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Most obvious place for machine learning is in post-processing (image analysis).
Numerous special issues and surveys in medical imaging journals, e.g., [1–9].
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Medical imaging overview J. Fessler
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Machine learning for scan design
Choose best k-space phase encoding locations based on training images
Hot topic in MRI recently [10–15].
Precursor by Yue Cao and David Levin, MRM Sep. 1993 [16–18].
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Medical imaging overview J. Fessler
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Machine learning in medical image reconstruction
June 2018 special issue of IEEE Trans. on Medical Imaging [19].
Surveys: [20–27]
Possibly easier than diagnosis due to lower bar:
• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than at solving inverse problems.
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Medical imaging overview J. Fessler

Design
Scan

→ Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂
−−−−→ Process

Images
→ Diagnose

Interpret

ML-based
“magic”

A holy grail for machine learning in medical imaging?
I CT sinogram to vessel diameter [28, 29]
I k-space to ???
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Generations of medical image reconstruction methods J. Fessler

1. 70’s “Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra”)
Solve y = Ax

3. 90’s Statistical methods
• LS / ML methods based on imaging physics (“model based”)
• Bayesian methods (Markov random fields, ...)
• regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10’s Adaptive / data-driven methods
machine learning, deep learning, ...
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Two important milestones for clinical CT J. Fessler

• Model-based image reconstruction (MBIR) FDA approved circa 2012 [30]

• Deep-learning image reconstruction FDA approved 2019 [31, 32]
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Deep-learning approaches to image reconstruction J. Fessler

Overview:
I image-domain learning [33–35]...
I k-space or data-domain learning

e.g., [36], [37], [38]
I transform learning (direct from k-space to image)

e.g., AUTOMAP [39], [40–42]
I hybrid-domain learning (unrolled loop, e.g., variational network)

alternate between denoising/dealiasing and reconstruction from k-space
e.g., [37, 43–47] ...
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DL for IR: image-domain learning J. Fessler

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast
− aliasing is spatially widespread, requires deep network
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Dangers of image-domain learning: Method J. Fessler

[48] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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Dangers of image-domain learning: Result J. Fessler
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Image-domain learning variations J. Fessler

I Use NN output as a “prior” for iterative reconstruction [33, 49]:

x̂β = arg min
x
‖Ax − y‖22 + β ‖x − xNN‖22 = (A′A + βI)−1(A′y + βxNN)

I For single-coil Cartesian case:
• no iterations are needed (solve with FFTs)
• limβ→0 x̂β replaces missing k-space data with FFT of xNN

I Iterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

I Learn residual (aliasing artifacts), then subtract [50, 51]

12 / 63



DL for IR: k-space / sinogram domain learning J. Fessler

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast (“nonlinear GRAPPA”)
+ “database-free” : learn from auto-calibration data
− perhaps harder to represent local image features?
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DL for IR: transform learning J. Fessler

Figure courtesy of Jong Chul Ye, KAIST University.

+ in principle, purely data driven; potential to avoid model mismatch
− high memory requirement for fully connected layers
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DL for IR: hybrid domain learning J. Fessler

Figure courtesy of Jong Chul Ye, KAIST University.

+ physics-based use of k-space data & image-domain priors
+ interpretable connections to optimization approaches
− more computation to due to “iterations” (layers) and repeated Ax, A′ r
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Adaptive regularization methods for inverse problems J. Fessler

I Data
I Population adaptive methods (e.g., X-ray CT)
I Patient adaptive methods (e.g., dynamic MRI?)

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transforms) approach

Many options...
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Patch-based regularization and TV J. Fessler

Anisotropic discrete TV regularizer:
R(x) = ‖Tx‖1
where T is finite-differences
≡ patches of size 2× 1.

1-1

1

-1

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
• synthesis models
• analysis methods -1

0

1

2

3
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X-ray CT with learned sparsifying transforms J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise transform sparsity model J. Fessler

Assumption: if x is a plausible image, then each patch transform TPmx is sparse.
I Pmx extracts the mth of M patches from x
I T is a (often square) sparsifying transform matrix. What T?
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Sparsifying transform learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find transform T∗
that best sparsifies their patches:

T∗ = arg min
T unitary

min
{zl,m}

L∑
l=1

M∑
m=1
‖TPmxl − zl ,m‖22 + α ‖zl ,m‖0

I Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [52])

