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History: Milestones in iterative image reconstruction

Commercial availability of iterative methods for human scanners
per FDA 510(k) dates:

» PET/SPECT
Unregularized OS-EM = 1997
» X-ray CT
Regularized MBIR [2011-11-09 for GE Veo]
(Installed at UM in Jan. 2012)
» PET/SPECT
Regularized EM variant (Q.Clear) 2014-03-21
» MRI
Compressed sensing!

[2017-01-27 for Siemens Cardiac Cine]
[2017-04-20 for GE HyperSense]

» Ultrasound?
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https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K103489
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K133657
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163312
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K162722
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lll-posed inverse problems

y=Ax+e

Yy : measurements € : noise
x : unknown image A : system matrix (typically wide)

(A “random” rows of DFT)

v

compressed sensing (e.g., MRI)

ky
kx
» deblurring (restoration) (A Toeplitz)
> in-painting (A subset of rows of /)
» denoising (not ill posed) (A=)
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Why under-sample in MRI? M

MICHIGAN

v

Reduce scan time (?7)
Patient comfort
Scan cost / throughput
Motion artifacts (Philips at ISMRM 2017)

Improve spatial resolution (collect higher k-space lines)

v

v

Improve scan diversity for quantitative MRI
Improve temporal resolution trade-off in dynamic MRI

v

(But under-sampling leads to ill-posed inverse problems...)

5/65



Inverse problems via MAP estimation

MICHIGAN

Unknown Recon.
System model Data Estimator
image — ( | X) —> image
x PlY y %

If we have a prior p(x), then the MAP estimate is:

x = argmaxp(x|y) = argmaxlogp(y | x) + log p(x) .
X X
For gaussian measurement errors and a linear forward model:
1 2
~logp(y | x) = 5 lly - Ax|iy

and W = Cov{y|x} is known
(A from physics, W from statistics)

2
where |yl =y Wy
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Priors for MAP estimation

» If all images x are “plausible” (have non-zero probability) then
p(x) x e~ ¥ — _log p(x) = R(x)
(from fantasy / imagination / wishful thinking / data)
» MAP = regularized weighted least-squares (WLS) estimation:
x = argmax log p(y | x) + log p(x)
x o 2
= argmin 3 lly — Ax|fyy + R(x)

» A regularizer R(x), aka log prior, is essential for high-quality
solutions to ill-conditioned / ill-posed inverse problems.

» Why ill-posed? Often high ambitions...
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Subspace model: Alternative to regularization M

MICHIGAN

Assuming x lies in a sufficiently low-dimensional subspace
could make an inverse problem well conditioned.

)

1
(z has only one nonzero element so very sparse!?)

Estimate coefficient(s): Z = argmin, ||y — ADz||§, then X = Dz,
where usually cond(D’'A’AD) < cond(A’'A) .

Assume x = Dz where D = [ 1 ] and z e R?
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Why not use subspace models?

Candeés and Romberg (2005) [1] used 22 (noiseless) CT projection
views (i.e., 22 pseudo-radial lines in MRI), each with 256 samples.
= 22 - 256 = 5632 measured values,

vs 2562 = 65536 unknown pixels

Shepp-Logan Phantom 4096-dimensional subspace
1 1

256 64
1 256 1 64

Subspace representation (using pixel basis) is undesirably coarse.



Classical regularizers (“hand crafted”) M

MICHIGAN

v

Tikhonov regularization (11D gaussian prior)

v

Roughness penalty (Basic MRF prior)

v

Sparsity in ambient space

v

Edge-preserving regularization

v

Total-variation (TV) regularization
Black-box denoiser like NLM

v
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Tikhonov regularization M

MICHIGAN

R(x) = B ||x[I3

v

Colors show equivalent (normalized) prior p(x) / p(0) = e~ *)

v

Equivalent to IID gaussian prior on x

v

Makes any ill-conditioned / ill-posed problem well conditioned

v

Ignores correlations between pixels
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Sparsity regularization in ambient space M

MICHIGAN

R(x)=Blxllo =R > I{x0}

» Approximate Bayesian interpretation
» Non-convex

» [ID = also ignores correlations
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Sparsity regularization: convex relaxation

R(x) = Bllxlly = B2 Ix]

» Equivalent to IID Laplacian prior on x
> Also ignores correlations
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Correlation

Shepp-Logan Pixel Neighbors (dithered)

Shepp-Logan Phantom

256 085

Caution: Shepp-Logan phantom [2] was designed for testing non-Bayesian methods,

not for designing signal models. Q: What causes the spread??




