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Introduction to digital breast tomosynthesis (DBT)

DBT has been developed to deal
with overlapping tissue in
mammogram.

Goal: improve DBT reconstruction
by modeling detector blur and
correlated noise.

A first step towards systematic
MBIR for DBT.

Hope to improve image quality for
both subtle microcalcifications and
mass spiculations.
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Combining Lambert-Beer Law and Detector Blur

Measurement model combines detector blur and Lambert-Beer law:

Ȳi = I0Bi e−Aif

Ȳi: expected projection view for the ith view angle.

f : unknown 3D attenuation image.

Ai: forward projector for ith view angle.
Bi: the blurring operation:

Allowed to be projection view angle dependent.
Assumed linear shift-invariant within each projection.
Determined from published system MTF [1]

I0: expected projection value in absence of imaged object
(Can be a constant or a diagonal matrix for nonuniform flux.)

monoenergetic approximation

e−x for vector x denotes element-wise exponentiation
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Measurement model approximation for DBT

We prefer the reconstruction problem to have a quadratic data-fit term.
The non-diagonal blur matrix Bi before the exponential is complicating.
In DBT, we assume that the image f is composed of two parts:

f = fbackground + fsignal

low-frequency background fbackground is approximately uniform within the
support of the blurring kernel: BiAifbackground ≈ Aifbackground

small structures fsignal (such as MC) contribute very little to the projection
value: Aifsignal � 1

Combining yields the simpler approximation (for DBT, not CT):

Ȳi = I0Bi e−Aif ≈ I0 e−BiAf .

(cf. exponential edge-gradient effect [2])
Thus the expected log-transformed projection is approximately linear:

yi
4
= log(I0/Yi) =⇒ ȳi ≈ BiAif .
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Correlated noise: The Covariance Matrix

Cost function needs the measurement covariance matrix.
Physics of CsI phosphor / a:Si Active Matrix Flat Panel Detector:

X-ray photons⇒ Visible light photons⇒ Electronic signal (measured)

Quantum noise depends on detector blur but electronic noise does not.
Covariance matrix for the ith projection view is non-diagonal due to blur:

Ki = BiK
q
i B
′
i + Kr

i

•Kq
i : diagonal covariance of quantum noise

•Kr
i : diagonal covariance of readout noise

(See related CT work of Tilley, Siewerdsen, Stayman [3], [4], [5], [6], [7].)
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DBT Reconstruction Problem

Assuming yi has approximately a Gaussian distribution: yi ∼ N (ȳi,Ki)
leads to a regularized reconstruction problem with non-diagonal weighting:

f̂ = arg min
f

1

2

m∑
i=1

‖yi −BiAif‖2K−1
i

+R(f)

= arg min
f

1

2

m∑
i=1

‖Si (yi −BiAif) ‖22 +R(f)

Regularizer: R(f) = β
∑

k ψ([Cf ]k)
Cf computes 2D (in-plane) finite differences
edge-preserving hyperbola potential: ψ(z) = δ2(

√
1 + (z/δ)2 − 1)

Inverse matrix square root of noise covariance:

Si
4
= K

−1/2
i = (BiK

q
i B
′
i + Kr

i )
−1/2.

This non-diagonal term is the computational challenge.
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Implementing Si efficiently in DBT

Noise covariance Ki = BiK
q
i B
′
i + Kr

i is non-diagonal.

Implementing Si = K
−1/2
i Si is challenging in general,

particularly in body CT where bones etc. cause very nonuniform noise.
In DBT, compressed breasts have fairly uniform thickness,
mainly composed of soft tissue.
Key idea: we approximate quantum noise as a constant for all detector
elements for each projection view:

Kq
i = σ2i,qI.

We also assume all detector elements have similar readout noise
variance for each projection view:

Kr
i = σ2i,rI.

Thus the non-diagonal noise covariance matrix simplifies:

Ki ≈ σ2i,qBiB
′
i + σ2i,rI.
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Implementing Si efficiently for DBT (cont.)

Now we can simplify inverting the noise covariance matrix:

Ki ≈ σ2i,qBiB
′
i + σ2i,rI.

For periodic boundary conditions, the blur matrix is circulant and
diagonalizable by a DFT:

Bi = Q−1HiQ.

Q is the 2D discrete Fourier Transform (DFT) matrix.
Hi is the blur frequency response for the ith view.

The square-root inverse of the noise covariance simplifies:

Si = K
−1/2
i = Q−1(σ2i,qHiH

′
i + σ2i,rI)−1/2Q.

Multiplying Si by a vector is a simple (high-pass) filter using FFTs.
No iterative method for matrix inversion required for DBT!

σ2
i,q estimated using a Lucite slab of appropriate thickness.
σ2
i,r estimated from the dark current image of the detector.
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Overall cost function

Overall cost function for DBT image reconstruction:

f̂ = arg min
f

Ψ(f), Ψ(f)
4
=

1

2

m∑
i=1

‖Si (yi −BiAif) ‖22 +R(f)

=
1

2
‖ỹ − Ãf‖22 +R(f)

Prewhitened projection data via FFT-based filtering: ỹ
4
=

 S1y1
...

Smym

 .
Prewhitened system matrix (for analysis): Ã

4
=

 S1B1A1
...

SmBmAm

 .
Hessian matrix for data-fit term: Ã′Ã =

∑m
i=1A

′
iB
′
iS
′
iSiBiAi.
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Algorithm: Separable Quadratic Surrogates (SQS)

Cost function: Ψ(f) = 1
2‖ỹ − Ãf‖22 +R(f)

Both the quadratic data-fit term and the regularizer are convex.

To apply SQS we need upper bounds on their Hessians [8].

As usual for SQS: ∇2R(f) � βC ′C � β diag
{
|C|′ |C|1

}
= 8βI.

