularizer gradients per iteration)
» Same memory as OGM1 (two more images than 0S-5QS)
» Guaranteed convergence for M =1

» No convergence theory for M > 1
o unstable for large M
o small M preferable for parallelization

» Now fast enough to show X-ray CT examples...
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J. Fessler

OS-OGML1 results: data

3D cone-beam helical X-ray CT scan
pitch 0.5
image x: 512 x 512 x 109 with 70 cm FOV and 0.625 mm slices

sinogram : y 888 detectors x 32 rows x 7146 views

1150
1100

1050

; Lk i ’“‘#E ;

= 1000
Converged
|

950
900

850

800

4287



J. Fess|
OS-OGML1 results: convergence rate essler R

MICHIGAN

RMSD between x(™ and x(°

over ROl (in HU), versus iter- 30 " GD
ation. (“Proposed” = OGML.) o5 | = == Nesterov
(Compute times per iteration are very = Proposed
similar.) =) | == (0S5(12)-GD
I 20 =©-0S5(12)-Nesterov
% 15 =B-0S(12)-Proposed
=
T 10
5,
0 | _
0 5 10 15 20
lteration
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OS-OGM1 results: images

Initial FBP Converged

(OS-Nesterov)

At iteration n = 10 with M = 12 subsets.
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isti i J. Fessl
Statistical modeling essler

More realistic measurement model in CT with current-integrating detectors:

Y; ~ Poisson{l,-e_[AX]'} + N (p, 0%)
————

readout

X-ray photons

Important for very low-dose CT scans where logarithm is problematic
Corresponding log-likelihood is complicated. Approximations:

» Shifted Poisson: [53, 54, 55]
Yi—p+o0%~ Poisson{/; e A 4 02}
» Model-dependent normal (leads to nonlinear LS): [56, 57]
i~ N(/,- e A gy e A gy 02)

» Compound Poisson and other complicated models and approximations [58, 59]

46 /87



. J. Fessler
Advanced regularizers | M

MICHIGAN

» Needed for very low-dose scans and sparse-view scans

Using TV regularizer R(x) = || Tx||,
where T is finite-differences
= patches of size 2 x 1.

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
e synthesis models
e analysis methods

47 /87



Advanced regularizers Il

» Patch-based dictionary synthesis models

M

: 1 2
RG) =, min,, 3 5 [Rnx = Danl +a znl,

» Patch-based analysis / transform sparsity

M
R(x) =Y | TRmxl|;
m=1

» Dictionary D or transform T can be
learned from population training
adapted to each patient

J. Fessler M

MICHIGAN

[60]
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. J. Fessler
Advanced regularizers Il

» Convolutional dictionary sparsity [61]
1 K 2 K
R(x) = min = ||x = Zk:l hy * z, , + aZk:l ([EAIR
» Convolutional analysis sparsity (cf CNN) [62]

K
R =Y e xly

» Filters {hy} learned from population training data
» Block-matching / non-local means ... [63]

» Joint sparsity for spectral CT: mixed ¢», 1 norms, or nuclear norms [64, 65]
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J. Fessler

X-ray CT with learned sparsifying transforms

» Data
» Population adaptive methods
» Patient adaptive methods
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation

» Synthesis (dictionary) approach
> Analysis (sparsifying transform) approach
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. . J. Fessler
Patch-wise transform sparsity model M
Assumption: if x is a plausible image, then each patch transform TP,,x is sparse.
» P,,x extracts the mth of M patches from x
» T is a (often square) sparsifying transform matrix. What T7?

