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Medical imaging overview J. Fessler

Overview of medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂
−−−−→ Process

Images →

Analyze
Diagnose
Quantify
Interpret
Intervene
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Machine learning in medical image interpretation J. Fessler

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

. . .
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Machine learning in medical image interpretation J. Fessler

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

(Many conference sessions; special issue of IEEE Trans. on Med. Imaging in May 2016 [1], ...)
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Machine learning in medical image reconstruction J. Fessler

Another (initially less obvious?) place for machine learning (multiple conference sessions):

raw data
y → ML-based

image reconstruction → images
x̂

. . .

Possibly easier (than diagnosis) due to lower bar:
• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than at solving inverse problems.
June 2018 special issue of IEEE Trans. on Medical Imaging [2]:
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Machine learning in medical imaging: a holy grail? J. Fessler

A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

. . .
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Machine learning in medical imaging: a holy grail? J. Fessler

A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

I CT sinogram to vessel diameter [3]
I k-space to ???
See Wiro Niessen’s keynote...
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Machine learning in medical imaging: scan design J. Fessler

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

. . .
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Machine learning in medical imaging: scan design J. Fessler

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

Choose best k-space phase encoding locations based on training images:
• “Learning-based compressive MRI” [4, 5]
(Volkan Cevher group, June 2018 IEEE T-MI)
Single coil only so far; perhaps hard to generalize to parallel MRI?
• Yue Cao and David Levin, MRM Sep. 1993 “Feature recognizing MRI” [6–8]
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Adaptive phase-encode selection J. Fessler

Reference Sampling BP recon

Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using
shearlet transform, at 25% sampling rate.
Sampling design considers both the training data and the reconstruction method.
No high spatial frequencies!?
(Images from Gözcü et al. [5].)
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Image reconstruction background J. Fessler

I Forward problem (data acquisition):

Scene
Objects

physics
x

−−−−−−−→ Imaging
System → raw data

y

SPECT, PET, X-ray CT, MRI, optical, ...

I Inverse problem (image formation):

Acquire
Data

raw data
y
−−−→ Reconstruct

Images → images
x̂

I Image reconstruction topics: physics models, measurement statistical models,
regularization / object priors, optimization...
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Generations of medical image reconstruction methods J. Fessler

1. 70’s “Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra”)
Solve y = Ax

3. 90’s Statistical methods
• LS / ML methods
• Bayesian methods (Markov random fields, ...)
• regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10’s Adaptive / data-driven methods
machine learning, deep learning, ...
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Accelerating MR imaging using adaptive regularization J. Fessler

(a) 4× under-sampled MR k-space
(b) zero-filled reconstruction
(c) “compressed sensing”
reconstruction with TV regularization
(d) adaptive regularization
using dictionary learning
Ravishankar & Bresler, DLMRI, T-MI, May 2011,
[9, Fig. 10]
DL = dictionary learning
(not “deep learning”)
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Ill-posed inverse problems J. Fessler

y = Ax + ε

y : measurements ε : noise
x : unknown image A : system matrix (typically wide)

I compressed sensing (e.g., MRI) (A “random” rows of DFT)

ky

kx
I deblurring (restoration) (A Toeplitz)
I in-painting (A subset of rows of I)
I denoising (not ill posed) (A = I)
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Inverse problems via MAP estimation J. Fessler

Unknown
image

x
→ System model

p(y | x) → Data
y → Estimator →

Recon.
image

x̂

If we have a prior p(x), then the MAP estimate is:

x̂ = arg max
x

p(x | y) = arg max
x

log p(y | x) + log p(x) .

For gaussian measurement errors and a linear forward model:

− log p(y | x) ≡ 1
2 ‖y − Ax‖2W

where ‖y‖2W = y ′Wy and W−1 = Cov{y | x} is known
(A from physics, W from statistics)
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Priors for MAP estimation J. Fessler

I If all images x are “plausible” (have non-zero probability) then

p(x) ∝ e−R(x) =⇒ − log p(x) ≡ R(x)

(from fantasy / imagination / wishful thinking / data)

I MAP ≡ regularized weighted least-squares (WLS) estimation:

x̂ = arg max
x

log p(y | x) + log p(x)

= arg min
x

1
2 ‖y − Ax‖2W + R(x)

I A regularizer R(x), aka log prior, is essential for high-quality solutions to
ill-conditioned / ill-posed inverse problems.