Edge-preserving regularization

MICHIGAN

Neighboring pixels tend to have similar values except near edges:

RO = B Y 005 — x5-1)

Potential function :

0
t/s

e Equivalent to improper prior (agnostic to DC value)
e Accounts for spatial correlations, but only very locally

e Used clinically now for low-dose X-ray CT image reconstruction
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Total-variation (TV) regularization

Neighboring pixels tend to have similar values except near edges
(“gradient sparsity”):

R(x) = BTV(x) = B | Cx||;
=B Ix —x-1l
J

Potential function :

W(t)

Equivalent to improper prior (agnostic to DC value)
Accounts for correlations, but only very locally
Well-suited to piece-wise constant Shepp-Logan phantom!
Used in many academic publications...

vV v vy
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Black-box denoiser as a regularizer M

MICHIGAN

Noisy image — — Denoised image

Example: Non-local means (NLM)

v

v

Corresponding regularizer [3, 4, 5]:

1
R(x) = B3 llx — NLM(x)|3

v

Encourages self-consistency with denoised version of image

v

No evident Bayesian interpretation

v

Variable splitting can facilitate minimization [6].
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Many more regularizers / priors

MICHIGAN

v

Transforms: wavelets, curvelets, ...

Markov random field models

v

v

Graphical models
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Outline M

MICHIGAN

Ill-posed problems and regularization

Data-driven (adaptive / learned) regularizers
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Union of subspaces model

» Dimensionality reduction?
» cf. classification / clustering motivation [7]

> (Extension to union of “flats” (linear varieties) is possible [8].)
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Union of subspaces regularization M
Given (?) collection of K subspace bases Dj, ..., Dk
(dictionaries with full column rank = tall).
Assume x =~ Dz, for some k and some (non-sparse) coefficients
Z.
Natural regularizer for this model is:

1 2
R(x) = i i —|[x—D
(x) min min [32 || x kZkl|5
~—
“classification” regression

o1 2
= min Bfo— DijxH .

k =2 2
R(x) = 0 if x lies in the span of any of the dictionaries {Dy}.
Otherwise, distance to nearest subspace (discourage, not constrain).
Non-convex (highly?) (cf. preceding picture) due to min

Apply to image patches to be practical.
Equivalent Bayesian interpretation? (Not a mixture model here.)

vyVvyVYyVYYyYy

Given? Learned from training data.
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Regularizers using sparse coding with dictionaries M

Assume x == Dz where

» D is a dictionary (often over-complete = wide)

» z is a sparse coefficient vector (subset of columns of D).
Corresponding regularizers:

1 2
R(x) = [ —|lx—D :
(x) z:urg|'|CSsB2 |x — Dz|)5, or

1
R(x) = min (Br I~ Dzl + Ba 2], ).

» Convex in z (for given x) if p > 1 and D given.
> R(x) typically non-convex in x, due to |- .

» Could be equivalent to a union-of-subspaces regularizer
it D= [Dl DK] and
if we constrain coefficient vector z in a non-standard way.
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Union-of-subspaces vs sparse-coding-with-dictionary

Consider union-of-subspaces model with b, = [ cl) (:f ] , Dy = [ 8 ] :
So D; spans x-y plane and D, spans z-axis. 0 1

A dictionary model with D = [D; D] = [ clJ (1) 8

and sparsity s = 2, happily represents all thr(:ee (():arélinal planes.

)/
N

2

=

28

<

SV

)
T
NS

Thus dictionary model seems “less constrained” than union-of-subspaces model.

