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Ill-posed inverse problems

y = Ax + ε

y : measurements ε : noise
x : unknown image A : system matrix (typically wide)

I compressed sensing (e.g., MRI) (A “random” rows of DFT)

ky

kx
I deblurring (restoration) (A Toeplitz)
I in-painting (A subset of rows of I)
I denoising (not ill posed) (A = I)
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Inverse problems via MAP estimation

Unknown
image

x
→ System model

p(y | x) → Data
y → Estimator →

Recon.
image

x̂

If we have a prior p(x), then the MAP estimate is:

x̂ = arg max
x

p(x | y) = arg max
x

log p(y | x) + log p(x) .

For gaussian measurement errors and a linear forward model:

− log p(y | x) ≡ 1
2 ‖y − Ax‖2

W

where ‖y‖2
W = y ′W y and W−1 = Cov{y | x} is known

(A from physics, W from statistics)
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Priors for MAP estimation

I If all images x are “plausible” (have non-zero probability) then

p(x) ∝ e−R(x) =⇒ − log p(x) ≡ R(x)

(from fantasy / imagination / wishful thinking / data)

I MAP ≡ regularized weighted least-squares (WLS) estimation:

x̂ = arg max
x

log p(y | x) + log p(x)

= arg min
x

1
2 ‖y − Ax‖2

W + R(x)

I A regularizer R(x), aka log prior, is essential for high-quality
solutions to ill-conditioned / ill-posed inverse problems.

I Why ill-posed? Often high ambitions...
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Subspace model: Alternative to regularization

Assuming x lies in a sufficiently low-dimensional subspace
could make an inverse problem well conditioned.

x1

x2

Assume x = Dz where D =
[

1
1

]
and z ∈ R1

(z has only one nonzero element so very sparse!?)
Estimate coefficient(s): ẑ = arg minz ‖y − ADz‖2

2 , then x̂ = Dẑ,
where usually cond

(
D′A′AD

)
� cond

(
A′A

)
.
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Why not use subspace models?

Candès and Romberg (2005) [1] used 22 (noiseless) CT projection
views (i.e., 22 pseudo-radial lines in MRI), each with 256 samples.
=⇒ 22 · 256 = 5632 measured values,
vs 2562 = 65536 unknown pixels

Shepp-Logan Phantom

1 256

1

256

4096-dimensional subspace

1 64

1

64

Subspace representation (using pixel basis) is undesirably coarse.
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Classical regularizers (“hand crafted”)

I Tikhonov regularization (IID gaussian prior)
I Roughness penalty (Basic MRF prior)
I Sparsity in ambient space
I Edge-preserving regularization
I Total-variation (TV) regularization
I Black-box denoiser like NLM
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Tikhonov regularization

R(x) = β ‖x‖2
2 x1

x2

x1

x2
 

I Colors show equivalent (normalized) prior p(x) / p(0) = e−R(x)

I Equivalent to IID gaussian prior on x
I Makes any ill-conditioned / ill-posed problem well conditioned
I Ignores correlations between pixels
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Sparsity regularization in ambient space

R(x) = β ‖x‖0 = β
∑

j I{xj 6=0}

 

x1

x2

x1

x2

I Approximate Bayesian interpretation
I Non-convex
I IID =⇒ also ignores correlations
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Sparsity regularization: convex relaxation

R(x) = β ‖x‖1 = β
∑

j |xj | x1

x2

x1

x2
 

I Equivalent to IID Laplacian prior on x
I Also ignores correlations
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Correlation

Shepp-Logan Phantom

1 256

1

256 0.95

1.05

0 1 2

xj

0

1

2

x
j
−
1

Shepp-Logan Pixel Neighbors (dithered)

Caution: Shepp-Logan phantom [2] was designed for testing non-Bayesian methods,
not for designing signal models. Q: What causes the spread??
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Edge-preserving regularization

Neighboring pixels tend to have similar values except near edges:

R(x) = β
∑

j
ψ(xj − xj−1)

Potential function ψ:

t/δ
-3 -1 0 1 3

ψ
(t
)

0

1

x1

x2

x1

x2
 

• Equivalent to improper prior (agnostic to DC value)
• Accounts for spatial correlations, but only very locally
• Used clinically now for low-dose X-ray CT image reconstruction
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Total-variation (TV) regularization
Neighboring pixels tend to have similar values except near edges
(“gradient sparsity”):