I Why ill-posed? Often high ambitions...
16 / 75



Non-adaptive regularizers J. Fessler

I Tikhonov regularization (IID gaussian prior)
I Markov random field (MRF) models
I Roughness penalty (cf MRF prior)
I Edge-preserving regularization
I Total-variation (TV) regularization
I Black-box denoiser like NLM, e.g., plug-and-play ADMM [10]
I Sparsity in ambient space
I Sparsifying transforms: wavelets, curvelets, . . .
I Graphical models
I . . .

All “hand crafted” from statistical / mathematical models ...
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Simpler methods for ML in image reconstruction J. Fessler

Many possible ways to use ML ideas in image reconstruction.

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Computation / quality trade-offs ?
. . .
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Many possible ways to use ML ideas in image reconstruction.

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Computation / quality trade-offs ?

Basic “slow” methods:
I Auto-tune regularization parameter(s)
I Provide an initial image for “conventional” iterative reconstruction
May not fully exploit the potential of ML
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Advanced “fast” methods for ML-based IR J. Fessler

I ML-based “prior” image for iterative reconstruction [11]:

x̂ = arg min
x
‖Ax − y‖22 + β ‖x − xprior‖pp

Fast for p = 2, but p = 1 more robust to errors in prior image
Reminiscent of U. Wisconsin’s PICCS methods, e.g., [12]

I Unrolled loop (recurrent NN) with learned components [13–16]
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Nonlinear encoder methods for ML-based IR J. Fessler

• ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [17, 18]: nonlinear generalizations of subspace models
• learn G : maps low-dimensional latent parameter z into high-dimensional image x
I Synthesis form [19]:

x̂ = G(ẑ), ẑ = arg min
z
‖AG(z)− y‖22

Challenges: x̂ ∈ Range(G), non-convex minimization

I Regularizer form:
x̂ = arg min

x
‖Ax − y‖22 + βRencoder(x)

Rencoder(x) = min
z
‖x − G(z)‖pp

Expensive non-convex double minimization, but more robust to encoder?
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Nonlinear encoder illustration J. Fessler

From jupyter notebook for [20] (13 layer CNN with ≈ 300K learned parameters) at
https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynb

z ∈ R2

Where is 4?

7→ x = G(z) ∈ R28×28
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Generative Adversarial Networks (GAN) example J. Fessler

From Google’s [21]:

Much more realistic than linear interpolation (averaging).
“setting a new milestone in visual quality” [21].
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Generative Adversarial Networks (GAN) example J. Fessler

From Google’s [21]:

Non-physical output!
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Adaptive regularization methods for inverse problems J. Fessler

I Data
I Population adaptive methods (e.g., X-ray CT)
I Patient adaptive methods (e.g., dynamic MRI?)

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transforms) approach

Many options...

24 / 75
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X-ray CT with learned sparsifying transforms J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

26 / 75



Patch-wise transform sparsity model J. Fessler

Assumption: if x is a plausible image, then each ΩPmx is sparse.
I Pmx extracts the mth of M patches from x
I Ω is a square sparsifying transform matrix
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Sparsifying transform learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find transform Ω∗
that best sparsifies their patches:

Ω∗ = arg min
Ω unitary

min
{zl,m}

L∑
l=1

M∑
m=1
‖ΩPmxl − zl ,m‖22 + α ‖zl ,m‖0

I Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [22])

I Non-convex due to unitary constraint and ‖·‖0
I Efficient alternating minimization algorithm [23]
• z update : simple hard thresholding
• Ω update : orthogonal Procrustes problem (SVD)
• Subsequence convergence guarantees [23]
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Example of learned sparsifying transform J. Fessler

3D X-ray training data Parts of learned sparsifier Ω∗

(2D slices in x-y, x-z, y-z, from 3D image volume)
8× 8× 8 patches =⇒ Ω∗ is 83 × 83 = 512× 512

top 8× 8 slice of 256 of the 512 rows of Ω∗ ↑ 29 / 75



Regularizer based on learned sparsifying transform J. Fessler

Regularized inverse problem [24]:

x̂ = arg min
x
‖Ax − y‖2W + βR(x)

R(x) = min
{zm}

M∑
m=1
‖Ω∗Pmx − zm‖22 + α ‖zm‖0 .