(Still, focus on sparse dictionary representation hereafter.)
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New dictionary learning method (SOUP-DIL) M

MICHIGAN

Joint work with Sai Ravishankar and Raj Nadakuditi [9, 10, 11]
In practice, must learn D from data, say X
Write sparse representation as Sum of OUter Products (SOUP):

X~DZ=DC =Y/, dc]

where Z/ = C = [Cl e CJ] S RNxJ (coefficients for each atom)
Replace individual atom sparsity constraint ||z,||, < s of K-SVD
with aggregate sparsity regularizer: || Z|lo = || C|lo-
» Natural for Dictionary Learning (DIL) from training data.
» Unnatural for image compression using sparse coding.

SOUP-DIL ¢y formulation:

D* =argmin min || X —DC'||2 +)?|Cllo st
DeRdxJ CERNXJ

il =1
lejll < LV
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SOUP-DIL algorithm

SOUP-DIL formulation [9, 10, 11]:

dill,=1Vj
D* = arg min m|n X —DC'||>+ )| C s.t. 11l .
Deg]RdXJ Bl i I ICllo leile < LY

v

Block coordinate descent (BCD) algorithm
Sparse coding step for C
Dictionary update step for D

v

Very simple update rules (low compute cost)
Monotone descent of cost function V(D, C)

v

v

Convergence theorem: for any given initialization (DO,CO),
all accumulation points of sequence (D,C)

are critical points of cost V¥ and

are equivalent (reach same cost function value W*).

Furthermore: {HD(k) — D(k_l)H} — 0. Same for {C(k)}.
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SOUP-DIL updates

dill, = 1)
D* = arg min m|n X —DC'||% + )?|C s.t. 11l )
DEngXJ CeRrN ||| |||F ||| |||0 HC.iHoo <LV

Alternate: update one column c; of C then one column d; of D.
Sparse coding step: update c; with residual E; £ X - Dokt dicy:

min IE; — dicilF + N lcilly, st el < L.

Truncated (via L) hard thresholding of E’d; with threshold .
Dictionary atom step: update d;

min | E; — d;cjlF st |dj], =1.
J

Constrained least-squares solution: d; = (E;c;)/ ||E;cjl|, -
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Truncated hard thresholding for SOUP-DIL M

N
CJER
L /

AL Eid; ¢ RV

(Acts element-wise.) (In practice take L = 00.)

(Algorithm also provides a simple sparse coding method.)
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Example: dictionary learning for Barbara

Wi ﬂ.u"i"
A

[
[
v
It
'|

Barbara K-SvD D SOUP-DIL D

Denoising PSNR (dB) from [9]
o || Noisy || O-DCT | K-SVD | SOUP-DIL
20 || 22.13 29.95 30.83 30.79
25 || 20.17 28.68 29.63 290.64
30 || 18.59 || 27.62 | 28.54 28.63
100 || 8.11 21.87 21.87 21.97
SOUP-DIL faster than K-SVD
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Regularization using SOUP-DIL M

» Large image x = extract M patches X = [P1x ... Pyx].
» Assume patch x,, = P,x ~ Dz, has (aggregate) sparse
representation in dictionary D € RY*J where d is patch size.

» Two variations:
Use dictionary D from training data:

R(x) = R(X) = min | X — DC'||E + 22| Cllo

Learn D while reconstructing (blind / adaptive)

— min mi _ 1112 2
R(x) = min min |X — DC'[ + N[ Cll

D={DeR™  |ldj, =1V}, c={CeRM |¢j||, < LVj}
» R(x) =~ 0 if patches can be represented closely with
“sufficiently few" non-zero coefficients (depends on \).
» Ignore constraint ||c;|| < L in practice.
» Bayesian interpretation?

