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Lower-dose X-ray CT image reconstruction

Thin-slice FBP ASIR Statistical
Seconds A bit longer Much longer

Image reconstruction as an optimization problem:

x̂ = arg min
x�0

1
2 ‖y − Ax‖2

W + R(x),

y data, A system model, W statistics, R(x) regularizer.
(Same sinogram, so all at same dose.)
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Optimization problem setting

x̂ ∈ arg min
x

f (x)

I Unconstrained
I Large-scale (Hessian ∇2f too big to store and/or undefined)

I image reconstruction / inverse problems
I big-data / machine learning
I ...

I Cost function assumptions (throughout)
I f : RM 7→ R
I convex (need not be strictly convex)
I non-empty set of global minimizers:

x̂ ∈ X ∗ =
{

x? ∈ RM : f (x?) ≤ f (x), ∀x ∈ RM}
I smooth (differentiable with L-Lipschitz gradient)

‖∇ f (x)−∇ f (z)‖2 ≤ L ‖x − z‖2 , ∀x, z ∈ RM
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Example: Fair potential function

Fair’s potential function [1]
(similar to Huber function
and hyperbola):

ψ(z) = δ2 [|z/δ| − log(1 + |z/δ|)]

ψ̇(z) = z
1 + |z/δ|

ψ̈(z) = 1
(1 + |z/δ|)2 ≤ 1.

Thus L = 1.
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Example: Machine learning
To learn weights x of binary classifier given feature vectors {v i}
and labels {yi = ±1}:

x̂ = arg min
x

f (x), f (x) =
∑

i
ψ(yi 〈x, v i〉) .

loss functions ψ(z)
I 0-1: I{z≤0}
I exponential: exp(−z)
I logistic: log(1 + exp(−z))
I hinge: max {0, 1− z}
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hinge
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0-1

Which of these ψ fit our conditions?
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Gradient descent

I Problem:
x̂ = arg min

x
f (x) .

I Initial guess x0.
I Simple recursive iteration:

xn+1 = xn −
1
L ∇f (xn) .

I Step size 1/L ensures monotonic descent of f .
I Telescoping (for intuition, not implementation):

xn+1 = x0 −
1
L

n∑
k=0
∇f (xk) .
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Gradient descent convergence rate

I Classic O(1/n) convergence rate of cost function descent:

f (xn)− f (x?)︸ ︷︷ ︸
inaccuracy

≤ L ‖x0 − x?‖2
2

2n .

I Drori & Teboulle (2014) derive tight inaccuracy bound:

f (xn)− f (x?) ≤ L ‖x0 − x?‖2
2

4n + 2 .

I They construct a Huber-like function f for which GD achieves
that bound =⇒ case closed for GD with step size 1/L.

I O(1/n) rate is undesirably slow.
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Generalizing GD slightly

I GD with general step size h:

xn+1 = xn −
h
L ∇f (xn) .

I Classical monotone descent result:
h ∈ (0, 2) =⇒ f (xn+1) < f (xn) when xn is not a minimizer.

I What is best h?
I If f is quadratic, then asymptotic best choice is:

h∗ = 2L
λmax(∇2 f ) + λmin(∇2 f ) .
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Generalizing GD slightly

I GD with general step size h:

xn+1 = xn −
h
L ∇f (xn) .

I More generally, Taylor et al. [3] recently conjectured:

f (xN)− f (x?) ≤ L ‖x0 − x?‖2
2

2 max
{ 1

2Nh + 1 , (1− h)2N
}
.

I Proof for 0 < h ≤ 1 by Drori and Teboulle [2]
I Upper bounds achieved by Huber-like function and quadratic

function f (x) = (L/2)x2 respectively.
I Best h depends on N !

(For N = 1, h∗ = 1.5; for N = 100, h∗ = 1.9705.)
I Must select N in advance?
I Still O(1/N)...
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Heavy ball method and momentum

I Quest for accelerated convergence.
I Heavy ball iteration (Polyak, 1987):

xn+1 = xn −
α

L ∇f (xn) +β (xn − xn−1)︸ ︷︷ ︸
momentum!