Ω∗ adapted to population training data

Alternating minimization optimizer:
I zm update : simple hard thresholding
I x update : quadratic problem (many options)

Linearized augmented Lagrangian method (LALM) [25]
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Example: low-dose 3D X-ray CT simulation J. Fessler

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [24]

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA

31 / 75



3D X-ray CT simulation Error maps J. Fessler

0

100

FDK Error

0

100

PWLS-EP Error

0

100

PWLS-ULTRA Error

RMSE in HU
X-ray Intensity FDK EP ST Ω∗ ULTRA ULTRA-{τj}

1× 104 67.8 34.6 32.1 30.7 29.2
5× 103 89.0 41.1 37.3 35.7 34.2

I Physics / statistics provides dramatic improvement
I Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler

Given training images x1, . . . , xL from a representative population, find a set of
transforms

{
Ω̂k
}K
k=1

that best sparsify image patches:

{
Ω̂k
}

= arg min
{Ωk unitary}

min
{kl,m∈{1,...,K}}

min
{zl,m}

L∑
l=1

M∑
m=1

∥∥∥Ωkl,mPmxl − zl ,m
∥∥∥2
2

+ α ‖zl ,m‖0

I Joint unsupervised clustering / sparsification
I Further nonconvexity due to clustering
I Efficient alternating minimization algorithm [26]
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Example: 3D X-ray CT learned set of transforms J. Fessler

Class 1 Class 2 Class 3 Class 4 Class 5

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [24]
34 / 75



Example: 3D X-ray CT ULTRA for chest scan J. Fessler

FDK PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [24]
Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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X-ray CT with learned convolutional filters J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:
512× 512× 512 3D X-ray CT image volume
8× 8× 8 patches
=⇒ 5123 · 83 · 4 = 256 Gbyte of patch data for stride=1
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Convolutional sparsity: analysis model J. Fessler

Assumption: For a plausible image x, the filter outputs {hk ∗ x} are sparse,
for some filters {hk}Kk=1 [27]
I For more plausible images, the outputs {hk ∗ x} are more sparse.
I ∗ denotes convolution
I Inherently shift invariant and no patches
Example (hand crafted filters):

1 90

1

60

1 6

1

6

1 90

1

60
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Sparsifying filter learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find filters
{

ĥk
}K
k=1

that best sparsify them:{
ĥk
}

= arg min
{hk}∈H

min
{zl,k}

L∑
l=1

K∑
k=1
‖hk ∗ xl − zl ,k‖22 + α ‖zl ,k‖0

I To encourage filter diversity:
• H = {H : HH ′ = I} , H = [h1 . . . hK ]
• cf. tight-frame condition

∑K
k=1 ‖hk ∗ x‖22 ∝ ‖x‖

2
2

I Encourage aggregate sparsity, period
I Non-convex due to constraint H and ‖·‖0
I Efficient alternating minimization algorithm [28]
• z update is simply hard thresholding
• Filter update uses diagonal majorizer, proximal map (SVD)
• Subsequence convergence guarantees [28]
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Examples of learned sparsifying filters J. Fessler

2D X-ray CT training data and learned 5× 5 sparsifying filters
{

ĥk
}
[28]:

α = 10−4 α = 2×10−3
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Regularizer based on learned sparsifying filters J. Fessler

Regularized inverse problem [28]:

x̂ = arg min
x�0

‖Ax − y‖2W + βR(x)

R(x) = arg min
{zk}

K∑
k=1

∥∥∥ĥk ∗ x − zk
∥∥∥2
2

+ α ‖zk‖0 .