Need to find diagonal majorizing matrix D such that Ã′Ã �D.

Then modified SQS algorithm for minimizing DBT cost function is:

f (n+1) = f (n) − [D + 8βI]−1∇Ψ(f (n)).

We use ordered subsets (OS), with one view at a time (ala SART),
to accelerate early convergence.

We call this the SQS-DBCN method,
where DBCN stands for Detector Blur and Correlated Noise.
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Diagonal majorizer for Hessian Ã′Ã

The usual choice would be D = diag
{
|Ã|′|Ã|1

}
.

Implementing this would be difficult due to negative values in Si.

Instead, note that because HiH
′
i � I :

B′iS
′
iSiBi = Q−1H ′i(σ

2
i,qHiH

′
i + σ2i,rI)−1HiQ

� Q−1((σ2i,q + σ2i,r)
−1I)Q = (σ2i,q + σ2i,r)

−1I.

That inequality leads to the following diagonal majorizer:

Ã′Ã =

m∑
i=1

A′iB
′
iS
′
iSiBiAi �

m∑
i=1

(σ2i,q + σ2i,r)
−1A′iAi �D

D
4
=

m∑
i=1

(σ2i,q + σ2i,r)
−1 diag

{
A′iAi1

}
.

This diagonal majorizer is as easy to implement as usual SQS case.

Jiabei Zheng, Jeff Fessler, Heang-Ping Chan DBT Reconstruction July 10, 2016 14 / 27



Outline

1 Background

2 Reconstruction method
Formulating the reconstruction problem
Solving the reconstruction problem

3 Phantom and patient results
DBT system
Experimental phantom
Patient case

4 Conclusion and future work

Jiabei Zheng, Jeff Fessler, Heang-Ping Chan DBT Reconstruction July 10, 2016 15 / 27



Geometry of the DBT System

GE GEN2 prototype DBT system

21 projections within ±30°
sequentially with 3° increment.

Used central 9 views over ±12°

Detector resolution = 1920× 2304

Detector pixel size = 0.1mm

voxels: dx = dy = 0.1mm, dz = 1mm.

Initialized with uniform image:
f (0) = 0.05/mm
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Experimental phantom

Stack of five 1-cm-thick 50% adipose/50% glandular heterogeneous slabs
that mimic the composition and parenchymal pattern of the breast.

Clusters of calcium carbonate specks of three nominal size ranges
(0.25-0.30mm, 0.18-0.25mm, and 0.15-0.18mm), sandwiched at random
locations between the slabs to simulate MCs of different conspicuities.

SQS-DBCN reconstructions compared with SART (3 iterations) [9], [10].

Jiabei Zheng, Jeff Fessler, Heang-Ping Chan DBT Reconstruction July 10, 2016 18 / 27



Reconstructed microcalcification (MC) comparison

0.15-0.18mm MC 0.18-0.25mm MC 0.25-0.30mm MC
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(d) CNR = 6.9
FWHM = 0.17 mm

(e) CNR = 8.4
FWHM = 0.22 mm

(f) CNR = 20.6
FWHM = 0.25 mm
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Comparison of CNR and FWHM
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Results averaged over 5 clusters of each size in the phantom:
• 49 of 0.15-0.18mm MCs
• 66 of 0.18-0.25mm MCs
• 64 of 0.25-0.30mm MCs

SQS-DBCN generally enhanced CNR and decreased FWHM,
i.e., the MCs appear sharper.
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Regularization parameter selection
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Average CNR vs. β, δ

Small and medium MC sizes

Red lines indicate SART

For different MC sizes,
CNR-optimal β, δ varies

Reducing δ improves max CNR

Proposed SQS-DBCN
outperforms SART over a large
range of parameters.
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Comparison of reconstructed images for human subject DBT

(a) SART,
3 iterations

(b) SQS-DBCN
β = 80,
δ = 0.002/mm

(c) SQS-DBCN
β = 120,
δ = 0.001/mm

MC CNR increases from (a) to (c). However, spiculations and tissue textures
become more patchy and artificial in (c). Need better figures of merit.
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Conclusion

Proposed DBT reconstruction method incorporates detector blur and a
correlated noise model.
A step towards developing model-based iterative reconstruction for DBT.
Computationally efficient algorithm adds just one 2D FFT pair per view
per iteration.

Update per view ≈ 2.7 seconds with 8 threads and modified SF [11]
One 2D FFT pair ≈ 0.03 seconds =⇒ 1% overhead
SQS-DBCN for 9 views and 10 iterations ≈ 5 min

Both quantitatively and visually the new SQS-DBCN method can better
enhance MCs compared with the SART while preserving the image
quality of spiculations and tissue texture, if parameters are chosen well.

SQS-DBCN method relies on good parameter selection and accurate
estimation of noise variance.

Future work: develop an adaptive parameter selection method, improve
estimation of noise variances, generalize model to relax the assumptions.
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Backup: derivation

Assume:

1 f = fbackground + fsignal

2 smooth back-ground: BAfbackground ≈ Afbackground

3 low-contrast details: Afsignal � 1

4 unity DC response of blur: B1 = 1

B e−Af = B e−A(fsignal+fbackground)︸ ︷︷ ︸
[1]

= B e−Afsignal e−Afbackground

≈ B (1−Afsignal)︸ ︷︷ ︸
[3]

e−BAfbackground︸ ︷︷ ︸
[2]

= (1−BAfsignal)︸ ︷︷ ︸
[4]

e−BAfbackground

≈ e−BAfsignal︸ ︷︷ ︸
[3]

e−BAfbackground = e−BA(fsignal+fbackground) = e−BAf

For a 0.2 mm MC with µ = 1.5/mm, Afsignal = 0.3� 1
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Noise standard deviation from lucite slab
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