(recursive form
to implement)

xn+1 = xn −
1
L

n∑
k=0

αβn−k︸ ︷︷ ︸
coefficients

∇f (xk) (summation form
to analyze)

I How to choose α and β?
I How to optimize coefficients more generally?
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General first-order method classes

I General “first-order” (GFO) method:

xn+1 = function(x0, f (x0),∇f (x0), . . . , f (xn),∇f (xn)) .

I First-order (FO) methods with fixed step-size coefficients:

xn+1 = xn −
1
L

n∑
k=0

hn+1,k ∇f (xk) .

Primary goals:
I Analyze convergence rate of FO for any given {hn,k}
I Optimize step-size coefficients {hn,k}

I fast convergence
I efficient recursive implementation
I universal (design prior to iterating, independent of L)
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Example: Barzilai-Borwein gradient method

Barzilai & Borwein, 1988:

g (n) , ∇f (xn)

αn = ‖xn − xn−1‖2
2

〈xn − xn−1, g (n)− g (n−1)〉
xn+1 = xn − αn∇f (xn) .

I In “general” first-order (GFO) class, but
I not in class FO with fixed step-size coefficients.
I Likewise for methods like

I steepest descent (with line search),
I conjugate gradient,
I quasi-Newton ...
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Nesterov’s fast gradient method (FGM1)
Nesterov (1983) iteration: Initialize: t0 = 1, z0 = x0

zn+1 = xn −
1
L ∇f (xn) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(magic momentum factors)

xn+1 = zn+1 + tn − 1
tn+1

(zn+1 − zn) (update with momentum) .

Reverts to GD if tn = 1, ∀n.

FGM1 is in class FO: xn+1 = xn −
1
L

n∑
k=0

hn+1,k ∇f (xk)

hn+1,k =


tn − 1
tn+1

hn,k , k = 0, . . . , n − 2
tn − 1
tn+1

(hn,n−1 − 1) , k = n − 1

1 +
tn − 1
tn+1

, k = n.


1 0 0 0 0 0
0 1.25 0 0 0 0
0 0.10 1.40 0 0 0
0 0.05 0.20 1.50 0 0
0 0.03 0.11 0.29 1.57 0
0 0.02 0.07 0.18 0.36 1.62


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Nesterov’s FGM1 optimal convergence rate
Shown by Nesterov to be O(1/n2) for “auxiliary” sequence:

f (zn)− f (x?) ≤ 2L ‖x0 − x?‖2
2

(n + 1)2 .

For any FO method, Nesterov constructed a function f such that
3

32L ‖x0 − x?‖2
2

(n + 1)2 ≤ f (xn)− f (x?) .

Thus O(1/n2) rate of FGM1 is optimal.
New results (Donghwan Kim & JF, 2016):
• Bound on convergence rate of primary sequence {xn}:

f (xn)− f (x?) ≤ 2L ‖x0 − x?‖2
2

(n + 2)2 .

• Verifies (numerically inspired) conjecture of Drori & Teboulle
(2014).
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Overview

First-order (FO) method with fixed step-size coefficients:

xn+1 = xn −
1
L

n∑
k=0

hn+1,k ∇f (xk)

I Analyze (i.e., bound) convergence rate as a function of
I number of iterations N
I Lipschitz constant L
I step-size coefficients H = {hn+1,k}
I initial distance to a solution: R = ‖x0 − x?‖.

I Optimize H by minimizing the bound.
I Seek an equivalent recursive form for efficient implementation.
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Ideal “universal” bound for first-order methods
For given
• number of iterations N
• Lipschitz constant L
• step-size coefficients H = {hn+1,k}
• initial distance to a solution: R = ‖x0 − x?‖,

try to bound the worst-case convergence rate of a FO method:

B1(H,R, L,N,M) , max
f ∈FL

max
x0,x1,...,xN∈RM

max
x?∈X ∗(f )
‖x0−x?‖≤R

f (xN)− f (x?)

such that xn+1 = xn−
1
L

n∑
k=0

hn+1,k ∇f (xk), n = 0, . . . ,N−1.

Clearly for any FO method, this cost-function bound would hold:

f (xN)− f (x?) ≤ B1(H,R, L,N,M).
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Towards practical bounds for first-order methods
For convex functions with L-Lipschitz gradients:
1

2L ‖∇f (x)−∇f (z)‖2 ≤ f (x)− f (z)−〈∇f (z), x − z〉, ∀x, z ∈ RM .

