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Most obvious place for machine learning is in post-processing (image analysis).
Numerous special issues and surveys in medical imaging journals, e.g., [1-9].
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raw data images
_y| Acquire Y Reconstruct X Process | _,| Diagnose
Data Images Images Interpret

Machine learning for scan design

Choose best k-space phase encoding locations based on training images
Hot topic in MRI recently [10-15].

Precursor by Yue Cao and David Levin, MRM Sep. 1993 [16-18].
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Machine learning in medical image reconstruction

June 2018 special issue of IEEE Trans. on Medical Imaging [19].
Surveys: [20-27]

Possibly easier than diagnosis due to lower bar:

e current reconstruction methods based on simplistic image models;

e human eyes are better at detection than at solving inverse problems.
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A holy grail for machine learning in medical imaging?
» CT sinogram to vessel diameter [28, 29]
» k-space to 777

4/43



MICHIGAN

Introduction

Image reconstruction
Adaptive regularization
Deep-learning approaches
Summary

Bibliography

5/43



J. Fessler
Learning IR

Generations of medical image reconstruction methods

1. 70's "Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra™)
Solve y = Ax

3. 90's Statistical methods
LS / ML methods based on imaging physics (“model based”)

Bayesian methods (Markov random fields, ...)
regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10's Adaptive / data-driven methods
machine learning, deep learning, ...
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o Model-based image reconstruction (MBIR) FDA approved circa 2012 [30]

y . 9

0

e Deep-learning image reconstruction FDA approved 2019 [31, 32]
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Machine-learning approaches to image reconstruction Leemfis [

» Learn models (sparsifying transform or dictionary) for image patches from training
data
interpretable (?) optimization formulations

local prior information only (patch size)
perhaps slower computation due to optimization iterations

» Train neural network (aka deep learning)
less interpretable

possibly more global prior information

slow training, but perhaps faster computation after trained
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Learning IR [z

Anisotropic discrete TV regularizer:
R(x) = | T,

where T is finite-differences

= patches of size 2 x 1.

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
e synthesis models

e analysis methods
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X-ray CT with learned sparsifying transforms Leafiizrm

» Data
» Population adaptive methods
» Patient adaptive methods
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation

» Synthesis (dictionary) approach
> Analysis (sparsifying transform) approach
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Patch-wise transform sparsity model Leeriing (R M
Assumption: if x is a plausible image, then each patch transform TP, x is sparse.
» P,.x extracts the mth of M patches from x
» T is a (often square) sparsifying transform matrix. What T7?
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Given training images xi,...,x; from a representative population, find transform T,
that best sparsifies their patches:

L M
T, = argmin min Z Z || TPmx; — z,7m|]§ + allz,mll,

T unitary {Z/,m =1 m=1

P> Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [33])

» Non-convex due to unitary constraint and ||-||,

» Efficient alternating minimization algorithm [34]
z update : simple hard thresholding

T update : orthogonal Procrustes problem (SVD)

Subsequence convergence guarantees [34]
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Example of learned sparsifying transform pE——

3D X-ray training data (XCAT phantom) Parts of learned sparsifier T.

(2D slices in x-y, x-z, y-z, from 3D image volume)
8 x 8 x 8 patches == T, is 83 x 83 =512 x 512
top 8 x 8 slice of 256 of the 512 rows of T, 1
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Regularizer based on learned sparsifying transform Learning IR |

Regularized inverse problem [35]:

% = argmin || Ax — yl[3y + B R(x)
X

M
R(x) = min Y || T.Ppx — Zmll3 + @ ||Zm]l -

{zm} m=1

T, adapted to population training data

Alternating minimization optimizer:
» z,, update : simple hard thresholding

» x update : quadratic problem (many options)
Linearized augmented Lagrangian method (LALM) [36]
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X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [35].
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3D X-ray CT simulation Error maps Learning IR |

100 100

FDK Error PWLS-EP Error PWLS-ULTRA Error

0 0

X-ray Intensity || FDK || | ST 7. [ ULTRA [ ULTRA-{7;}
RMSE in HU 1 x 10* 67.8 | 346 | 321 | 307 29.2
5 x 103 89.0 || 41.1 | 373 | 357 34.2

» Physics / statistics provides dramatic improvement

» Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler KR

Learning IR |EE

Given training images xi, ..., x; from a representative population, find a set of

VK
transforms {Tk}

1 that best sparsify image patches:

L M
{Tk} = argmin min ZZ ( min ||Tkme/—z/,m||§+a|]z/7m||o>

{Tk unitary} {z,y,,,} =1 m=1 ke{l,...,K}

» Joint unsupervised clustering / sparsification
» Further nonconvexity due to clustering

» Efficient alternating minimization algorithm [37]
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Example: 3D X-ray CT ULTRA for chest scan Learning IR

PWLS-ULTRA

PWLS-EP

Zheng et al., IEEE T-MI, June 2018 [35] (Special issue on machine learning for image reconstruction)
Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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Deep-learning approaches to image reconstruction Leemfis [

Overview:
» image-domain learning [38—40]...
P k-space or data-domain learning
e.g., [41], [42], [43]
» transform learning (direct from k-space to image)
e.g., AUTOMAP [44], [45-4T7]
» hybrid-domain learning (unrolled loop, e.g., variational network)

alternate between denoising/dealiasing and reconstruction from k-space
e.g., [42, 48-52] ...
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DL for IR: image-domain learning Learning IR

|l|
|mn Analytic

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast

— aliasing is spatially widespread, requires deep network

23/43



. . . J. Fessler
Dangers of image-domain learning | Leeriing (R M

Investigating Robustness to Unseen Pathologies in Model-Free Deep Multicoil Reconstruction