{
ĥk
}
adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:
I zk update is simple hard thresholding
I x update is a quadratic problem: diagonal majorizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [28]
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Example: sparse-view 2D X-ray CT simulation J. Fessler

Tr
ue

FB
P

EP

Ad
ap
tiv

e
CA

O
L
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Quantitative results J. Fessler

123 views (out of usual 984) =⇒ 8× dose reduction

RMSE (in HU):
FBP 82.8
EP 40.8

Adaptive filters 35.2

I Physics / statistics provides dramatic improvement
I Data-adaptive regularization further reduces RMSE

43 / 75



Extension to multiple layers (cf CNN) I J. Fessler

Convolutional sparsity model: hk ∗ x is sparse for k = 1, . . . ,K1
Learning 1 “layer” of filters:

{ĥ[1]
k } = arg min

{h[1]
k }∈H

min
{z [1]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ xl − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0

44 / 75



Extension to multiple layers (cf CNN) II J. Fessler

Learning 2 layers of filters [28]:(
{ĥ[1]

k }, {ĥ
[2]
k }
)

= arg min
{h[1]

k },{h
[2]
k }∈H

min
{z [1]

l,k}
min
{z [2]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ xl − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0

+
L∑

l=1

K2∑
k=1

∥∥∥h[2]
k ∗

(
Pkz [1]

l

)
− z [2]

l ,k

∥∥∥2
2

+ α
∥∥∥z [2]

l ,k

∥∥∥
0

Here Pk is a pooling operator for the output of first layer
Block proximal gradient with majorizer (BPG-M) optimizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [28]
Use multi-level learned filters as (interpretable?) regularizer for CT.
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MR with adapted patch dictionary J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise dictionary sparsity model J. Fessler

Assumption: if x is a plausible image, then each patch has
Ppx ≈ Dzp,

for a sparse coefficient vector zp. (Synthesis approach.)
I Ppx extracts the pth of P patches from x
I D is a (typically overcomplete) dictionary for patches

48 / 75



MR reconstruction using adaptive dictionary regularizer J. Fessler

Dictionary-blind MR image reconstruction:

x̂ = arg min
x

1
2 ‖Ax − y‖22 + βR(x)

R(x) = min
D∈D

min
Z

M∑
m=1

(
‖Pmx −Dzm‖22 + λ2 ‖zm‖0

)
where Pm extracts mth of M image patches.
In words: of the many images...
Alternating (nested) minimization:
I Fixing x and D, update each row of Z = [z1 . . . zM ] sequentially via

hard-thresholding.
I Fixing x and Z , update D using SOUP-DIL [29].
I Fixing Z and D, updating x is a quadratic problem.
• Efficient FFT solution for single-coil Cartesian MRI.
• Use CG for non-Cartesian and/or parallel MRI.

I Non-convex, but monotone decreasing and some convergence theory [29].
49 / 75



2D CS MRI results I J. Fessler

Fully Sampled Zero-Filled SOUP-DILLO-MRI

Sampling (2.5×) Initial D Learned real{D} imag{D}

6× 6 patches
D ∈ C62×144

D0: [DCT | random]
[29]
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2D CS MRI results II J. Fessler

Iteration Number

1 20 40 60 80 100

P
S

N
R

 (
d

B
)

24

26

28

30

32

34

36

38

SOUP-DILLO MRI

SOUP-DILLI MRI

(SNR vs fully sampled image.)
Using ‖zm‖0 leads to higher
SNR than ‖zm‖1.
Adaptive case is non-convex
anyway...

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat
51 / 75
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2D CS MRI results III J. Fessler

(a) (b) (c) (d) (e) (f) (g)

PSNR:
Im. Samp. Acc. 0-fill Sparse

MRI PANO DLMRI SOUP-
DILLI

SOUP-
DILLO

a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x 27.7 31.6 41.3 40.2 38.5 42.3
c Cart. 2.5x 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x 28.1 31.7 40.0 38.0 37.9 41.5
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x 32.8 39.1 41.6 41.7 42.2 43.2

Ref. [30] [31] [9] [29] [29]
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2D CS MRI results IV J. Fessler

DLMRI PANO FDLCP SOUP-DILLO

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

[9] [31] [32] [29]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Summary of patch-based, data-driven adaptive regularizers J. Fessler

Use training data to learn:
• dictionary D (for patches)
• sparsifying transform(s) Ω (for patches)
• or convolutional versions thereof [27, 33]
ML-based regularized optimization problem using M image patches:

x̂ = arg min
x
‖Ax − y‖22 + βRML(x)