29 /65



Outline M

MICHIGAN

Ill-posed problems and regularization

Data-driven regularized MRI via dictionary learning
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MR reconstruction using adaptive dictionary regularizer

Dictionary-blind MR image reconstruction:

1
% = argmin |ly — Ax| + B R(x)
X

M

R(x) — min mi P x— Dz.|2+ )2
()= i min 3 (1Pmx = Dzl + Xzl

where P,, extracts mth of M image patches.
In words: of the many images...

Alternating (nested) minimization:
» Fixing x and D, update each z; via hard-thresholding

Fixing x and Z, update D using SOUP-DIL

Fixing Z and D, updating x is a quadratic problem.
Efficient FFT solution for single-coil Cartesian MRI.
Use CG for non-Cartesian and/or parallel MRI.

v

v

> Non-convex, but monotone decreasing and some convergence theory [9].
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2D CS MRI results |

Sampling (2.5x) Zero-Filled SOUP-DILLO-MRI

Initial D Learned real{ D} Learned imag{D}
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2D CS MRI results 1l

—SOUP-DILLO MRI

=-=-SOUP-DILLI MRI

1 20 40 60 80
Iteration Number
(SNR compared to fully sampled image.)

Using ||zm||o leads to higher SNR then ||z, ]|;.
Adaptive case is non-convex anyway...

100

MICHIGAN
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2D CS MRI results |1

Im. | Samp. | Acc. | Ofill S,f’/laésle PANO | DLMRI SSIEE' %?Llf_%
a Cart. 7x | 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x | 27.7 31.6 41.3 40.2 38.5 423
c Cart. 2.5x | 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x | 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x | 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x | 28.1 31.7 40.0 38.0 37.9 415
f | 2Drand. | Bx | 263 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x | 32.8 39.1 416 417 42.2 43.2
[ Ref. ] [ [ [ [21 ] @3] [ 4 ] [9] [ [9] ]
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2D CS MRI results IV

DLMRI

PANO FDLCP SOUP-DILLO

0.14
o.12
o1
008
005
004
002

[14] [13] [15]

Summary: 2D static MR reconstruction from under—sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.

35 /65
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Ill-posed problems and regularization

Extension: learning low-rank atoms
DlctioNary with IOw-ranK AToms (DINO-KAT)
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Extension: learning structured dictionary atoms

Recall SOUP-DIL ¢y formulation for dictionary learning from data X:

_ _ dill, =1V
D* = argmin min || X—DC'|%+)?|C|o s.t. Il )
DengXJ cmin Il I ICllo lelle < LY.

Recent extension [10]
DictioNary with IOw-ranK AToms (DINO-KAT) model:

o I, = 1%
D' = argmin_min X~ DCIE+XICls st llgll, < L
DeRdxJ C€ rank{reshape(d;)} <r,

where reshape(d;) reshapes dictionary atom d; into a 2D array.
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DINO-KAT: why low-rank atoms?

» Low-rank atoms are less prone to over-fitting.
» Model structure (e.g., temporal correlation) of dynamic data.

» Learned dictionary atoms on patch data often have
only a few dominant singular values.

Training DINO-KATs

—O—r=1
0.16 ool
r=3
5 0.14 r=4n
5 —$—r=5
c
2012
IS
[ =
2
o 0.1
Q
(5]
o
0.08 \
0.06 ’

10 20 30
Nonzero coefficients (%)
Representation error || X — DC’||r/||X||r versus sparsity A for several atom ranks r

for 8 x 8 x 5 space-time patches from (fully sampled) cardiac perfusion images.
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DINO-KAT algorithm

DictioNary with IOw-ranK AToms (DINO-KAT) model:

o I, = 1)
D' = argmin_min |X-DCIE+NClo st [l < LY
Derex/ CER rank{reshape(d;)} <r,

Block coordinate descent (BCD) algorithm (monotone descent)
with simple update rules (low compute cost)
Sparse coding step for C uses same truncated hard thresholding
Dictionary atom update step for d;:

arg min |||Ej—djcj-|”,2: st. |ldj|l, =1, rank{reshape(d;)} < r
d;

!
Simple solution: reshape(d;) = ﬁ

U.X,V, is the rank-r truncated SVD of reshape(Ejc;).
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[ll-posed problems and regularization
Classical “hand crafted” regularizers