Drori & Teboulle (2014) use this inequality to propose a “more
tractable” (finite-dimensional) relaxed bound:
B2(H,R, L,N,M) , max

g0,...,gN∈RM
max

δ0,...,δN∈R
max

x0,x1,...,xN∈RM
max

x? : ‖x0−x?‖≤R
LRδ2

N

such that xn+1 = xn −
1
L

n∑
k=0

hn+1,kR gk , n = 0, . . . ,N − 1,

1
2

∥∥∥g i − g j

∥∥∥2
≤ δi − δj −

1
R 〈g j , x i − x j〉, i , j = 0, . . . ,N, ∗,

where gn = 1
LR ∇f (xn) and δn = 1

LR (f (xn)− f (x?)) .
For any FO method:

f (xN)− f (x?) ≤ B1(H,R, L,N,M) ≤ B2(H,R, L,N,M)

However, even B2 is as of yet unsolved.
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Numerical bounds for first-order methods

I Drori & Teboulle (2014) further relax the bound:

f (xN)− f (x?) ≤ B1(H, . . .) ≤ B2(H, . . .) ≤ B3(H,R, L,N).

I For given step-size coefficients H, and given number of
iterations N, they use a semi-definite program (SDP) to
compute B3 numerically.

I They find numerically that for the FGM1 choice of H,

the convergence bound B3 is slightly below 2L ‖x0 − x?‖2
2

(N + 1)2 .

I This suggested that improvements on FGM1 could exist.
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Optimizing step-size coefficients numerically
Drori & Teboulle (2014) also computed numerically the minimizer
over H of their relaxed bound for given N using a SDP:

H∗ = arg min
H

B3(H,R, L,N).

Numerical solution for H∗ for N = 5 iterations: [2, Ex. 3]

Drawbacks:
• Must choose N in advance
• Requires O(N) memory for all gradient vectors {∇f (xn)}N

n=1
• O(N2) computation for N iterations

Benefit: convergence bound (for specific N) ≈ 2× lower than for
Nesterov’s FGM1.
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New analytical solution

I Analytical solution for optimized step-size coefficients [8], [9]:

H∗ : hn+1,k =


θn−1
θn+1

hn,k , k = 0, . . . , n − 2
θn−1
θn+1

(hn,n−1 − 1) , k = n − 1
1 + 2θn−1

θn+1
, k = n.

θn =


1, n = 0
1
2

(
1 +

√
1 + 4θ2

n−1

)
, n = 1, . . . ,N − 1

1
2

(
1 +

√
1 + 8θ2

n−1

)
, n = N.

I Analytical convergence bound for this optimized H∗:

f (xN)− f (x?) ≤ B3(H∗,R, L,N) = 1L ‖x0 − x?‖2
2

(N + 1)(N + 1 +
√

2)
.

I Of course bound is O(1/N2), but constant is twice better.
I No numerical SDP needed =⇒ feasible for large N.
I (History: sought banded / structured lower-triangular form)
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Optimized gradient method (OGM1)

Donghwan Kim & JF (2016) also found efficient recursive iteration:
Initialize: θ0 = 1, z0 = x0

zn+1 = xn −
1
L ∇f (xn)

θn =


1
2

(
1 +

√
1 + 4θ2

n−1

)
, n = 1, . . . ,N − 1

1
2

(
1 +

√
1 + 8θ2

n−1

)
, n = N

xn+1 = zn+1 + θn − 1
θn+1

(zn+1 − zn) + θn
θn+1

(zn+1 − xn)︸ ︷︷ ︸
new momentum

.

Reverts to Nesterov’s FGM1 if the new term is removed.
• Very simple modification of existing Nesterov code.
• No need to solve SDP.
• Factor of 2 better bound than Nesterov’s “optimal” FGM1.

(Proofs omitted.)
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Recent refinement of OGM1
New version OGM1’ [10], [11]

zn+1 = xn −
1
L ∇f (xn) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(momentum factors)

xn+1 = zn+1 + tn − 1
tn+1

(zn+1 − zn) + tn
tn+1

(zn+1 − xn)︸ ︷︷ ︸
OGM1 momentum

I New convergence bound for every iteration:

f (zn)− f (x?) ≤ 1L ‖x0 − x?‖2
2

(n + 1)2 .