RML−DL(x) = min
{zm}

M∑
m=1
‖Pmx −Dzm‖22 + α ‖zm‖0

RML−ST(x) = min
{zm}

M∑
m=1
‖ΩPmx − zm‖22 + α ‖zm‖0

Alternative: blind adaptive learned dictionary [9] or learned sparsifying transform [34].
Double minimization (so very “deep?”) More interpretable than CNNs?
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Training an unrolled loop I J. Fessler

Unrolled loop method with 20 layers trained with 1.3 · 106 MR image 8× 8 patches
Ravishankar et al., ISBI 2018 [15]
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Tested with 5 different MR images:
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Training an unrolled loop II J. Fessler

Results:

Undersampling Image Zero-filled Sparse MRI UTMRI Unrolled
3.3× 1 25.6 26.7 28.3 28.2

2 25.2 26.6 27.9 27.8
3 26.0 27.3 29.3 28.9
4 25.4 26.7 28.2 28.1
5 27.2 28.9 30.6 30.3

Avg. PSNR change - - 1.36 2.98 2.78
5× 1 24.7 25.9 27.6 27.5

2 24.2 25.5 27.2 27.0
3 24.9 26.3 28.5 28.0
4 24.4 25.7 27.6 27.4
5 26.2 27.9 29.8 29.5

Avg. PSNR change - - 1.38 3.26 3.0
Approx recon time - - 100s 240s 50s

Sparse MRI [35] total variation (TV) and wavelets
UTMRI [26] (union of learned sparsifying transforms): adaptive, not “deep”
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Momentum-Net overview J. Fessler

Background cost function for convolutional sparsity regularization:
arg minx f (x; y) + β

(
minζ

∑K
k=1 ‖hk ∗ x − ζk‖22 + α ‖ζk‖1

)
Block-coordinate descent (BCD) with majorizer update of image:
x (n+1) = arg minx F (x; y , z (n)) = f (x; y) + β ‖x − z (n)‖22
z (n) = R(z (n)) =

∑K
k=1 flip(hk) ∗ soft(hk ∗ x (n)): denoised x (n)

Unrolled loop network with momentum and quadratic majorizer:

		𝑥($)

	𝑥($&')argmin
.∈𝒳

𝑥 −	𝑥́ $&' + 𝑀5 $&' 6'𝛻𝐹(	𝑥́ $&' ; 𝑦, 𝑧($&'))
=5 >?@

A

Measurement

1 − 𝜌 (D) + 𝜌ℛF(>?@)(D)	 		𝑧($&')

	𝑦

Refining

MBIR

		𝑥($6')

𝑥($) + 𝐸 $&' (𝑥($) − 𝑥($6'))
Extrapolation

	𝑥́($&')
“Momentum”

Learn image mapper R from training data.
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Momentum-Net benefits J. Fessler

I Image mapper R is shallow
=⇒ less risk of over-fitting / hallucination

I Momentum accelerates convergence (fewer layers)
I First unrolled loop approach to have convergence theory

(under suitable assumptions on R)
I MBIR update uses original sinogram and imaging physics

[36]
Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems
http://arxiv.org/abs/1907.11818
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Momentum-Net preliminary results J. Fessler

Illustration of benefits of momentum:

0 100 200 300

Reconstruction time (sec)

20
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35
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45
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U
)

BCD-Net, 10 inner iter.
BCD-Net, 3 inner iter.
Momentum-Net, no extraplation

Momentum-Net
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Momentum-Net preliminary image results J. Fessler

Sparse-view CT with 123/984 views, I0 = 105, 800-1200 HU display.
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Shallow machine learning for qMRI J. Fessler

Quantitative MRI: images→ estimation → parameters (T1,T2,. . . )

I Traditional nonlinear estimation methods:
• nonlinear least squares
• dictionary matching (quantized maximum likelihood via variable projection)

I Machine-learning methods
• deep neural network regression [37–40]
Requires long training times
• parameter estimation via kernel regression (PERK)

Gopal Nataraj et al., ISBI 2017, IEEE T-MI 2018 [41, 42]
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Parameter estimation via kernel regression (PERK) example J. Fessler

 

 

 
Truth VPM PGPM PERK

T
1

m
s

0

300

600

900

1200

1500

 

 

 
(x10 magnified)