R(x) = βTV(x) = β ‖Cx‖1

= β
∑

j
|xj − xj−1|

Potential function ψ:

t

-1 0 1

ψ
(t
)

0

1

x1

x2

x1

x2
 

I Equivalent to improper prior (agnostic to DC value)
I Accounts for correlations, but only very locally
I Well-suited to piece-wise constant Shepp-Logan phantom!
I Used in many academic publications...
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Black-box denoiser as a regularizer

Noisy image→ Denoiser → Denoised image

I Example: Non-local means (NLM)
I Corresponding regularizer [3–5]:

R(x) = β
1
2 ‖x − NLM(x)‖2

2

I Encourages self-consistency with denoised version of image
I No evident Bayesian interpretation
I Variable splitting can facilitate minimization [6].
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Many more regularizers / priors

I Transforms: wavelets, curvelets, . . .
I Markov random field models
I Graphical models
I . . .
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Union of subspaces model

x1

x2

x1

x2
 

I Dimensionality reduction?
I cf. classification / clustering motivation [7]
I (Extension to union of “flats” (linear varieties) is possible [8].)
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Union of subspaces regularization
Given (?) collection of K subspace bases D1, . . . , DK
(dictionaries with full column rank =⇒ tall).
Assume x ≈ Dkzk for some k and some (non-sparse) coefficients
zk .
Natural regularizer for this model is:

R(x) = min
k︸︷︷︸

“classification”

min
zk

β
1
2 ‖x −Dkzk‖2

2︸ ︷︷ ︸
regression

= min
k

β
1
2

∥∥∥x −DkD+
k x
∥∥∥2

2
.

I R(x) = 0 if x lies in the span of any of the dictionaries {Dk}.
I Otherwise, distance to nearest subspace (discourage, not constrain).
I Non-convex (highly?) (cf. preceding picture) due to min
I Apply to image patches to be practical.
I Equivalent Bayesian interpretation? (Not a mixture model here.)
I Given? Learned from training data.
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Regularizers using sparse coding with dictionaries
Assume x ≈ Dz where

I D is a dictionary (often over-complete =⇒ wide)
I z is a sparse coefficient vector (subset of columns of D).

Corresponding regularizers:

R(x) = min
z : ‖z‖p≤s

β
1
2 ‖x −Dz‖2

2 , or:

R(x) = min
z

(
β1

1
2 ‖x −Dz‖2

2 + β2 ‖z‖p

)
.

I Convex in z (for given x) if p ≥ 1 and D given.
I R(x) typically non-convex in x, due to ‖·‖p.
I Could be equivalent to a union-of-subspaces regularizer

if D = [D1 . . . DK ] and
if we constrain coefficient vector z in a non-standard way.
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Union-of-subspaces vs sparse-coding-with-dictionary

Consider union-of-subspaces model with D1 =

[
1 0
0 1
0 0

]
, D2 =

[
0
0
1

]
.

So D1 spans x-y plane and D2 spans z-axis.

A dictionary model with D = [D1 D2] =
[

1 0 0
0 1 0
0 0 1

]
and sparsity s = 2, happily represents all three cardinal planes.

Thus dictionary model seems “less constrained” than union-of-subspaces model.
(Still, focus on sparse dictionary representation hereafter.)
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New dictionary learning method (SOUP-DIL)

Joint work with Sai Ravishankar and Raj Nadakuditi [9–11]
• In practice, must learn D from data, say X
• Write sparse representation as Sum of OUter Products (SOUP):

X ≈ DZ = DC ′ =
∑J

j=1 d jc ′j

where Z ′ = C = [c1 . . . cJ ] ∈ RN×J (coefficients for each atom)
• Replace individual atom sparsity constraint ‖zn‖0 ≤ s of K-SVD

with aggregate sparsity regularizer: |||Z |||0 = |||C |||0.
I Natural for DIctionary Learning (DIL) from training data.
I Unnatural for image compression using sparse coding.

