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Image reconstruction background

» Forward problem (data acquisition):

physics
Scene X Imaging
Objects System
SPECT, PET, X-ray CT, MRI, optical, ...
» Inverse problem (image formation):
raw data
Acquire y Reconstruct
e
Data Images

raw data
y

images

X

J. Fessler M
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P> Image reconstruction topics: physics models, measurement statistical models,
regularization / object priors, optimization...
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J. Fessler

Generations of medical image reconstruction methods

1. 70's "Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra™)
Solve y = Ax

3. 90's Statistical methods
LS / ML methods

Bayesian methods (Markov random fields, ...)
regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10's Adaptive / data-driven methods
machine learning, deep learning, ...
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. . . . J. Fessler
Two important milestones for clinical CT

e Model-based image reconstruction
U TR 9

MBIR) FDA approved circa 2012 [1]

0

e Deep-learning image reconstruction FDA approved 2019 [2, 3]
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J. Fessler

Sparse-view CT: Under-determined inverse problem

Data model: "

y=Ax+e

> y : measurements (sinogram)
» £ : noise

> x : unknown image

> A : system matrix (often wide) : 0
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. . . J. Fessler
Inverse problems via MAP estimation M

MICHIGAN

Unknown Recon.
System model Data Estimator
image — — — — image
x p(y [ x) y “

If we have a prior p(x), then the MAP estimate is:
X = argmaxp(x|y) = argmaxlog p(y | x) + log p(x) .
X X
For gaussian measurement errors and a linear forward model:
1 2
~log p(y | x) = 5 ly — Ax[fy

where HyH%V =y Wy and W= = Cov{y | x} is known
(A from physics, W from statistics)

8/53



J. Fessler

Priors for MAP estimation
> If all images x are “plausible” (have non-zero probability) then
p(x) < e R — —log p(x) = R(x)
(from fantasy / imagination / wishful thinking / data)
» MAP = regularized weighted least-squares (WLS) estimation:
x = argmax logp(y | x) + log p(x)
X
1 2
= argmin  lly — x|y + R(x)
X

» A regularizer R(x), aka log prior, is essential for high-quality solutions to
ill-conditioned / under-determined inverse problems.

» Why under-determined? Often high ambitions...
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Non-adaptive regularizers M
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Tikhonov regularization (11D gaussian prior)

Markov random field (MRF) models

Roughness penalty (cf MRF prior)

Edge-preserving regularization (used in clinical CT scanners)
Total-variation (TV) regularization (not used in clinical CT scanners)
Black-box denoiser like NLM, e.g., plug-and-play ADMM [4]

Sparsity in ambient space

Sparsifying transforms: wavelets, curvelets, ...

Graphical models

VVYVYyVvVYVyVVYVYYVYY

All "hand crafted” from statistical / mathematical models ...
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Adaptive regularization methods for inverse problems

> Data
> Population adaptive methods (e.g., X-ray CT)
> Patient adaptive methods (e.g., dynamic MRI?)
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation
> Synthesis (dictionary) approach
> Analysis (sparsifying transforms) approach

Many options...
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Patch-based regularization and TV essler NN

MICHIGAN

Anisotropic discrete TV regularizer:
R(x) = | T,

where T is finite-differences

= patches of size 2 x 1.

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
e synthesis models

e analysis methods
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X-ray CT with learned sparsifying transforms

» Data
» Population adaptive methods
» Patient adaptive methods
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation

» Synthesis (dictionary) approach
> Analysis (sparsifying transform) approach
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Patch-wise transform sparsity model M
Assumption: if x is a plausible image, then each TP,,x is sparse.
» P,.x extracts the mth of M patches from x
» T is a (often square) sparsifying transform matrix. What T7?
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Sparsifying transform learning (population adaptive) ). Fessler

Given training images xi,...,x; from a representative population, find transform T,
that best sparsifies their patches:

L M
T. = argmin min Z Z | TPmx — z,7m|]§ + allz,mll,

T unitary {Z/,m =1 m=1

P> Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [5])