T
1
 M

a
g
n
it
u
d
e
 E

rr
o
r

m
s

0

30

60

90

120

150

63 / 75



PERK applied to myelin water imaging J. Fessler

6 parameters (T1 slow/fast, T2 slow/fast, M0, fast fraction)
Estimated from 3 optimized dual-echo steady state (DESS) scans [43]
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PERK training: 33.8s, testing 0.99s / slice
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PERK in vivo myelin water fraction results J. Fessler
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MESE scan took 32m (16m ×2)
DESS scan took 3m15s
Take away: “traditional” machine learning is still useful...
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Summary J. Fessler

I Machine learning has great potential for medical imaging
I Much excitement but many challenges
I Image reconstruction seems especially suitable for ML ideas
I Data-driven, adaptive regularizers beneficial for low-dose CT and under-sampled

MRI
I More comparisons between model-based methods with adaptive regularizers and

CNN-based methods needed
I Machine learning tools like kernel regression remain useful
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Recommended reading (incomplete lists) J. Fessler

I Overviews: [44–46]
I Generative models: [20, 47]:
I Deep learning myths [48]
I NN complexity analysis / function approximation [49–51] [52]
I Application to MR fingerprinting [37, 40]
I MR reconstruction / enhancement using CNN [16, 53–60]
I Dynamic MR reconstruction using CNN [61]
I . . .
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Resources J. Fessler

Talk and code available online at
http://web.eecs.umich.edu/~fessler

69 / 75

http://web.eecs.umich.edu/~fessler


Bibliography I J. Fessler

[1] H. Greenspan, B. van Ginneken, and R. M. Summers. “Guest editorial deep learning in medical imaging: overview and future promise of an
exciting new technique.” In: IEEE Trans. Med. Imag. 35.5 (May 2016), 1153–9.

[2] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. “Image reconstruction is a new frontier of machine learning.” In: IEEE Trans. Med. Imag.
37.6 (June 2018), 1289–96.

[3] E. Haneda, B. Claus, P. FitzGerald, G. Wang, and B. De Man. “CT sinogram analysis using deep learning.” In: Proc. 5th Intl. Mtg. on
Image Formation in X-ray CT. 2018, 419–22.

[4] L. Baldassarre, Y-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher. “Learning-based compressive subsampling.” In: IEEE J. Sel.
Top. Sig. Proc. 10.4 (June 2016), 809–22.

[5] B. Gozcu, R. K. Mahabadi, Y-H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. Cevher. “Learning-based compressive MRI.” In: IEEE Trans.
Med. Imag. 37.6 (June 2018), 1394–406.

[6] Y. Cao and D. N. Levin. “Feature-recognizing MRI.” In: Mag. Res. Med. 30.3 (Sept. 1993), 305–17.

[7] Y. Cao, D. N. Levin, and L. Yao. “Locally focused MRI.” In: Mag. Res. Med. 34.6 (Dec. 1995), 858–67.

[8] Y. Cao and D. N. Levin. “Using an image database to constrain the acquisition and reconstruction of MR images of the human head.” In:
IEEE Trans. Med. Imag. 14.2 (June 1995), 350–61.

[9] S. Ravishankar and Y. Bresler. “MR image reconstruction from highly undersampled k-space data by dictionary learning.” In: IEEE Trans.
Med. Imag. 30.5 (May 2011), 1028–41.

[10] S. H. Chan, X. Wang, and O. A. Elgendy. “Plug-and-play ADMM for image restoration: fixed-point convergence and applications.” In:
IEEE Trans. Computational Imaging 3.1 (Mar. 2017), 84–98.

[11] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo, and D. Firmin. “DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction.” In: IEEE Trans. Med. Imag. 37.6 (June 2018),
1310–21.

70 / 75



Bibliography II J. Fessler

[12] G-H. Chen, J. Tang, and S. Leng. “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT
images from highly undersampled projection data sets.” In: Med. Phys. 35.2 (Feb. 2008), 660–3.

[13] K. Gregor and Y. LeCun. “Learning fast approximations of sparse coding.” In: Proc. Intl. Conf. Mach. Learn. 2010.

[14] Y. Chen and T. Pock. “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration.” In: IEEE
Trans. Patt. Anal. Mach. Int. 39.6 (June 2017), 1256–72.

