Open problems in signal processing: Medical imaging

Jeffrey A. Fessler

EECS Dept., BME Dept., Dept. of Radiology
University of Michigan

http://web.eecs.umich.edu/~fessler

ICASSP Panel
2017-03-06


http://web.eecs.umich.edu/~fessler

Medical imaging overview M
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> Image reconstruction goals
» Produce “better” images from same data
» Produce “good” images from less data or noisier data
(cf. data used by conventional algorithms)
> Image reconstruction challenges
» Accurate physics/statistics models for system /sensor
» Best/suitable signal models
» Fast computation / optimization
» Characterization / performance guarantees

» Image processing goals and challenges
> 7?7
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Model-based image reconstruction
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Typical “modern” formulation (MBIR) [1-5]:

x =argminV¥(x), W(x)=—logp(y|x)-+R(x)

X

“Bayesian / variational / statistical / regularized / iterative / ..."

Active research topics:

p(y | x) : physics / statistics models (computation trade-offs)
R(x) : regularizer / prior information / signal models
arg min : optimization algorithms

X : characterization / performance guarantees

(Clinical “breakthrough” =20 years ago in PET, ~4 in CT, ~0 from now in MRI)



Breakthroughs / impact |

What is the most important breakthrough in your field in the past 10 years and how

did this affect your field?

1. Advances in computing power (but Moore's law insufficient)
= Clinical adoption of MBIR methods in PET and CT.
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Breakthroughs / impact Il M
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2. Advances in optimization algorithms

» incremental gradients / ordered subsets [6—8]

» non-smooth problems: (AL/ADMM, proximal splitting,
majorization, ...) [9, 10]

» momentum methods (e.g., FISTA) [11, 12]

» non-convex problems (...)

= OS made MBIR for PET clinically feasible.

3. Signal models based on sparsity (compressed sensing ...)
[13-20]
— Emboldened research on highly under-sampled problems.



Dynamic MRI overview M
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“dynamic” = changing over time = motion [21-24]

» Nuisance motions:
Breathing
Cardiac
Peristalsis
Tremors
Kids ...
— Faster scans (shorter time) can help reduce motion blur

» Motions of interest (true “dynamic” scans):
Vocalization (for speech studies)
Cardiac (for function)
Joint articulation (musculoskeletal scans)
Contrast agent (blood flow / perfusion)
Diffusion

— Trade-offs between temporal resolution and spatial resolution
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Dynamic MRI sampling: Fantasy edition

Dynamic MRIL “Fully Sampled Fantasy” (k-t space)
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. Dynamic MRI: Compressed Sensing Fantasy (k-t space)
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» Scan “twice as fast” 1?7

» Matrix completion problem!? —...

[25, 26]

robust PCA (L+S) ...



Dynamic MRI sampling: Reality

v

v

Dynamic MRI: Realistic Conventional Sampling (k-t space)
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All 3D dynamic MRI data is inherently under-sampled
No real “fully sampled” data exists, now or ever
Unlikely to satisfy any “matrix completion” sufficient conditions

(N measurements but N2 unknowns per frame)

Retrospective “under sampling” of “fully sampled” dynamic data is dubious
Opportunity: powerful signal models needed for reconstruction from such data

Challenge: validation of signal models given such highly incomplete data
(low-rank / locally low rank / tensors / wavelets / non-local patches / ...)



Regularization / signal models

» Edge-preserving roughness penalties / Markov random fields:

BZZ¢ Xj — Xk)

j=1 kGNJ
» Sparsity (analysis form): R(x) =B || Wx|,.
» Sparsity (synthesis form): x = Dz, ||z||, < k, D “known"

R(x) = min f [lx — Dz[3 +a 2],

v

Sparsity of patches in adapted (learned) patch dictionary:

R(x) = Bnelg min 3 Z |Pxx — Dzk||2 + « HZ||

» Dynamic problems: low-rank / locally low-rank, tensors, ...



Image reconstruction algorithm generations

v

Analytical reconstruction methods (classical):
idealized mathematical imaging system models [27]
e.g., CT inverse Radon transform, MR inverse FFT

v

Model-based image reconstruction (“recent”):

» physics and statistics models
» mathematical signal models

v

Data-driven image reconstruction (emerging):
parts of reconstruction algorithm learned from training data
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Data-driven image reconstruction: transform learning M
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» Training stage
Learn sparsifying transform €2
from training data (image patches) {x1,x2,..., }:

QL T Qx, — z. |2 Z|. .
argﬂmlnmzlnzk:H xk — zkla + A [|Z]],

Efficient methods with some convergence guarantees
Sai Ravishankar & Yoram Bresler, 2012-2015 [28-37].

> Image reconstruction stage:

argmin W(x), W(x) = —logp(y|x)+R(x)
' . 2
RGx) & min 3 [€2Pyx = 2, + A2,
J

Regularizer based on training data [38, 39] (!)
» Adaptive (blind) versions [40-44]
» Synthesis (dictionary) variant [45—47]
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Data-driven image reconstruction: algorithm design M
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New paradigm:

Object Image
_Rleet, System Eﬂ—) Estimator &
X y X
—_—
/]\

training data

» Recent papers (mostly using “deep” convolutional neural
networks): [48-57] (“deep imaging” ?)
» Many more to appear in 2017, e.g., [58].
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Data-driven image reconstruction: Example

Sparse-view CT “reconstruction” with learned streak removal
Han et al. 2016 [51]
Streak-estimation stages learned from (fully sampled) training data

Y : Label X - Y : Composite
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Data-driven image reconstruction: Results

Coronal Sagittal
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[51, Fig. 7], Han et al. 2016



Data-driven image reconstruction: Challenges
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» Slow learning from training data: O(days)
(But very fast processing after training, cf. iterative MBIR)
» Re-training for different imaging conditions
» Non-convexity / nonlinearity
» Characterization / performance guarantees

(Job security for signal processors...)

Special issue of IEEE Transactions on Medical Imaging:

Call for Papers:

Machine
Learning

for

Image
Reconstruction

Manuscript submission &
deadline: August 1, 2017

Tomographic Data Neural Network Reconstructed Image

https://ieee-tmi.org
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