51/87



Sparsifying transform learning (population adaptive)  Fessler M

MICHIGAN

Given training images xi,...,x; from a representative population, find transform T,
that best sparsifies their patches:

T. = argmin min Z Z | TPmx; — z,7mH§ + allz,mll,

Tunltary{Z/m =1 m=1

P> Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [66])
» Non-convex due to unitary constraint and |-[|,
> Efficient alternating minimization algorithm [67]
z update : simple hard thresholding

T update : orthogonal Procrustes problem (SVD)
Subsequence convergence guarantees [67]
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J. Fessler

Example of learned sparsifying transform

3D X-ray training data

(2D slices in x-y, x-z, y-z, from 3D image volume)
8 x 8 x 8 patches = T, is 83 x 83 = 512 x 512
top 8 x 8 slice of 256 of the 512 rows of T, T

53/87



Regularizer based on learned sparsifying transform

Regularized inverse problem [68]:
X = argmin ||Ax — y||f/v + B R(x)
X

M

R(x) = min Z | TiPmx — zm”% + | zmlly -

{zm} m=1

T, adapted to population training data

Alternating minimization optimizer:
» z,, update : simple hard thresholding

» x update : quadratic problem (many options)
Linearized augmented Lagrangian method (LALM) [69]

J. Fessler

MICHIGAN
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Example: low-dose 3D X-ray CT simulation J Fessler  § 514

MICHIGAN

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MlI, June 2018 [68].

PWLS-ULTRA

.
E s 7
QLiHE
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3D X-ray CT simulation Error maps J. Fessler

MICHIGAN

100 100

FDK Error PWLS-EP Error PWLS-ULTRA Error

0 0

X-ray Intensity || FDK || I | ULTRA | ULTRA-{7;}
RMSE in HU 1x 10* 67.8 | 346 || 321 | 307 29.2
5% 103 89.0 || 41.1| 373 | 357 34.2

» Physics / statistics provides dramatic improvement

» Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler KR

MICHIGAN

Given training images xi, ..., x; from a representative population, find a set of

VK
transforms {Tk}

1 that best sparsify image patches:

L M
{Tk} = argmin min ZZ ( min ||Tkme/—z/,m||§+a|]z/7m||o>

{Tk unitary} {z,y,,,} =1 m=1 ke{l,...,K}

» Joint unsupervised clustering / sparsification
» Further nonconvexity due to clustering

» Efficient alternating minimization algorithm [70]
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Example: 3D X-ray CT learned set of transforms M

v
MICHIGAN
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Example: 3D X-ray CT ULTRA for chest scan

PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [68] (Special issue on machine learning for image reconstruction)

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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. . . J. Fessler
Deep-learning approaches to CT image reconstruction

Overview:
P> image-domain learning
arXiv papers starting in 2016 [71, 72]
Journal papers starting in 2017 [73, 74, 75]
Explosion of methods, e.g., GANs [76, 77], Wasserstein loss [78]
beyond denoising: metal artifact reduction [79], dual energy, spectral CT...
P sinogram or data-domain learning
denoising, “in-painting” for metal-artifact reduction [80]
» transform learning (direct from sinogram to image) ?
in 2012 for 32 x 32 images [81]
extremely difficult for 3D helical CT
direct from sinogram to stenosis size [32, 83]
» hybrid-domain learning (unrolled loop, e.g., variational network)
alternate between denoising/destreaking and reconstruction from sinogram
e.g., [84, 85, 86, 87, 88, 89]
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Image-domain learning |l M
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FBP FBPConvNet
SNR 8.025 SNR 27 19 SNR 21.79

Ground truth

[75]
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Image-domain learning Ill

FBP TV FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

[75]
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Convolutional sparsity revisted M
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Cost function for convolutional sparsity regularization:
. 1 A _ 2 H K 1 h _ 2
argmin 3 [|Ax — ylly + B (min3ok_q 3 [+ x — 23 + af| 2l
X
Alternating minimization updates:

Sparse code: z,((”H) = soft{ hx * x™, o}

n+1)

Image: x"*Y = argmin F(x; y, z™)
X

Flxiy.2") 2 1 |Ax — yl% + (zk"_l;

ex =20 v )

— 1||Ax — y|3, + BL|x — 2|3 (quadratic but /arge =—> majorize)
2™ = R(2™) = 2K, flip(hy) * soft{h; * x™}  (denoise = learn)
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Momentum-Net overview M
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Unrolled loop network with momentum and quadratic majorizer:

“Mom?ntum” Measurement
» x® 4 E(i+1)('x(i) _x(i—l)')
Extrapolation :

argmin ||x — D (FED) TR ( 4D,y 764D ”
XEX

Gy
0 (1= p)(-) + pRyiirn () MBIR
Refining

» Diagonal majorizer: M = diag{ A’WA1} +31 > AAWA + 1
> Learn image mapper (“refiner”) R from training data (supervised).
cf CNN: filter — threshold — filter
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Momentum-Net benefits

» Image mapper R is shallow
— less risk of over-fitting / hallucination

» Momentum accelerates convergence (fewer layers)

» First unrolled loop approach to have convergence theory
(under suitable assumptions on R)

» Image update uses original CT sinogram y and imaging physics A

[90]
Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems

http://arxiv.org/abs/1907.11818
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Momentum-Net preliminary results M
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lllustration of benefits of momentum:

50

—o— BCD-Net, 10 inner iter.

—e— BCD-Net, 3 inner iter.

—»— Momentum-Net, no extraplation
—»— Momentum-Net

0 100 200 300
Reconstruction time (sec)
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Momentum-Net preliminary image results M
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(b) Filtered back- P (d) Learned convolutional (e) Momentum-Net
projection (FBP) (c) EP regularization o0 "1o4] "[37] (4000 iter.) (Nigr = 100)

(a) Ground truth

AR ~ RMSE (HU) RMSE (HU) . RMSE (HU)

= <~ RMSE (HU)
EEES - —385 [~ pete

Sparse-view CT with 123/984 views, Iy = 10°, 800-1200 mod. HU display.

=345
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DL for CT now FDA approved

» In 2019, both Canon and GE got FDA approval for DL methods for CT  [91, 92]

» Canon: “AiCE Deep Learning Reconstruction”
Canon press release: “Advanced Intelligent Clear-1Q Engine (AiCE) uses a deep
learning algorithm to differentiate signal from noise so that it can suppress noise
while enhancing signal.”

» GE “Deep-learning image reconstruction”
Possibly related papers [93, 94]
Plug-and-play ADMM (unrolled loop) [95, 96]
Denoiser is 17-layer residual learning CNN, trained to map 2D noisy FBP
patches to clean MBIR with squared error loss
Report faster “convergence” than standard MBIR
Sliding window of 3 slices in and 1 slice out
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. . J. Fessler
Glimmering neural networks

TrueFidelity Deep Learing Image Reconstruction

Input scan data sinogram

GE designed Deep Neural Network (DNN) based
Deep Learning Image Recon engine Output CTimage

MORE VIDEOS - .
REVIDED ‘Ground Truth” image

https://www.gehealthcare.com/products/truefidelity
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DL for CT Example

MICHIGAN

TRUEFIDELITY IMAGE

Filtered Back Iterative Deep Learning

Projection ) Reconstruction ) Image Reconstruction )
1972-2008 2008-2018 2018-Future
180 kg patient https://wuw.gehealthcare.com/products/truefidelity
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Iterative methods for CT image reconstruction:
» have had important impact on clinical CT
> remain an active research topic
» are more painful to study realistically (than MRI) due to proprietary sinogram data
P use similar regularization methods as MRI in research
P use simpler regularization methods than MRI clinically

The future?
>
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» are more painful to study realistically (than MRI) due to proprietary sinogram data
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Summary

Iterative methods for CT image reconstruction:
» have had important impact on clinical CT
> remain an active research topic
» are more painful to study realistically (than MRI) due to proprietary sinogram data
P use similar regularization methods as MRI in research
P use simpler regularization methods than MRI clinically

The future?
>  Apparently iterative recon for CT perished in 20187
»  Apparently CT beat MRI to FDA-approved DL recon methods?
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Resources

Slides: http://web.eecs.umich.edu/~fessler/papers/files/talk/20/sedona.pdf
Code: Julia version of MIRT https://github.com/JeffFessler/MIRT. jl

|
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