[15] S. Ravishankar, A. Lahiri, C. Blocker, and J. A. Fessler. “Deep dictionary-transform learning for image reconstruction.” In: Proc. IEEE Intl.
Symp. Biomed. Imag. 2018, 1208–12.

[16] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. “Learning a variational network for
reconstruction of accelerated MRI data.” In: Mag. Res. Med. 79.6 (June 2018), 3055–71.

[17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial
networks. 2014.

[18] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. “InfoGAN: interpretable representation learning by information
maximizing generative adversarial nets.” In: Neural Info. Proc. Sys. 2016, 2172–80.

[19] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. “Compressed sensing using generative models.” In: Proc. Intl. Conf. Mach. Learn. Vol. 70.
2017, 537–46.

[20] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein autoencoder: an embarrassingly simple generative model. 2018.

[21] D. Berthelot, T. Schumm, and L. Metz. BEGAN: boundary equilibrium generative adversarial networks. 2017.

[22] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation.” In: IEEE
Trans. Sig. Proc. 54.11 (Nov. 2006), 4311–22.

[23] S. Ravishankar and Y. Bresler. “l0 sparsifying transform learning with efficient optimal updates and convergence guarantees.” In: IEEE
Trans. Sig. Proc. 63.9 (May 2015), 2389–404.

71 / 75



Bibliography III J. Fessler

[24] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessler. “PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D
CT image reconstruction.” In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1498–510.

[25] H. Nien and J. A. Fessler. “Relaxed linearized algorithms for faster X-ray CT image reconstruction.” In: IEEE Trans. Med. Imag. 35.4 (Apr.
2016), 1090–8.

[26] S. Ravishankar and Y. Bresler. “Data-driven learning of a union of sparsifying transforms model for blind compressed sensing.” In: IEEE
Trans. Computational Imaging 2.3 (Sept. 2016), 294–309.

[27] I. Y. Chun and J. A. Fessler. Convolutional analysis operator learning: acceleration and convergence. 2018.

[28] I. Y. Chun and J. A. Fessler. “Convolutional analysis operator learning: acceleration and convergence.” In: IEEE Trans. Im. Proc. (2019).
Submitted.

[29] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. “Efficient sum of outer products dictionary learning (SOUP-DIL) and its application to
inverse problems.” In: IEEE Trans. Computational Imaging 3.4 (Dec. 2017), 694–709.

[30] M. Lustig and J. M. Pauly. “SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.” In: Mag. Res. Med.
64.2 (Aug. 2010), 457–71.

[31] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen. “Magnetic resonance image reconstruction from undersampled measurements
using a patch-based nonlocal operator.” In: Med. Im. Anal. 18.6 (Aug. 2014), 843–56.

[32] Z. Zhan, J-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu. “Fast multiclass dictionaries learning with geometrical directions in MRI
reconstruction.” In: IEEE Trans. Biomed. Engin. 63.9 (Sept. 2016), 1850–61.

[33] I. Y. Chun and J. A. Fessler. “Convolutional dictionary learning: acceleration and convergence.” In: IEEE Trans. Im. Proc. 27.4 (Apr.
2018), 1697–712.

[34] S. Ravishankar and Y. Bresler. “Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and
application to MRI.” In: SIAM J. Imaging Sci. 8.4 (2015), 2519–57.

72 / 75



Bibliography IV J. Fessler

[35] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of compressed sensing for rapid MR imaging.” In: Mag. Res. Med.
58.6 (Dec. 2007), 1182–95.

[36] I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler. Momentum-Net: Fast and convergent iterative neural network for inverse problems. 2019.

[37] P. Virtue, S. X. Yu, and M. Lustig. “Better than real: Complex-valued neural nets for MRI fingerprinting.” In: Proc. IEEE Intl. Conf. on
Image Processing. 2017, 3953–7.

[38] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. “Optimized design of MRF scan parameters for ASL signal acquisition.” In: ISMRM
Workshop on MR Fingerprinting. 2017.

[39] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. “Optimized scan design for ASL fingerprinting and multiparametric estimation using
neural network regression.” In: Proc. Intl. Soc. Mag. Res. Med. 2018, p. 309.

[40] O. Cohen, B. Zhu, and M. S. Rosen. “MR fingerprinting Deep RecOnstruction NEtwork (DRONE).” In: Mag. Res. Med. 80.3 (Sept. 2018),
885–94.

