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Motivation

e Dual-Energy CT (DECT)

e Enables characterizing concentration of constituent materials in
scanned objects, known as material decomposition?

140kVp

'[Mendonca et al., IEEE T-MI, 2014]
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Image-Domain Decomposition

Image measurements (attenuation maps at high and low energy)
are directly available on commercial DECT scanners

@ Conventional image-domain decomposition
o Direct matrix inversion decomposition?
e Susceptible to artifacts and noise.

@ Regularized (model-based) decomposition

e Statistical measurement model + Object prior model
e Improves image quality and decomposition accuracy

?[Niu et al., MP, 2014]
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Regularization Approches for DECT

@ Non-adaptive regularization
o Material-wise Edge-Preserving (EP) 3

@ Suppress noise while retaining boundary sharpness
@ Use simple prior models

3[Xue et al., MP, 2017]

*[Li et al., ISBI, 2012]

®[Chen & Li, F3D 2017]
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Regularization Approches for DECT

@ Non-adaptive regularization
o Material-wise Edge-Preserving (EP) 3
@ Suppress noise while retaining boundary sharpness
@ Use simple prior models
@ Learning-based regularization
e Dictionary Learning
@ have shown promising results for DECT*
@ highly non-convex and NP-Hard sparse coding
o Computation: O(m*N)
m is patch size, N is the number of patches
o Deep learning for spectral CT® O(?)
o Sparsifying Transform (ST) learning
o DECT-ST: proposed approach
o Computation: O(m?N)

3[Xue et al., MP, 2017]

*[Li et al., ISBI, 2012]

®[Chen & Li, F3D 2017]

Zhipeng Li (UM-SJTU JI) DECT-ST 5/25



Material-Wise Sparsifying Transform (

e Sparsifying Transform Learning®:
o A generalized analysis operator learning approach

o Closed-form solutions for simple thresholding-based sparse coding
Patch extraction

211 .

Sparse Code
Zy)
Pajx Sparse Code

6[Ravishankar & Bresler, IEEE T-SP, 2015]
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Training Sparsifying Transforms

Learn two sparsifying transforms independently, for material [ = 1, 2:

Non-sparse penalty

Sparsification error Transform regularizer N
arg min min |2, Y, — Zi| % + A (|17 — log|det u[) + > n*[1Zuillo
! ! i=1

@ (2;: m X m square transform to be learned for [th material type
@ Y;: m x N’ matrix of training patches from Ith material images
@ Z;: m x N’ matrix of sparse codes of Y; (discard after training)

o ||2]|% — log|det €2|: prevents trivial solutions, controls transform
condition number’

@ Training ST uses an efficient alternating algorithm

7[Ravishankar & Bresler, IEEE T-SP, 2015]
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Proposed DECT-ST Method

Optimization problem:

arg min i 5y — Axuw+22ﬁl{||nm = 213+ 7 51l }

xeR2Np {217} I=1 j=1

o y = (yh,yb)T € R*N»: attenuation maps at high and low energy
o x = (x1,xI)T € R?M»: unknown material density images
® A = Ag®Iy,: matrix of (calibrated) mass attenuation coefficients:
Ay = ( Y1H 902H>'
PYiL P21
W =W, ® Ly, : weight matrix with W; = diag(0%,0%) "
P;c R™*Np: extracts the jth patch of x; as a vector P;x

z;; € R™: sparse codes of Pj;x

N: number of image patches
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Sparse Coding Step

Overall optimization problem:

N

2
|
axg i Ly — AxlRy + 351 {I0Pyx 2 +7 o
xeR2Np {25} =1 j=1

@ Sparse code update:

2 N
{2} = angmin Y > 6 {12Pyx — 253 + 7 |12, |
zijy =1 j=1 (1)
21j = Hy, (S4P;x)

e Hard-thresholding operator H,(b): returns 0 if |b] < v
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Image Update Step - Quadratic Majorizer

Ro (x)

. 1
éIIlRln §||y AXHW—FZZ@ [|€2P;x leH% (2)

=1 j=1

o Quadratic majorizer 11 (x, u(?) at the ith iteration:

Ym(x;ul) = *HX £V % (3)

where £ = ul) — M~1VRy(u®).