I Non-convex due to unitary constraint and ‖·‖0
I Efficient alternating minimization algorithm [53]
• z update : simple hard thresholding
• T update : orthogonal Procrustes problem (SVD)
• Subsequence convergence guarantees [53]
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Example of learned sparsifying transform J. Fessler

3D X-ray training data (XCAT phantom) Parts of learned sparsifier T∗

(2D slices in x-y, x-z, y-z, from 3D image volume)
8× 8× 8 patches =⇒ T∗ is 83 × 83 = 512× 512

top 8× 8 slice of 256 of the 512 rows of T∗ ↑
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Regularizer based on learned sparsifying transform J. Fessler

Regularized inverse problem [54]:

x̂ = arg min
x
‖Ax − y‖2W + βR(x)

R(x) = min
{zm}

M∑
m=1
‖T∗Pmx − zm‖22 + α ‖zm‖0 .

T∗ adapted to population training data

Alternating minimization optimizer:
I zm update : simple hard thresholding
I x update : quadratic problem (many options)

Linearized augmented Lagrangian method (LALM) [55]
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Example: low-dose 3D X-ray CT simulation J. Fessler

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [54].

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA
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3D X-ray CT simulation Error maps J. Fessler

0

100

FDK Error

0

100

PWLS-EP Error

0

100

PWLS-ULTRA Error

RMSE in HU
X-ray Intensity FDK EP ST T∗ ULTRA ULTRA-{τj}

1× 104 67.8 34.6 32.1 30.7 29.2
5× 103 89.0 41.1 37.3 35.7 34.2

I Physics / statistics provides dramatic improvement
I Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler

Given training images x1, . . . , xL from a representative population, find a set of
transforms

{
T̂k
}K
k=1

that best sparsify image patches:

{
T̂k
}

= arg min
{Tk unitary}

min
{zl,m}

L∑
l=1

M∑
m=1

(
min

k∈{1,...,K}
‖TkPmxl − zl ,m‖22 + α ‖zl ,m‖0

)

I Joint unsupervised clustering / sparsification
I Further nonconvexity due to clustering
I Efficient alternating minimization algorithm [56]
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Example: 3D X-ray CT learned set of transforms J. Fessler

Class 1 Class 2 Class 3 Class 4 Class 5

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [54]
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Example: 3D X-ray CT ULTRA for chest scan J. Fessler

FDK PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [54] (Special issue on machine learning for image reconstruction)
Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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X-ray CT with learned convolutional filters J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:
512× 512× 512 3D X-ray CT image volume
8× 8× 8 patches
=⇒ 5123 · 83 · 4 = 256 Gbyte of patch data for stride=1
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Convolutional sparsity: analysis model J. Fessler

Assumption: For a plausible image x, the filter outputs {hk ∗ x} are sparse,
for some filters {hk}Kk=1 [57]
I For more plausible images, the outputs {hk ∗ x} are more sparse.
I ∗ denotes convolution
I Inherently shift invariant and no patches
Example (hand crafted filters):

1 90

1

60

1 6

1

6

1 90

1

60
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Sparsifying filter learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find filters
{

ĥk
}K
k=1

that best sparsify them:{
ĥk
}

= arg min
{hk}∈H

min
{zl,k}

L∑
l=1

K∑
k=1
‖hk ∗ xl − zl ,k‖22 + α ‖zl ,k‖0

I To encourage filter diversity:
• H = {H : HH ′ = I} , H = [h1 . . . hK ]
• cf. tight-frame condition

∑K
k=1 ‖hk ∗ x‖22 ∝ ‖x‖

2
2

I Encourage aggregate sparsity, period
I Non-convex due to constraint H and ‖·‖0
I Efficient alternating minimization algorithm [58]
• z update is simply hard thresholding
• Filter update uses diagonal majorizer, proximal map (SVD)
• Subsequence convergence guarantees [58]
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Examples of learned sparsifying filters J. Fessler

2D X-ray CT training data and learned 5× 5 sparsifying filters
{

ĥk
}
[58]:

α = 10−4 α = 2×10−3
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Regularizer based on learned sparsifying filters J. Fessler

Regularized inverse problem [58]:

x̂ = arg min
x�0

‖Ax − y‖2W + βR(x)

R(x) = min
{zk}

K∑
k=1

∥∥∥ĥk ∗ x − zk
∥∥∥2
2

+ α ‖zk‖0 .