[41] G. Nataraj, J-F. Nielsen, and J. A. Fessler. “Dictionary-free MRI parameter estimation via kernel ridge regression.” In: Proc. IEEE Intl.
Symp. Biomed. Imag. 2017, 5–9.

[42] G. Nataraj, J-F. Nielsen, C. D. Scott, and J. A. Fessler. “Dictionary-free MRI PERK: Parameter estimation via regression with kernels.” In:
IEEE Trans. Med. Imag. 37.9 (Sept. 2018), 2103–14.

[43] G. Nataraj, J-F. Nielsen, M. Gao, and J. A. Fessler. Fast, precise myelin water quantification using DESS MRI and kernel learning.
Submitted. 2018.

[44] G. Wang. “A perspective on deep imaging.” In: IEEE Access 4 (Nov. 2016), 8914–24.

[45] G. Wang, M. Kalra, and C. G. Orton. “Machine learning will transform radiology significantly within the next five years.” In: Med. Phys.
44.6 (June 2017), 2041–4.

73 / 75



Bibliography V J. Fessler

[46] M. T. McCann, K. H. Jin, and M. Unser. “Convolutional neural networks for inverse problems in imaging: A review.” In: IEEE Sig. Proc.
Mag. 34.6 (Nov. 2017), 85–95.

[47] I. Deshpande, Z. Zhang, and A. Schwing. “Generative modeling using the sliced Wasserstein distance.” In: Proc. IEEE Conf. on Comp.
Vision and Pattern Recognition. 2018.

[48] S. Rakhlin. MythBusters: A Deep Learning Edition. Slides dated Jan 18-19, 2018. 2018.

[49] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. 2017.

[50] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-Rao metric, geometry, and complexity of neural networks. 2017.

[51] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. “On the expressive power of deep neural networks.” In: Proc. Intl.
Conf. Mach. Learn. Vol. 70. 2017, 2847–54.

[52] S. Liang and R. Srikant. “Why deep neural networks for function approximation?” In: Proc. Intl. Conf. on Learning Representations. 2017.

[53] S. Ravishankar, I. Y. Chun, and J. A. Fessler. “Physics-driven deep training of dictionary-based algorithms for MR image reconstruction.”
In: Proc., IEEE Asilomar Conf. on Signals, Systems, and Comp. Invited. 2017, 1859–63.

[54] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk, L. Xing, and J. M. Pauly. “Deep generative adversarial neural
networks for compressive sensing MRI.” In: IEEE Trans. Med. Imag. 38.1 (Jan. 2019), 167–79.

[55] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. “Image reconstruction by domain-transform manifold learning.” In: Nature
555 (Mar. 2018), 487–92.

[56] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C. Ye. “Deep learning with domain adaptation for accelerated
projection-reconstruction MR.” In: Mag. Res. Med. 80.3 (Sept. 2018), 1189–205.

[57] K. H. Jin and M. Unser. “3D BPConvNet to reconstruct parallel MRI.” In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 361–4.

74 / 75



Bibliography VI J. Fessler

[58] H. Jeelani, J. Martin, F. Vasquez, M. Salerno, and D. S. Weller. “Image quality affects deep learning reconstruction of MRI.” In: Proc.
IEEE Intl. Symp. Biomed. Imag. 2018, 357–60.

[59] T. M. Quan, T. Nguyen-Duc, and W-K. Jeong. “Compressed sensing MRI reconstruction using a generative adversarial network with a
cyclic loss.” In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1488–97.

[60] T. Eo, Y. Jun, T. Kim, J. Jang, H-J. Lee, and D. Hwang. “KIKI-net: cross-domain convolutional neural networks for reconstructing
undersampled magnetic resonance images.” In: Mag. Res. Med. (2018).

[61] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. “A deep cascade of convolutional neural networks for dynamic MR
image reconstruction.” In: IEEE Trans. Med. Imag. 37.2 (Feb. 2018), 491–503.

75 / 75


	Introduction
	ML-based image reconstruction approaches
	Adaptive regularization
	Patch-based adaptive regularizers
	Convolutional adaptive regularizers
	Blind dictionary learning

	Other ML4MI topics
	Summary
	Bibliography