SOUP-DIL `0 formulation:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j
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SOUP-DIL algorithm
SOUP-DIL formulation [9–11]:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

I Block coordinate descent (BCD) algorithm
• Sparse coding step for C
• Dictionary update step for D

I Very simple update rules (low compute cost)
I Monotone descent of cost function Ψ(D,C)
I Convergence theorem: for any given initialization (D0,C0),

all accumulation points of sequence (D,C)
• are critical points of cost Ψ and
• are equivalent (reach same cost function value Ψ∗).
• Furthermore:

{∥∥∥D(k) −D(k−1)
∥∥∥}→ 0. Same for

{
C (k)

}
.
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SOUP-DIL updates

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

Alternate: update one column c j of C then one column d j of D.
• Sparse coding step: update c j with residual E j , X −

∑
k 6=j dkc ′k :

min
c j
|||E j − d jc ′j |||2F + λ2 ‖c j‖0 s.t. ‖c j‖∞ ≤ L.

Truncated (via L) hard thresholding of E ′jd j with threshold λ.
• Dictionary atom step: update d j

min
d j
|||E j − d jc ′j |||2F s.t. ‖d j‖2 = 1.

Constrained least-squares solution: d j = (E jc j)/ ‖E jc j‖2 .
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Truncated hard thresholding for SOUP-DIL

E ′jd j ∈ RN

c j ∈ RN

λ L

λ

L

(Acts element-wise.) (In practice take L =∞.)
(Algorithm also provides a simple sparse coding method.)
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Example: dictionary learning for Barbara

Barbara K-SVD D SOUP-DIL D

Denoising PSNR (dB) from [9]
σ Noisy O-DCT K-SVD SOUP-DIL
20 22.13 29.95 30.83 30.79
25 20.17 28.68 29.63 29.64
30 18.59 27.62 28.54 28.63

100 8.11 21.87 21.87 21.97
SOUP-DIL faster than K-SVD
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Regularization using SOUP-DIL

I Large image x =⇒ extract M patches X = [P1x . . . PMx].
I Assume patch xm = Pmx ≈ Dzm has (aggregate) sparse

representation in dictionary D ∈ Rd×J where d is patch size.
I Two variations:
• Use dictionary D from training data:

R(x) = R(X) = min
C∈C
|||X −DC ′|||2F + λ2|||C |||0

• Learn D while reconstructing (blind / adaptive)

R(x) = min
D∈D

min
C∈C
|||X −DC ′|||2F + λ2|||C |||0

D =
{

D ∈ Rd×J : ‖d j‖2 = 1 ∀j
}

, C =
{

C ∈ RM×J : ‖c j‖∞ ≤ L ∀j
}

I R(x) ≈ 0 if patches can be represented closely with
“sufficiently few” non-zero coefficients (depends on λ).

I Ignore constraint ‖c j‖∞ ≤ L in practice.
I Bayesian interpretation?
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MR reconstruction using adaptive dictionary regularizer

Dictionary-blind MR image reconstruction:

x̂ = arg min
x

1
2 ‖y − Ax‖2

2 + βR(x)

R(x) = min
D∈D

min
Z ′∈C

M∑
m=1

(
‖Pmx −Dzm‖2

2 + λ2 ‖zm‖0

)
where Pm extracts mth of M image patches.
In words: of the many images...
Alternating (nested) minimization:

I Fixing x and D, update each z j via hard-thresholding
I Fixing x and Z , update D using SOUP-DIL
I Fixing Z and D, updating x is a quadratic problem.
• Efficient FFT solution for single-coil Cartesian MRI.
• Use CG for non-Cartesian and/or parallel MRI.

I Non-convex, but monotone decreasing and some convergence theory [9].
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2D CS MRI results I
Sampling (2.5×) Zero-Filled SOUP-DILLO-MRI

Initial D Learned real{D} Learned imag{D}

6× 6 patches
D ∈ C62×144

[9]
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2D CS MRI results II

Iteration Number

1 20 40 60 80 100

P
S

N
R

 (
d
B

)

24

26

28

30

32

34

36

38

SOUP-DILLO MRI

SOUP-DILLI MRI

(SNR compared to fully sampled image.)
Using ‖zm‖0 leads to higher SNR then ‖zm‖1.
Adaptive case is non-convex anyway...
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2D CS MRI results III

(a) (b) (c) (d) (e) (f) (g)

Im. Samp. Acc. 0-fill Sparse
MRI PANO DLMRI SOUP-

DILLI
SOUP-
DILLO

a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x 27.7 31.6 41.3 40.2 38.5 42.3
c Cart. 2.5x 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x 28.1 31.7 40.0 38.0 37.9 41.5
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x 32.8 39.1 41.6 41.7 42.2 43.2

Ref. [12] [13] [14] [9] [9]
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2D CS MRI results IV

DLMRI PANO FDLCP SOUP-DILLO
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0.04
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0.08

0.1

0.12
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[14] [13] [15] [9]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Extension: learning structured dictionary atoms

Recall SOUP-DIL `0 formulation for dictionary learning from data X :

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X−DC ′|||2F +λ2|||C |||0 s.t. ‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j .