@ Image update:

x(’i+1) = arg mln%”y — AXH%V + ¢M(X7 u(i))7 (4)
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Image Update Step - Majorizing Matrix

@ Design of the diagonal majorizing matrix M:
M = VZRy(x) = 2 Z By Z P, Q/QPy;. (5)
j=

@ With patch stride of 1 pixel, the entries of the diagonal matrix
Z;V:l P}, Py; corresponding to the Ith material are equal to mly,

o Diagonal majorizer M :

M _ < QﬂmAmax(Qllﬂl)INp 0 )
0 2BmM Amax (5 02) Ly,
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Image Update Step

@ Pixel-wise update involves one 2 x 2 matrix per voxel:

- 1 ‘
ng ) — arg min 5”}’]‘ - AOXjH%Vj + §”XJ' - 53('Z)“12\’1j’ (6)

Xj

where M; € R?*? is a diagonal weighting matrix for (1, z2;)7.

e Quadratic majorizer used within FGM (Fast Gradient Method)2
(Instead of usual generic Lipschitz constant)

1
blockdiag{ AGW Ag + M;} ™+ vs T

8[Nesterov, Doklady AN USSR, 1983]
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Fan-beam DECT with XCAT phantom®

e Training
e Training set: patches extracted from five slices of water and bone
images of XCAT phantom, respectively.
e Patch size 8 x 8 and patch stride 1 x 1.

Example training image slices for water (left) and bone (right).

°[Segars et al., MP, 2008]
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Learned Transforms

Learned transforms €2; for water (left) and bone (right).

e Transforms (21, €22) are initialized with 2D DCT.

@ Rows of learned transforms shown as 8 x 8 patches.
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DECT Simulation Setup

@ NCAT phantom sinogram simulation:
o Image size: 1024 x 1024
o Poly-energetic source: 80kVp and 140kVp
with 1.86 x 10° and 1 x 10 incident
photons per ray
e Sinogram size: 888 x 984
o Reconstruct attenuation images via FBP
@ Reconstruction and decomposition:
e Image size: 512 x 512
o Pixel size: 0.98 x 0.98 mm?
o Optimal parameter combinations to achieve
the best image quality and decompositon
accuracy

Low energy atten. image
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RMSE Comparison

E
RABERLK

Table: RMSE of estimated material densities in mg/cm?.

Method || Direct Inversion | DECT-EP | DECT-ST
Water 77.7 39.5 35.1
Bone 78.7 53.8 46.2

@ Direct Inversion: obtain material images directly by matrix inversion

o DECT-EP: Hyperbola Edge-Preserving regularizer with
81 = 0.01g/cm? and §3 = 0.02g/cm3

o DECT-ST further decreases RMSE achieved by DECT-EP

Zhipeng Li (UM-SJTU JI)

DECT-ST
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Results

Direct Inversion DECT-EP DECT-ST

AN

Estimated material images of water and bone,

display window [0.3 1.7] g/cm? and [0.14 0.25] g/cm?, respectively.

Zhipeng Li (UM-SJTU JI) DECT-ST
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Patient Study

@ Obtained by Siemens SOMATOM Force CT scanner using DECT
imaging protocols

@ Dual-source at 150 kVp and 80kVp

Thigh CT images of a patient. Display window is [0.12 0.32] cm~!.
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Results

Direct inversion DECT-EP DECT-ST

Estimated material images of water and bone; 7
display window [0.25 1.5] g/cm? and [0 0.3] g/cm?, respectively.
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e Conclusions
o We proposed DECT-ST that combines an image-domain WLS term
with regularizer involving learned sparsifying transforms.
o DECT-ST outperformed the DECT-EP method (which uses a fixed
finite differencing type sparsifying model) in terms of image quality
and material decomposition accuracy.

o Future Work
o Investigate cross-material ST that accounts for correlation between

material images.
o Investigate decomposition methods using a more accurate DECT

measurement model'® with ST-based regularization.

°[Long & Fessler, IEEE T-MI, 2014]
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Thanks for your attention!
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