{
ĥk
}
adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:
I zk update is simple hard thresholding
I x update is a quadratic problem: diagonal majorizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [58]
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Example: sparse-view 2D X-ray CT simulation J. Fessler

Tr
ue

FB
P

EP

Ad
ap
tiv

e
CA

O
L

123 views
(out of usual 984)
=⇒ 8× dose reduction
25 filters 5× 5

RMSE (in HU):
FBP 82.8
EP 40.8

Adaptive filters 35.2

I Physics / statistics provides
dramatic improvement

I Data-adaptive regularization
further reduces RMSE,
improves fine details
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Extension to multiple layers (cf CNN) I J. Fessler

Convolutional sparsity model: hk ∗ x is sparse for k = 1, . . . ,K1
Learning 1 “layer” of filters:

{ĥ[1]
k } = arg min

{h[1]
k }∈H

min
{z [1]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ xl − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0
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Extension to multiple layers (cf CNN) II J. Fessler

Learning 2 layers of filters [58]:(
{ĥ[1]

k }, {ĥ
[2]
k }
)

= arg min
{h[1]

k },{h
[2]
k }∈H

min
{z [1]

l,k}
min
{z [2]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ xl − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0

+
L∑

l=1

K2∑
k=1

∥∥∥h[2]
k ∗

(
Pkz [1]

l

)
− z [2]

l ,k

∥∥∥2
2

+ α
∥∥∥z [2]

l ,k

∥∥∥
0

Here Pk is a pooling operator for the output of first layer
Block proximal gradient with majorizer (BPG-M) optimizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [58]
Use multi-level learned filters as (interpretable?) regularizer for CT.
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MR with adapted patch dictionary J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise dictionary sparsity model J. Fessler

Assumption: if x is a plausible image, then each patch has
Ppx ≈ Dzp,

for a sparse coefficient vector zp. (Synthesis approach.)
I Ppx extracts the pth of P patches from x
I D is a (typically overcomplete) dictionary for patches
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MR reconstruction using adaptive dictionary regularizer J. Fessler

Dictionary-blind MR image reconstruction:

x̂ = arg min
x

1
2 ‖Ax − y‖22 + βR(x)

R(x) = min
D∈D

min
Z

M∑
m=1

(
‖Pmx −Dzm‖22 + λ2 ‖zm‖0

)
where Pm extracts mth of M image patches.
In words: of the many images...
Alternating (nested) minimization:
I Fixing x and D, update each row of Z = [z1 . . . zM ] sequentially via

hard-thresholding.
I Fixing x and Z , update D using SOUP-DIL [59].
I Fixing Z and D, updating x is a quadratic problem.
• Efficient FFT solution for single-coil Cartesian MRI.
• Use CG for non-Cartesian and/or parallel MRI.

I Non-convex due to D, Dzm, 0-norm, but monotone decreasing and some convergence theory [59].
42 / 63



2D CS MRI results I J. Fessler

Fully Sampled Zero-Filled SOUP-DILLO-MRI

Sampling (2.5×) Initial D Learned real{D} imag{D}

todo: Would be interesting to see which atoms are most used.

6× 6 patches
D ∈ C62×144

D0: [DCT | random]
[59]

43 / 63



2D CS MRI results II J. Fessler

Iteration Number

1 20 40 60 80 100

P
S

N
R

 (
d

B
)

24

26

28

30

32

34

36

38

SOUP-DILLO MRI

SOUP-DILLI MRI

(SNR vs fully sampled image.)
Using ‖zm‖0 leads to higher
SNR than ‖zm‖1.
Adaptive case is non-convex
anyway...

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat
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2D CS MRI results III J. Fessler

(a) (b) (c) (d) (e) (f) (g)

PSNR:
Im. Samp. Acc. 0-fill Sparse

MRI PANO DLMRI SOUP-
DILLI

SOUP-
DILLO

a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x 27.7 31.6 41.3 40.2 38.5 42.3
c Cart. 2.5x 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x 28.1 31.7 40.0 38.0 37.9 41.5
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x 32.8 39.1 41.6 41.7 42.2 43.2

Ref. [60] [61] [62] [59] [59]
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2D CS MRI results IV J. Fessler

DLMRI PANO FDLCP SOUP-DILLO
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0.04
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0.14
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0.02

0.04

0.06

0.08

0.1

0.12

0.14

[62] [61] [63] [59]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Summary of patch-based, data-driven adaptive regularizers J. Fessler

Use training data to learn:
• dictionary D (for patches)
• sparsifying transform(s) T (for patches)
• or convolutional versions thereof [57, 64]
ML-based regularized optimization problem using M image patches:

x̂ = arg min
x
‖Ax − y‖22 + βRML(x)

RML−DL(x) = min
{zm}

M∑
m=1
‖Pmx −Dzm‖22 + α ‖zm‖0

RML−ST(x) = min
{zm}

M∑
m=1
‖TPmx − zm‖22 + α ‖zm‖0

Alternative: blind adaptive learned dictionary [62] or learned sparsifying transform [65].
Double minimization (so very “deep?”) More interpretable than CNNs?