» Non-convex due to unitary constraint and ||-||,

» Efficient alternating minimization algorithm [6]
z update : simple hard thresholding

T update : orthogonal Procrustes problem (SVD)

Subsequence convergence guarantees [6]

MICHIGAN
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Example of learned sparsifying transform

3D X-ray training data

(2D slices in x-y, x-z, y-z, from 3D image volume)
8 x 8 x 8 patches = T, is 83 x 83 = 512 x 512
top 8 x 8 slice of 256 of the 512 rows of T, T
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Regularizer based on learned sparsifying transform

Regularized inverse problem [7]:

% = argmin || Ax — yl[3y + B R(x)
X

M

R(x) = min Y || T.Pmx — Zmll3 + @ ||Zm]l -

{zm} m=1

T, adapted to population training data

Alternating minimization optimizer:
» z,, update : simple hard thresholding

» x update : quadratic problem (many options)
Linearized augmented Lagrangian method (LALM) [8]

J. Fessler

MICHIGAN
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Example: low-dose 3D X-ray CT simulation J Fessler  § 514
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X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [7]

PWLS-ULTRA

.
E s 7
QLiHE
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3D X-ray CT simulation Error maps

100 100 100
FDK Error PWLS-EP Error ‘ PWLS-ULTRA Error
e Lot . L Gt d | .
X-ray Intensity || FDK | EP [| ST T, [ ULTRA | ULTRA-{7;}
RMSE in HU 1 x 10* 6 8346 321 | 307 29.2
5 x 10 9.0 || 41.1 | 373 | 357 34.2

» Physics / statistics provides dramatic improvement

» Data adaptive regularization further reduces RMSE
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Given training images xi, ..., x; from a representative population, find a set of

VK
transforms {Tk}

1 that best sparsify image patches:

L M
{Tk} = argmin min ZZ ( min ||Tkme/—z/,m||§+a|]z/7m||o>

{Tk unitary} {z,y,,,} =1 m=1 ke{l,...,K}

» Joint unsupervised clustering / sparsification
» Further nonconvexity due to clustering

» Efficient alternating minimization algorithm [9]
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Example: 3D X-ray CT learned set of transforms M

v
MICHIGAN
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Example: 3D X-ray CT ULTRA for chest scan J. Fessler — j 1

UNIVERSITY OF
MICHIGAN

PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MlI, June 2018 [7]

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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X-ray CT with learned convolutional filters essler RV
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» Data
» Population adaptive methods
» Patient adaptive methods
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation

> Synthesis (dictionary) approach
> Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:

512 x 512 x 512 3D X-ray CT image volume

8 x 8 x 8 patches

— 5123 .83 .4 = 256 Gbyte of patch data for stride=1
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. . . J. Fessler
Convolutional sparsity: analysis model

MICHIGAN

Assumption: For a plausible image x, the filter outputs {hy * x} are sparse,
for some filters {hk}szl [10]

» For more plausible images, the outputs {hy * x} are more sparse.

> s denotes convolution

» Inherently shift invariant and no patches

Example (hand crafted filters): __ Outputs z1,..., 2
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Sparsifying filter learning (population adaptive) J. Fessler KR
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C - K
Given training images xi, ..., x; from a representative population, find filters {hk}k_l
that best sparsify them:

L K

{hk} =argmin min > > e x — zikl5 + allzikll
{h}er {2} 127 k1

» To encourage filter diversity:
H={H:HH =1}, H=[hy ... hg]
cf. tight-frame condition S>K_; ||hy % x||3 o< ||x||3
> Encourage aggregate sparsity, period
» Non-convex due to constraint # and ||-||,
> Efficient alternating minimization algorithm [11]
z update is simply hard thresholding
Filter update uses diagonal majorizer, proximal map (SVD)

Subsequence convergence guarantees [11]

28/53



g J. Fessl
Examples of learned sparsifying filters =

2D X-ray CT training data and learned 5 x 5 sparsifying filters {ﬁk} [11]:

0.0871

-0.16

-0.099
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Regularizer based on learned sparsifying filters essier

MICHIGAN

Regularized inverse problem [11]:

% = argmin ||Ax — y||3 + B R(x)
x>0

K

R(x) = ?;L?,; HIAn( * X — zkHE + o ||zl -

{ﬁk} adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:
» 2z, update is simple hard thresholding
> x update is a quadratic problem: diagonal majorizer

1. Y. Chun, JF, 2018, arXiv 1802.05584 [11]
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Example: sparse-view 2D X-ray CT simulation

123 views

(out of usual 984)

— 8X dose reduction
25 filters 5 x 5

o
m
L
RMSE (in HU):
FBP 82.8
EP 40.8

Adaptive filters | 35.2

> Physics / statistics provides
dramatic improvement

» Data-adaptive regularization
further reduces RMSE,
improves fine details

Adaptive CAOL
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Extension to multiple layers (cf CNN) |

Convolutional sparsity model: hj *x x is sparse for k =1,..., K
Learning 1 “layer” of filters:

{h[ ]} = arg min m|n Z Z thl] * X z,[lllui + « HZ,H,JHO

UG w2k
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Extension to multiple layers (cf CNN) Il

Learning 2 layers of filters [11]:

({’A’/El]h{i',[?]}): argmin  min min
(A (WP en (200 21

L Ki h[” [1] 2 [1]
S it o

L Ko 5
F 3 [« (Pe) - 2], + o=k

I=1 k=1

Here Py is a pooling operator for the output of first layer

Block proximal gradient with majorizer (BPG-M) optimizer

I.Y. Chun, JF, 2018, arXiv 1802.05584 [11]

Use multi-level learned filters as (interpretable?) regularizer for CT.

J. Fessler
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MR with adapted patch dictionary

» Data
» Population adaptive methods
» Patient adaptive methods
» Spatial structure
» Patch-based models
» Convolutional models
» Regularizer formulation

» Synthesis (dictionary) approach
> Analysis (sparsifying transform) approach
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. _ J. Fessl
Patch-wise dictionary sparsity model essler B

Assumption: if x is a plausible image, then each patch has
Py,x ~ Dz,,

for a sparse coefficient vector z,. (Synthesis approach.)
» P,x extracts the pth of P patches from x
» D is a (typically overcomplete) dictionary for patches

i
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MR reconstruction using adaptive dictionary regularizer
Dictionary-blind MR image reconstruction:

. 1
% = argmin 5 |Ax — y||5 + B R(x)

M

L 2 2

R(x) = minmin 3, (I1Pmx = Dzpll3 + A2 [ zmllo)

where P,, extracts mth of M image patches.

In words: of the many images...

Alternating (nested) minimization:

» Fixing x and D, update each row of Z = [z; ... zp] sequentially via
hard-thresholding.

» Fixing x and Z, update D using SOUP-DIL [12].

» Fixing Z and D, updating x is a quadratic problem.
Efficient FFT solution for single-coil Cartesian MRI.

Use CG for non-Cartesian and/or parallel MRI.

P Non-convex, but monotone decreasing and some convergence theory [12].
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2D CS MRI results |

Fully Sampled Zero-Filled SOUP-DILLO-MRI

6 x 6 patches
Dec (6% x144
Dy: [DCT | random]
[12]
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2D CS MRI results Il J. Fessler | ¥,
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38 (SNR vs fully sampled image.)
361 J— == - Using ||zml|, leads to higher
. SNR than ||z|f;.
834 I I Adaptive case is non-convex
T3 //' | anyway...
o I.’
530 —SOUP-DILLO MRI 7
a
28 --=-SOUP-DILLI MRI |
26 1
24 ‘ ‘ ‘ ‘
1 20 40 60 80 100

lteration Number

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat
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2D CS MRI

PSNR:

results 11

J. Fessler

(b)
Im. | Samp. | Acc. | ofill S&aésle PANO | DLMRI SSIELPI’ SD?LULFS
a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 25x | 27.7 31.6 41.3 40.2 38.5 423
c Cart. 25x | 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x | 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x | 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 25x | 28.1 3L.7 40.0 38.0 37.9 415
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 25x | 32.8 39.1 41.6 41.7 42.2 43.2
[ Ref. ] [13] [14] [ [15] [12] [12] ]
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2D CS MRI results IV

DLMRI PANO SOUP-DILLO

(15] [14] [16] [12]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.