I Simpler and more practical implementation.
I Need not pick N in advance.
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Optimized gradient method (OGM) is optimal!
For the class of first-order (FO) methods with fixed step sizes:

xn+1 = xn −
1
L

n∑
k=0

hn+1,k ∇f (xk),

we optimized OGM and proved the convergence rate upper bound:

f (xN)− f (x?) ≤ L ‖x0 − x?‖2
2

N2 .

Recently Y. Drori [12] considered the class of general FO methods:

xn+1 = F (x0, f (x0),∇f (x0), . . . , f (xn),∇f (xn)) ,

and showed any algorithm in this case has a function f such that

L ‖x0 − x?‖2
2

N2 ≤ f (xN)− f (x?) .

Thus OGM has optimal complexity among all FO methods!
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Worst-case functions for OGM

From [10], [11], worst-case behavior is:

OGM has two worst-case functions (like GM):
a Huber-like function and a quadratic function.
Worst-case means:

f (xN)− f (x?) = LR2

θ2
N
≤ LR2

(N + 1)(N + 1 +
√

2)
≤ LR2

(N + 1)2 .
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Machine learning (logistic regression)
To learn weights x of binary classifier given feature vectors {v i}
and labels {yi = ±1}:

x̂ = arg min
x

f (x), f (x) =
∑

i
ψ(yi 〈x, v i〉) +β

1
2 ‖x‖

2
2 .

logistic:

ψ(z) = log(1 + e−z ), ψ̇(z) = −1
ez + 1 , ψ̈(z) = ez

(ez + 1)2 ∈
(

0, 1
4

]
.

Gradient ∇f (x) =
∑

i yi v i ψ̇(yi 〈x, v i〉) +βx
Hessian is positive definite so strictly convex:

∇2 f (x) =
∑

i
v i ψ̈(yi 〈x, v i〉) v ′i +βI � 1

4
∑

i
v i v ′i +βI

=⇒ L ,
1
4ρ
(∑

i
v i v ′i

)
+ β ≥ max

x
ρ
(
∇2 f (x)

)
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Numerical Results: logistic regression
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Training data (points); initial decision boundary (red);
final decision boundary (magenta).
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Numerical Results: convergence rates
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Numerical Results: adaptive restart

0 20 40
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-2

10
-1

10
0

10
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‖x
n
−
x
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Nesterov (restart)
OGM1 (restart)

FGM restart, O’Donoghue & Candès, 2015.
How to best “restart” OGM1 is an open question.
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Low-dose 2D X-ray CT image reconstruction simulation
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Combining ordered subsets (OS) with momentum

I Optimization problems in image reconstruction (and machine
learning) involve sums of many similar terms:

f (x) =
M∑

m=1
fm(x) .

I Approximate gradients using just one term at a time:

∇ f (x) ≈ M∇ fm(x)

I Ordered subsets (OS) in tomography [15]
I Incremental gradients in optimization / machine learning

I Combining OS with momentum dramatically accelerates!
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OS + OGM1 method

Initialize: θ0 = 1, z0 = x0 (D. Kim, S. Ramani, JF, 2015) [16]
For each iteration n
For each subset m = 1, . . . ,M

k= nM + m − 1

zk+1 = xk −
M
L ∇fm(xk) (usual OS update)

θk = 1
2

(
1 +

√
1 + 4θ2

k−1

)
(momentum factors)

xk+1 = zk+1 + θk − 1
θk+1

(zk+1 − zk) + θk
θk+1

(zk+1 − xk)︸ ︷︷ ︸
new momentum

.

• Simple modification of existing OS code
• ≈ O

(
1/(Mn)2) decrease of cost function f in early iterations
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Results: 3D X-ray CT patient scan

• 3D cone-beam helical CT scan with pitch 0.5

 

 

 Initial FBP image x
(0)

 

 Converged image x
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• Convergence rate in RMSD [HU], within ROI, versus iteration:

RMSDROI(xn) , ||x
(n)
ROI − x̂ROI||2√

NROI
.