Recent extension [10]
DIctioNary with lOw-ranK AToms (DINO-KAT) model:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t.
‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

rank{reshape(d j)} ≤ r ,

where reshape(d j) reshapes dictionary atom d j into a 2D array.
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DINO-KAT: why low-rank atoms?

I Low-rank atoms are less prone to over-fitting.
I Model structure (e.g., temporal correlation) of dynamic data.
I Learned dictionary atoms on patch data often have

only a few dominant singular values.

10 20 30
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Training DINO−KATs

 

 
r = 1

r = 2

r = 3

r = 4

r = 5

Representation error ‖X −DC ′‖F /‖X‖F versus sparsity λ for several atom ranks r
for 8× 8× 5 space-time patches from (fully sampled) cardiac perfusion images.
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DINO-KAT algorithm

DIctioNary with lOw-ranK AToms (DINO-KAT) model:

D∗ = arg min
D∈Rd×J

min
C∈RN×J

|||X −DC ′|||2F +λ2|||C |||0 s.t.
‖d j‖2 = 1 ∀j
‖c j‖∞ ≤ L ∀j

rank{reshape(d j)} ≤ r ,

Block coordinate descent (BCD) algorithm (monotone descent)
with simple update rules (low compute cost)
• Sparse coding step for C uses same truncated hard thresholding
• Dictionary atom update step for d j :

arg min
d j

|||E j−d jc ′j |||2F s.t. ‖d j‖2 = 1, rank{reshape(d j)} ≤ r

Simple solution: reshape(d j) = Ur Σr V ′r
|||Σr |||F

Ur Σr V ′r is the rank-r truncated SVD of reshape(E jc j).
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Dynamic MRI overview

“dynamic” = changing over time = motion [16–19]
I Nuisance motions:
• Breathing
• Cardiac
• Peristalsis
• Tremors
• Kids ...

=⇒ Faster scans (shorter time) can help reduce motion blur
I Motions of interest (true “dynamic” scans):
• Vocalization (for speech studies)
• Cardiac (for function)
• Joint articulation (musculoskeletal scans)
• Contrast agent (blood flow / perfusion)
• Diffusion

=⇒ Trade-offs between temporal resolution and spatial resolution
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Dynamic MRI sampling: Fantasy edition

0 1 2 3 4 5 6
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-1
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-1

0

1

2

3

4

I Scan “twice as fast” !?
I Matrix completion problem!? =⇒... robust PCA (L+S) ...

[20, 21]
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Dynamic MRI sampling: Reality I

0 1 2 3 4 5 6

-4
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-1
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4

I All 3D dynamic MRI data is inherently under-sampled
I No real “fully sampled” data exists, now or ever
I Unlikely to satisfy any “matrix completion” sufficient conditions

(N measurements but N2 unknowns per frame)
I Retrospective “under sampling” of “fully sampled” dynamic data is dubious
I Opportunity: powerful signal models needed for reconstruction from such data
I Challenge: validation of signal models given such highly incomplete data

(low-rank / locally low rank / tensors / wavelets / non-local patches / ...)
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Dynamic MRI sampling: Reality II

0 1 2 8

-4

0

4
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DINO-KAT for inverse problems

DINO-KAT as an adaptive (data-driven) regularizer:

x̂ = arg min
x

1
2 ‖y − Ax‖2

2 + βR(x)

R(x) = min
D∈Cd×J

min
Z∈CJ×M

M∑
m=1
‖Pmx −Dzm‖2

2 + λ2|||zm|||0

s.t. ‖d j‖2 = 1 ∀j , ‖zm‖∞ ≤ L ∀m, rank{reshape(d j)} ≤ r

Block coordinate descent (BCD) algorithm (monotone descent)
• Update coefficients Z : sparse coding via hard thresholding
• Dictionary atom update of d j : uses residual, SVD
• Image update uses FFT (single coil Cartesian) or CG
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Application: Dynamic MRI

I Latent signal vector x ∈ Cny nx nt modeled as nt frames,
each of dimension N = nx × ny or N = nx × ny × nz .