0.14
0.12
0.1
0.08

J. Fessler M
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Summary of patch-based, data-driven adaptive regularizers =

Use training data to learn:
dictionary D (for patches)

sparsifying transform(s) T (for patches)

or convolutional versions thereof [10, 17]
ML-based regularized optimization problem using M image patches:

X = arg min || Ax — yH§ + B RML(x)
X
M
RuL-pL(x) = g'f]{ > 1Pmx — Dzinll3 + o || zm|g
mIm=1

M
Rut—st(x) = min S [ TPmx — zy|[3 + o |||l
m=1

Alternative: blind adaptive learned dictionary [15] or learned sparsifying transform [18].
Double minimization (so very “deep?”) More interpretable than CNNs?
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Convolutional sparsity revisted M
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Cost function for convolutional sparsity regularization:
argmin 1 [|Ax — vy + B (min IS, 1 lcex - Gl + a6l
Alternating minimization updates:
Sparse code: C,(("H = soft{ hx * x'", a}
Image: x"1) = argmin F(x; y, z'™)
x

Foxiyo2™) & ax =yl +B (S 1 e = 2 +afle ],

= L||Ax — y|[jy + BL|x - z(”)H; (quadratic but large = majorize)
2™ = R(2™) = 2K, Alip(hy) * soft{h; = x™}  (denoise = learn)
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Momentum-Net overview M
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Unrolled loop network with momentum and quadratic majorizer:

“Mom?ntum” Measurement
» x® 4 E(i+1)('x(i) _x(i—l)')
Extrapolation :

argmin ||x — D (FED) TR ( 4D,y 764D ”
XEX

Gy
0 (1= p)(-) + pRyiirn () MBIR
Refining

» Diagonal majorizer: M = diag{ A’WA1} +31 > A WA + 1
» Learn image mapper (“refiner”) R from training data (supervised).
cf CNN: filter — threshold — filter
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' J. Fessl|
Momentum-Net benefits essler

» Image mapper R is shallow
= less risk of over-fitting / hallucination

» Momentum accelerates convergence (fewer layers)

P First unrolled loop approach to have convergence theory
(under suitable assumptions on R)

» Image update uses original CT sinogram y and imaging physics A

[19]
Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems

http://arxiv.org/abs/1907.11818
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Momentum-Net preliminary results M
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lllustration of benefits of momentum:

50

—o— BCD-Net, 10 inner iter.

—e— BCD-Net, 3 inner iter.

—»— Momentum-Net, no extraplation
—»— Momentum-Net

0 100 200 300
Reconstruction time (sec)
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Momentum-Net preliminary image results M
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(b) Filtered back- P (d) Learned convolutional (e) Momentum-Net
projection (FBP) (c) EP regularization o0 "1o4] "[37] (4000 iter.) (Nigr = 100)

(a) Ground truth

AR ~ RMSE (HU) RMSE (HU) . RMSE (HU)

= <~ RMSE (HU)
EEES - —385 [~ pete

Sparse-view CT with 123/984 views, Iy = 10°, 800-1200 mod. HU display.

=345
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Summary M
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» CT image reconstruction has evolved greatly in the 50+ years since Allan
Cormack’s seminal papers [20, 21]
> physics
> statistics
» regularization and optimization
» data adaptive methods inspired by machine learning

Machine learning has great potential for medical imaging
Much excitement but many challenges
Image reconstruction seems especially suitable for ML ideas

Data-driven, adaptive regularizers beneficial for low-dose CT

vVvYyyvyy

More comparisons between model-based methods with adaptive regularizers and
CNN-based methods needed
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Resources

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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