47 / 63



Outline J. Fessler

Introduction
Deep-learning approaches
Adaptive regularization

Patch-based adaptive regularizers
Convolutional adaptive regularizers
Blind dictionary learning
Iterative NN with momentum

Summary
Bibliography

48 / 63



Convolutional sparsity revisted J. Fessler

Cost function for convolutional sparsity regularization:

arg min
x

1
2 ‖Ax − y‖2W + β

(
min
ζ

∑K
k=1

1
2 ‖hk ∗ x − ζk‖22 + α ‖ζk‖1

)
Alternating minimization, aka block coordinate descent (BCD), updates:

Sparse code: ζ(n+1)
k = soft

{
hk ∗ x (n), α

}
Image: x (n+1) = arg min

x
F (x; y , z (n))

F (x; y , z (n)) , 1
2 ‖Ax − y‖2W + β

(∑K
k=1

1
2

∥∥∥hk ∗ x − ζ(n+1)
k

∥∥∥2
2

+ α
∥∥∥ζ(n+1)

k

∥∥∥
1

)
= 1

2 ‖Ax − y‖2W + β 1
2

∥∥x − z (n)
∥∥2
2 (quadratic but large =⇒ majorize)

z (n) = R(z (n)) =
∑K

k=1 flip(hk) ∗ soft{hk ∗ x (n)} (denoise =⇒ learn)
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Momentum-Net overview J. Fessler

Unrolled loop network with momentum and quadratic majorizer [68, 69]:

		𝑥($)

	𝑥($&')argmin
.∈𝒳

𝑥 −	𝑥́ $&' + 𝑀5 $&' 6'𝛻𝐹(	𝑥́ $&' ; 𝑦, 𝑧($&'))
=5 >?@

A

Measurement

1 − 𝜌 (D) + 𝜌ℛF(>?@)(D)	 		𝑧($&')

	𝑦

Refining

MBIR

		𝑥($6')

𝑥($) + 𝐸 $&' (𝑥($) − 𝑥($6'))
Extrapolation

	𝑥́($&')
“Momentum”

I Diagonal majorizer for CT: M = Diag{A′WA1}+βI � A′WA + βI
I Learn image mapper (“refiner”) R from training data (supervised).

cf CNN: filter → threshold → filter
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Momentum-Net benefits J. Fessler

I Image mapper R is shallow
=⇒ less risk of over-fitting / hallucination

I Momentum accelerates convergence =⇒ fewer “layers” (outer iterations)
I First unrolled loop approach to have convergence theory

(under suitable assumptions on R)
I Image update uses original measurements y and imaging physics A

[68, 69] Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems
http://arxiv.org/abs/1907.11818,
IEEE Tr. on PAMI, 2020 http://doi.org/10.1109/TPAMI.2020.3012955

51 / 63

http://arxiv.org/abs/1907.11818
http://doi.org/10.1109/TPAMI.2020.3012955


Momentum-Net preliminary results J. Fessler

Illustration of benefits of momentum:

0 100 200 300

Reconstruction time (sec)

20

25

30

35

40

45

50

R
M
S
E

(H
U
)

BCD-Net, 10 inner iter.
BCD-Net, 3 inner iter.
Momentum-Net, no extraplation

Momentum-Net
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Momentum-Net preliminary image results J. Fessler

Sparse-view CT with 123/984 views, I0 = 105, 800-1200 mod. HU display.
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Summary J. Fessler

I CT image reconstruction has evolved greatly in the 50+ years since Allan
Cormack’s seminal papers [70, 71]
I physics
I statistics
I regularization and optimization
I data adaptive methods inspired by machine learning

I Machine learning has great potential for medical imaging
I Much excitement but many challenges
I Image reconstruction seems especially suitable for ML ideas
I Data-driven, adaptive regularizers beneficial for low-dose CT
I More comparisons between model-based methods with adaptive regularizers and

CNN-based methods needed
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Resources J. Fessler

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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