I k-space data y ∈ Cnsamplenc acquired using nc coils.
I Sensing matrix A includes:
• coil sensitivity maps,
• 2D or 3D spatial Fourier transform,
• k-space sampling pattern.

I y is undersampled, so regularization is required
to estimate dynamic image sequence x.

0 1 2 8

-4

0

4

45 / 69



Dynamic MRI models

I Low-rank and sparse (k-t SLR) [22]:
• Model: x reshaped into an N × nt space-time matrix,

is both low-rank and (transform) sparse
I Low-rank plus sparse (L + S) [20, 21]
• model: x = xL + xS,
• xL reshaped into a N × nt space-time matrix is low-rank,
• xS is (transform) sparse.

I DINO-KAT for dynamic MRI [10, 23]:
• Extract p × p × q patches of xS.
• Model patches as sparse

w.r.t. an adaptive (learned) dictionary D.
• Model dictionary atoms {d j} as low-rank

when reshaped into p2 × q space-time matrices.
• Blind compressed sensing model [14].
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Dynamic MRI data

Cardiac perfusion data (ref. frames 7, 13)

1282 × 40 fr.
3.22 × 8 mm3

12 coil
∆T = 307 ms
Otazo et al. [21] (L+S)

PINCAT data (reference frames 16, 25)

1282 × 50 fr.
1.5 mm2

1 coil?
9 × acc.
Lingala et al. [22] (k-t SLR)
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Dynamic MRI reconstruction results

8× acceleration
Reference DINO−KAT DINO−KAT error L+S error k−t SLR error

F
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0.08

0.12
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Learned dynamic patch dictionary: cardiac perfusion

Initial atoms
(DCT matrix)

Real-part
of learned atoms

Imaginary-part
of learned atoms

I First temporal slices of 8× 8× 5 atoms
I Learned atoms adapt to structure of data
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Reconstructions: PINCAT phantom

9× acceleration
Reference DINO−KAT DINO−KAT error L+S error k−t SLR error

F
1

6
F

2
5

 

 

0.00

0.10

0.20

0.30

I Two representative frames of each reconstruction
I DINO-KAT method shows less error

than the L+S and k-t SLR (L&S) methods
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Reconstructions: cardiac perfusion

8× acceleration
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Reconstructions: PINCAT phantom

9× acceleration

52 / 69



Quantitative results for cardiac perfusion data

Acceleration 4x 8x 12x 16x 20x 24x

NRMSE (L+S) % 10.93 14.00 15.80 18.87 21.33 23.36
NRMSE (Fixed D) % 11.29 13.76 15.33 18.31 20.77 22.82
NRMSE (r = 5) % 10.85 13.08 14.37 17.01 19.19 21.35

NRMSE (r = 1) % 10.57 12.90 14.20 16.77 18.74 20.91
Gain over L + S (dB) 0.29 0.71 0.92 1.03 1.13 0.96
Gain over r = 5 (dB) 0.23 0.12 0.10 0.13 0.21 0.18
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Summary

I Data-driven / adaptive regularization
• Beneficial for under-sampled MRI reconstruction
• Dictionary atom structure (e.g., low rank) further helpful
• SOUP provides reasonably computationally efficient methods (vs KSVD)
• Convergence theory (unlike KSVD)

I Future work:
• Synthesis (e.g., dictionary) vs analysis (e.g., transform learning) formulations
• Online methods for reduced memory, better adaptation [24–27]
• Other machine-learning methods (deep...) ?
• T-MI special issue on Machine-Learning for Image Reconstruction
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Convergence guarantees

Theorem (Convergence guarantees)
[10, 23, 27]
Let {Dt ,C t} be the iterate sequence generated by the BCD
algorithm for DINO-KAT. Then

I The cost function Ψ(Dt ,C t) is monotone decreasing and
converges to a finite value, say Ψ?