Gopal Nataraj' and Ricardo Otazo'?
'Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center
2Dept. of Radiology, Memorial Sloan Kettering Cancer Center

Introduction

Speed is often claimed as a key advantage of deep learning (DL) for
undersampled parallel MRI reconstruction [1]. However, the only DL
approach that to our knowledge has studied generalizability to pathologies
unseen in training [2] requires repeated application of the MR acquisition
model and its adjoint, just as in iterative methods. In contrast, model-free
DL reconstruction has the potential to be much faster. Prior model-free DL
wark [31 nrannses tn learn a mannina directly fram k-snace  hit with

[53] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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Dangers of image-domain learning Il Leemfis [

Reference SPARSE-SENSE

Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare
malignant brain tumor. SPARSE-SENSE and DL reconstructions are from
the same 4x-accelerated retrospectively undersampled acquisition. DL
achieves lower whole-volume MAE than SPARSE-SENSE, but fails to
properly reconstruct regions near the tumor.
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Image-domain learning variations Leemfis [
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» Use NN output as a “prior” for iterative reconstruction [38, 54]:

kg = argmin | Ax — y[3 + B [x — xun 3 = (AA+ B (A'y + Bxun)

» For single-coil Cartesian case:
no iterations are needed (solve with FFTs)

limg_,0 X replaces missing k-space data with FFT of xyn
> lterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

» Learn residual (aliasing artifacts), then subtract [55, 56]
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DL for IR: k-space / sinogram domain learning Leemfis [

0O

(.
> — Analytic | e
Vel Recon
O &

Figure courtesy of Jong Chul Ye, KAIST University.

I
'”'|i|W

i
i

+ simple and fast (“nonlinear GRAPPA")
+ “database-free” : learn from auto-calibration data

— perhaps harder to represent local image features?
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DL for IR: transform learning Learning IR

......... lu
hn||||m

Figure courtesy of Jong Chul Ye, KAIST University.

4+ in principle, purely data driven; potential to avoid model mismatch

— high memory requirement for fully connected layers
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DL for IR: hybrid domain learning i;::ﬁzrm M

Forward
Solver

il |
(TR o Anetvtic
H“”llm",..w .

OCfO
|

Figure courtesy of Jong Chul Ye, KAIST University.

+ physics-based use of k-space data & image-domain priors
+ interpretable connections to optimization approaches

— more computation to due to “iterations” (layers) and repeated Ax, A'r
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Convolutional sparsity revisted Leeriing (R M

Cost function for convolutional sparsity regularization:

arg min § || Ax — y[liy + B (mcinzf_l Ll x = Cull3 + @ Hckh)
X
Alternating minimization, aka block coordinate descent (BCD), updates:
Sparse code: ¢ = soft{ by x x™, o}

Image: x"*Y) = argmin F(x; y, z™)
X

lI>

Flxiy.2™) 2 1]|Ax — y|y + (2521;

2
eex =0l

= L||Ax — y|[jy + BL|x — z(")Hg (quadratic but large = majorize)
2™ = R(2™) = 2K, Aip(hy) * soft{h = x™}  (denoise = learn)

30/43



. J. Fessler
Momentum-Net overview Learning IR M

MICHIGAN

Unrolled loop network with momentum and quadratic majorizer [57, 58]:

’ “Mom?ntum” Measurement
M0 2 pGD) @) _ L (-1).
JxW+E (x x )
Extrapolation :

argmin ||x — D (D) TR (4D, 404D ”
XEX

G+
@ 1 =p)() + pRya+n () MBIR
Refining

» Diagonal majorizer for CT: M = Diag{ A’WA1} +31 = A WA + I

» Learn image mapper (“refiner”) R from training data (supervised).
cf CNN: filter — threshold — filter
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Momentum-Net benefits Learning IR

» Image mapper R is shallow
= less risk of over-fitting / hallucination

» Momentum accelerates convergence = fewer “layers” (outer iterations)

P First unrolled loop approach to have convergence theory
(under suitable assumptions on R)

P> Image update uses original measurements y and imaging physics A

[57, 58] Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems
http://arxiv.org/abs/1907.11818,

IEEE Tr. on PAMI, 2020 http://doi.org/10.1109/TPAMI.2020.3012955
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Momentum-Net preliminary results Leeriing (R M

lllustration of benefits of momentum:

50

—o— BCD-Net, 10 inner iter.

—e— BCD-Net, 3 inner iter.

—»— Momentum-Net, no extraplation
—»— Momentum-Net

0 100 200 300
Reconstruction time (sec)
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(b) Filtered back- P (d) Learned convolutional (e) Momentum-Net
projection (FBP) (c) EP regularization o0 "1o4] "[37] (4000 iter.) (Nigr = 100)

(a) Ground truth

AR ~ RMSE (HU) RMSE (HU) . RMSE (HU)

= <~ RMSE (HU)
EEES - —385 [~ pete

Sparse-view CT with 123/984 views, Iy = 10°, 800-1200 mod. HU display.

=345
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Summary Learning IR cM

» CT image reconstruction has evolved greatly in the 50+ years since Allan
Cormack’s seminal papers [59, 60]
> physics
> statistics
» regularization and optimization
» data adaptive methods inspired by machine learning

Machine learning has great potential for medical imaging
Much excitement but many challenges
Image reconstruction seems especially suitable for ML ideas

Data-driven, adaptive regularizers beneficial for low-dose CT

vVvYyyvyy

More comparisons between model-based methods with adaptive regularizers and
CNN-based methods needed
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Resources Learning IR

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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