Data-driven (adaptive / learned) regularizers
Data-driven regularized MRI via dictionary learning
Extension: learning low-rank atoms

DlctioNary with |IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging
DINO-KAT for dynamic MR

Summary

«Or «Fr <

it

v

a
it
v

Do
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Dynamic MRI overview

“dynamic” = changing over time = motion [16, 17, 18, 19]

» Nuisance motions:
Breathing
Cardiac
Peristalsis
Tremors
Kids ...
— Faster scans (shorter time) can help reduce motion blur

» Motions of interest (true “dynamic” scans):
Vocalization (for speech studies)
Cardiac (for function)
Joint articulation (musculoskeletal scans)
Contrast agent (blood flow / perfusion)
Diffusion

— Trade-offs between temporal resolution and spatial resolution

41 /65



Dynamic MRI sampling: Fantasy edition

Dynamic MRIL “Fully Sampled Fantasy” (k-t space)
T T

4T T T T
3re L] ° L] L] L] 1
2re L] L] L] L] L] 1
o 11e ° L] L] L] L] 9
g‘ ore ° L] L] L] ° 9
~< -1 e L] L] L] L] L] 1
2 e L] L] L] L] L] 1
-3 e L] L] L] L] L] 1
4 le ry ry ry 'y ° J
0 1 2 3 4 5 6

time [frame]

. Dynamic MRI: Compressed Sensing Fantasy (k-t space)

T T T T T T
3re ° L] [ ] —
2re L] L] L J 1
B 1@ L] L] 1
2 of . . . 8
~ -1 e L] L] L] L] ° q
2 F ° L] 9
-3re L] L] ° 1
4L Y Y e . . J
1 2 3 4 5 6

time [frame]

» Scan “twice as fast” 1?7

» Matrix completion problem!? —...

[20, 21]

robust PCA (L+S) ...
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Dynamic MRI sampling: Reality |

v

v

Dynamic MRI: Realistic Conventional Sampling (k-t space)

4
3 . . ° . . .-
2F ° . ° . . . -

g 1t ° ° ° . . o -

g ot ° ° ° . . o -

LAk e ° ° . . . s
2F e . . . . . s
3 e . ° . . . s
4 le ° Py Py Py ry

0 1 2 3 4 5 6

time [frame]

All 3D dynamic MRI data is inherently under-sampled
No real “fully sampled” data exists, now or ever

Unlikely to satisfy any “matrix completion” sufficient conditions
(N measurements but N2 unknowns per frame)

Retrospective “under sampling” of “fully sampled” dynamic data is dubious
Opportunity: powerful signal models needed for reconstruction from such data

Challenge: validation of signal models given such highly incomplete data
(low-rank / locally low rank / tensors / wavelets / non-local patches / ...)

43 /65



Dynamic MRI sampling: Reality Il

CS-Style Dynamic MRI Sampling, center emphasis

k-space
o
T
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[
[ ]
Il

time [under-sampled ” frame”]
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Outline

Dynamic MR imaging
DINO-KAT for dynamic MR
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DINO-KAT for inverse problems

DINO-KAT as an adaptive (data-driven) regularizer:

. 1
X = argmin 5 ly — Ax||3 + B R(x)
X

M
. . . 2 2
R(x) = DQC'gXJZErpC'JQMmE_l [Pmx — Dzpm||5 + A%||zmllo

st. ||djll, =1V, |[Zm|, < L Vm, rank{reshape(d;)} <r

Block coordinate descent (BCD) algorithm (monotone descent)
Update coefficients Z: sparse coding via hard thresholding
Dictionary atom update of d;: uses residual, SVD
Image update uses FFT (single coil Cartesian) or CG
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Application: Dynamic MRI

» Latent signal vector x € C"™" modeled as n; frames,
each of dimension N = n, x n, or N = ny X n, X n,.
> k-space data y € C™ample gcquired using nc coils.
» Sensing matrix A includes:
e coil sensitivity maps,
e 2D or 3D spatial Fourier transform,
e k-space sampling pattern.
» y is undersampled, so regularization is required
to estimate dynamic image sequence x.