(Disclaimer: RMSD may not relate to task performance...)
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Results: RMSD [HU] vs. iteration: without OS
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• Computation time: OGM < FGM � GD
• OGM requires about 1√

2 -times fewer iterations than FGM
to reach the same RMSD.
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Results: RMSD [HU] vs. iteration: with OS
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• M = 12 subsets in OS algorithm.
• Proposed OS-OGM converges faster than OS-FGM.
• Computation time per iteration of all algorithms are similar.
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Generalizing OGM - faster gradient norm decrease

I Cost function decrease: f (xn)− f (x?) ∼ O(1/n2)
I Gradient norm decrease? ‖∇f (xn)‖ → 0 at what rate?

Important especially for problems involving duality.
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Bounds on gradient norm decrease

I Known bounds [17] [19]:

GM: min
0≤n≤N

‖∇f (xn)‖ = ‖∇f (xN)‖ ≤
√

2
N LR

FGM: ‖∇f (xN)‖ ≤ 2
N LR.

I New very recent bounds (DK & JF, 2016) [20], [21]:

FGM: min
0≤n≤N

‖∇f (xn)‖ ≤ 2
√

3
N3/2 LR

OGM: min
0≤n≤N

‖∇f (xn)‖ ≤ ‖∇f (xN)‖ ≤
√

2
N LR.

I Can one do better than FGM?
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Generalized OGM (GOGM) recursive iteration

Very recent generalization (DK & JF, 2016) [20], [21]

Input: f ∈ FL, x0 ∈ RN , z0 = x0, t0 ∈ (0, 1].
for n = 0, 1, . . .

zn+1 = xn −
1
L ∇f (xn)

tn+1 > 0 s.t. t2
n+1 ≤ Tn+1 ,

n+1∑
k=0

tk
(momentum

factors)

xn+1 = zn+1 + (Tn − tn)tn+1
Tn+1tn

(zn+1 − zn)

+ (2t2
n − Tn)tn+1
Tn+1tn

(zn+1 − xn) .

I Simple implementation
I Best choice of factors tn (in terms of gradient norm decrease)?
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Generalized OGM (GOGM)

Optimized choice of momentum factors (for decreasing gradient
norm) (DK & JF, 2016) [20], [21] :

tn ,


1, n = 0,
1
2

(
1 +

√
1 + 4t2

n−1

)
, n = 0, . . . , bN/2c − 1,

(N − n + 1)/2, n = bN/2c , . . .N.

Dubbed “OGM-OG” for OGM with optimized gradients.
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Optimized parameters for OGM-OG
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OGM-OG convergence rate bounds

I Convergence bound for cost function for OGM-OG:

f (zN)− f (x?) ≤ 2L ‖x0 − x?‖2
2

N2 .

I Same as Nesterov’s FGM.
I Convergence bound for gradient norm is best known:

min
0≤n≤N

‖∇f (zn)‖ ≤ min
0≤n≤N

‖∇f (xn)‖ ≤
√

6
N3/2 LR.

I
√

2 better than FGM’s smallest gradient norm bound.
I Variations that do not require choosing N in advance,

but that have slightly larger constants in bounds.
I Derivation uses relaxations that are not tight.
I Is N3/2 best possible? What is best possible constant?
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Summary of (fast?) gradient decreasing FO methods

From [20], [21]:

Numerical examples are work-in-progress.
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Non-smooth (composite) convex problems

Composite cost function:

arg min
x

F (x), F (x) , f (x) + g(x)

f (x) : convex, smooth with Lipshitz gradient
g(x) : convex but possibly (usually) non-smooth
Examples:
• g(x) = ‖x‖1
• g(x) characteristic function of a convex constraint

Fast iterative soft thresholding algorithm (FISTA) (Beck & Teboulle,
2009) [22]
AKA “fast proximal gradient method” (FPGM)
Simple recursive iteration with O(1/n2) cost function convergence
rate
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Improving on FISTA

DK & JF, 2016 [23], [24]

FPGM with “optimized proximal gradient” (FPGM-OPG).
Best known bound on proximal gradient convergence rate.
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Summary

I New optimized first-order minimization algorithm (optimal!)
I Simple implementation akin to Nesterov’s FGM
I Analytical converge rate bound
I Bound on cost function decrease is 2× better than Nesterov

Future work
• Constraints
• Non-smooth cost functions, e.g., `1
• Tighter bounds
• Strongly convex case
• Asymptotic / local convergence rates
• Incremental gradients
• Stochastic gradient descent
• Adaptive restart
• Distributed computation
• Low-dose 3D X-ray CT image reconstruction
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