I The iterate sequence {Dt ,C t} is bounded and its
accumulation points have common cost value Ψ?
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Online Transform Learning Formulation

I For frame t = 1, 2, 3, ..., solve

(P3)
{

Ŵt , x̂t
}

=arg min
W , xt

1
t

t∑
j=1
{

Sparsification Error︷ ︸︸ ︷
‖Wyj − xj‖2

2 +
Regularizer︷ ︸︸ ︷
λjv(W )}

s.t. ‖xt‖0 ≤ s, xj = x̂j , 1 ≤ j ≤ t − 1.

I Minimize the average cost computed over the observed signals.
I Ŵ −1

t x̂t is an (e.g., denoised) estimate of yt .
I For non-stationary data, use forgetting factor ρ ∈ [0, 1],

to diminish the influence of old data.

1∑t
j=1 ρ

t−j

t∑
j=1

ρt−j
{
‖Wyj − xj‖2

2 + λjv(W )
}
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Fast Online Transform Learning Algorithm I

I Sparse Coding: solve for xt in (P3) with fixed W = Ŵt−1.

min
xt
‖Wyt − xt‖2

2 s.t. ‖xt‖0 ≤ s

I Cheap Solution: x̂t = Hs(Wyt).
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Fast Online Transform Learning Algorithm II

I Transform Update: solve for W with xt = x̂t .

min
W

1
t

t∑
j=1

{
‖Wyj − xj‖2

2 + λj

(
‖W ‖2

F − log |det W |
)}

Ŵt = 0.5Rt

(
Σt +

(
Σ2

t + 2βt I
) 1

2
)

QT
t L−1

t

I t−1
∑t

j=1

(
yj yT

j + λ0 ‖yj‖2
2 I
)

= Lt LT
t . Perform rank-1 update.

I βt = λ0t−1
∑t

j=1 ‖yj‖2
2. Qt Σt RT

t is full SVD of
L−1

t Θt = t−1
∑t

j=1 L−1
t yj xT

j .

I L−1
t Θt ≈ (1− t−1)L−1

t−1Θt−1 + t−1L−1
t ytxT

t
=⇒ efficient rank-1 SVD update.
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Online Transform Learning (OTL) Convergence Result

I Assumption: yt are i.i.d. random samples
from the sphere Sn−1 = {y ∈ Rn : ‖y‖2 = 1},
for an absolutely continuous probability measure p.

I We consider minimizing the expected [28] learning cost:

g(W ) = Ey
[
‖Wy − Hs(Wy)‖2

2 + λ0 ‖y‖2
2 v(W )

]
.

I Main Result [25]: Ŵt in OTL converges to the set of
stationary points of g(W ) almost surely.
Ŵt+1 − Ŵt ∼ O(1/t).
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Online Video Denoising by 3D Transform Learning

I zt : noisy frame, ẑt : denoised version.
I Gt : 3D array with m frames formed using a sliding window

scheme.
I Overlapping 3D patches in the Gt ’s are denoised sequentially with

OTL.
I Denoised patches averaged at 3D locations to yield frame

estimates.
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3D Patches in Proposed VIDOSAT Method

I Transform is learned online from sequentially extracted 3D
patches.

62 / 69



Video Denoising Example: Salesman

Noisy frame VIDOSAT (PSNR = 30.97 dB)
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LASSI Model for Dynamic Image Reconstruction

I Low-rank + Adaptive Sparse SIgnal (LASSI) model for dynamic
data.

I Goal: learn dictionary and reconstruct (fL, fS) from limited g .

I Efficient algorithm for LASSI estimation proposed recently [23]
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Dynamic MRI 8x Cartesian Undersampling (12 coils)

open
˜/tex/paper/done/17/ravishankar-17-lra/gifs/tmi_otazo_8x_lassi_vs_lps.gif

open

˜/tex/conf/misc/ivmsp,16/ravishankar-lassi/talk/tmi_otazo_8x_lassi_vs_lps.avi

Click for LASSI and L+S Results

65 / 69



Cardiac Perfusion Results: 8x Acceleration

Reference LASSI LASSI error L+S error k−t SLR error

F
7

F
1
3

 

 

0.00

0.04

0.08

0.12

I Error maps for LASSI show smaller distortions than
for the k-t SLR [22] (L & S) method and the L+S [21]
method.

(Data from Otazo.)
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