CS-Style Dynamic MRI Sampling, center emphasis
T

4

k-space

time [under-sampled ”frame”]

47 /65



Dynamic MRI models

» Low-rank and sparse (k-t SLR) [22]:
Model: x reshaped into an N X n; space-time matrix,
is both low-rank and (transform) sparse

» Low-rank plus sparse (L + S) [20, 21]
model: x = x1, + Xxg,
x1, reshaped into a N X n; space-time matrix is low-rank,
xg is (transform) sparse.

» DINO-KAT for dynamic MRI [10, 23]:
Extract p X p x g patches of xg.
Model patches as sparse
w.r.t. an adaptive (learned) dictionary D.
Model dictionary atoms {d;} as low-rank
when reshaped into p? x g space-time matrices.
Blind compressed sensing model [14].
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Dynamic MRI data

MICHIGAN

Cardiac perfusion data (ref. frames 7, 13)

1282 x 40 fr.

3.22 x 8 mm3

12 coil

AT =307 ms

Otazo et al. [21] (L+S)

PINCAT data (reference frames 16, 25)

1282 x 50 fr.

1.5 mm?

1 coil?

9 X acc.

Lingala et al. [22] (k-t SLR)
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http://user.engineering.uiowa.edu/~jcb/software/ktslr_matlab/Software.html

Dynamic MRI reconstruction results

8x acceleration
Reference DINO-KAT DINO-KAT error L+S error k-t SLR error

0.12

0.08

0.04

0.00
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Learned dynamic patch dictionary: cardiac perfusion M

MICHIGAR

Initial atoms Real-part Imaginary-part
(DCT matrix) of learned atoms of Iearned atoms

» First temporal slices of 8 x 8 x 5 atoms

» Learned atoms adapt to structure of data
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Reconstructions: PINCAT phantom

9x acceleration
Reference DINO-KAT DINO-KAT error L+S error k-t SLR error

0.30
-- s | 3, -

0.10

0.00

» Two representative frames of each reconstruction

» DINO-KAT method shows less error
than the L+S and k-t SLR (L&S) methods
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Reconstructions: cardiac perfusion

8% acceleration
Reference DINO-KAT DINO-KAT (127%)  L+5(13.9%) K-t SLR(154%)

(=)6e(+]
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Reconstructions: PINCAT phantom

Ox acceleration
Reference DINO-KAT DINO-KAT (126%)  L+5(16.3%) K-t SLR(145%)

S
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Quantitative results for cardiac perfusion data

[ Acceleration 4x 8x 12x 16x [ 20x [ 24x
NRMSE (L+S) % 10.93 | 14.00 | 15.80 | 18.87 | 21.33 | 23.36
NRMSE (Fixed D) % 11.29 | 13.76 | 15.33 | 18.31 | 20.77 | 22.82
NRMSE (r = 5) % 10.85 | 13.08 | 14.37 | 17.01 | 19.19 | 21.35
NRMSE (r = 1) % 10.57 | 12.90 | 14.20 | 16.77 | 18.74 | 20.91
Gain over L + S (dB) | 0.29 0.71 0.92 1.03 1.13 0.96
Gain over r = 5 (dB) 0.23 0.12 0.10 0.13 0.21 0.18

MICHIGAN
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Summary

» Data-driven / adaptive regularization
Beneficial for under-sampled MRI reconstruction
Dictionary atom structure (e.g., low rank) further helpful
SOUP provides reasonably computationally efficient methods (vs KSVD)
Convergence theory (unlike KSVD)

» Future work:
Synthesis (e.g., dictionary) vs analysis (e.g., transform learning) formulations
Online methods for reduced memory, better adaptation [24, 25, 26, 27]
Other machine-learning methods (deep...) ?
Prospective use!
T-MI special issue on Machine-Learning for Image Reconstruction

56
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