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Improving X-ray CT image reconstruction M

MICHIGAN

o A picture is worth 1000 words
e (and perhaps several 100
9

0 seconds of computation?)
T ‘

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

Today's talk: less about computation, more about image quality

Right image used edge-preserving regularization



Accelerating MR imaging

(

a) (b)

(a) 4x under-sampled MR k-
space

(b) zero-filled reconstruction
(c) “compressed sensing” recon-
struction with TV regularization

(d) adaptive dictionary learning

regularization [1, Fig. 10]
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Other ill-posed inverse problems

y=Ax+e¢
» compressed sensing (A random, wide)
» deblurring (restoration) (A Toeplitz, wide?)
> in-painting (A subset of rows of I)
» denoising (not ill posed) (A=1)
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Inverse problems via MAP estimation M

MICHIGAN

Unknown
System model Data Estimator
image — — — — X
N p(y | x) y
If we have a prior p(x), then the MAP estimate is:
x = argmaxp(x|y) = argmaxlogp(y | x) + log p(x) .
X X
For gaussian measurement errors and linear model:
1 2
~log p(y | x) = 5 ly — Ax[fy
where HyH%V =y Wy and W = Cov{y|x} is known

(A from physics, W from statistics)
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Priors for MAP estimation

» If all images x are “plausible” (have non-zero probability) then
p(x) x e” R*¥) — _log p(x) = R(x)
(from fantasy / imagination / wishful thinking)
» MAP = regularized weighted least-squares (WLS) estimation:
x = argmax log p(y | x) + log p(x)
x o 2
= argxmln 5 lly — Ax||iw + R(x)

» A regularizer R(x), aka log prior, is essential for high-quality
solutions to ill-conditioned / ill-posed inverse problems.

» Why ill-posed? High ambitions...
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Example of ill-conditioned inverse problem

Two-pixel, two-ray “X-ray tomography” model:

y1 o
1 [x2 111 _ | x
A‘[o 0.1] X‘[XJ
y2
cond(A’A) ~ 400 A is (roughly) square - somewhat typical

log-likelihood log p(y|x): H E
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Subspace model: Alternative to regularization M
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Assuming x lies in a sufficiently low-dimensional subspace
could make an inverse problem well conditioned.

T2

Assume x = Dz where D = [ 1

(z has only one nonzero element so very sparse!?)
Estimate coefficient(s): 2 = argmin, ||y — ADz||§, then X = Dz,

]andze}R1

where B = AD = [ 021 ] and cond(B'B) = 1 which is perfect!
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Why not use subspace models?

Candeés and Romberg (2005) [2] used 22 (noiseless) projection
views, each with 256 samples.
22 . 256 = 5632 measured values, vs 2562 = 65536 unknown pixels

Shepp-Logan Phantom 4096-dimensional subspace
1 1

256 64
1 256 1 64

Subspace representation (using pixel basis) is undesirably coarse.

MICHIGAN
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Classical regularizers M
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v

Tikhonov regularization (11D gaussian prior)

v

Roughness penalty (Basic MRF prior)

v

Sparsity in ambient space

v

Edge-preserving regularization

v

Total-variation (TV) regularization
Black-box denoiser like NLM

v
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Tikhonov regularization M
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R(x) = B [|x]I3

v

Colors show equivalent (normalized) prior p(x) / p(0) = e~ R*)

v

Equivalent to IID gaussian prior on x

v

Makes any ill-conditioned / ill-posed problem well conditioned

v

Ignores correlations between pixels
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Sparsity regularization in ambient space M
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R(x) =Blxllo =8 > I{x0}

» Approximate Bayesian interpretation
» Non-convex

» [ID = also ignores correlations
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Sparsity regularization: convex relaxation

R(x) = B lIx[ly = B 225 Xl

» Equivalent to IID Laplacian prior on x
> Also ignores correlations
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Correlation

Shepp-Logan Pixel Neighbors (dithered)

Shepp-Logan Phantom

256 085

Caution: Shepp-Logan phantom [3] was designed for testing non-Bayesian methods,

not for designing signal models. Q: What causes the spread??
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Edge-preserving regularization

MICHIGAN

Neighboring pixels tend to have similar values except near edges:

R() = B Y 005 —x5-1)

Potential function :

0
t/s

e Equivalent to improper prior (agnostic to DC value)
e Accounts for spatial correlations, but only very locally

e Used clinically now for low-dose X-ray CT image reconstruction

21 /45



Total-variation (TV) regularization

Neighboring pixels tend to have similar values except near edges
(“gradient sparsity”):

R(x) = BTV(x) = B || Cx||;
=B Ix —x-1l
J

Potential function :

W(t)

Equivalent to improper prior (agnostic to DC value)
Accounts for correlations, but only very locally
Well-suited to piece-wise constant Shepp-Logan phantom!
Used in many academic publications...

vV v vy
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Black-box denoiser as a regularizer M
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Noisy image — — Denoised image

Example: Non-local means (NLM)

v

v

Corresponding regularizer [4]-[6]:

1
R(x) = B3 llx — NLM(x)|3

v

Encourages self-consistency with denoised version of image

v

No evident Bayesian interpretation

v

Variable splitting can facilitate minimization [7].
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Many more regularizers / priors

MICHIGAN

v

Transforms: wavelets, curvelets, ...

Markov random field models

v

v

Graphical models
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Contemporary regularizers M
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v

Convolutional sparsity

v

Union of subspaces

v

Sparse coding with dictionary
manifolds? [8]

v
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Convolutional sparsity M
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Idea:
K
X[ﬁ] ~ Z hk[ﬁ] * Zk[ﬁ]
k=1

where each hy[i] is a FIR filter with ||hg|| =1
and each coefficient image z[7] is sparse [9]-[11].
Equivalent matrix-vector representation:

K
X =~ Z szk
k=1

where Hy is a Toeplitz (or circulant) matrix corresponding to hy.



Convolutional sparsity: example

05 Filter 5 Coefficients
h,[n] z,[n]
| I
0 0
03 0 10 20 30
z[n]
0.5 2

03 0 10 20 30 0 10 20 30
n
, K — _
o0 3 hs[n] ? z.[n] X[n] ~ Zk:l hk[n] * Zk[n]
3
| T
Oh 0
03 0 10 20 30
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Convolutional sparsity: regularizer M

MICHIGAN

Recall x = 215:1 H,z,
Natural corresponding regularizer:

K 2 K
R(x) = min min X — Z Hizi| + )2 Z 1kl
{zk} {hy} k—1 5 k=1
[l =1

Adapts FIR filters {hy} and coefficients {z,} to candidate x.

Literature focuses on the minimization problem (sparse coding)
Yet to be explored as regularizer for inverse problems
Inherently shift-invariant representation; no “patches” needed
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Union of subspaces model

» Dimensionality reduction?
» cf. classification / clustering motivation [12]

> (Extension to union of “flats” (linear varieties) is possible [13].)
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Union of subspaces regularization

Given (?) collection of K subspace bases D1, ..., Dg
(dictionaries with full column rank):

. . 1 2
R(x) = min min B§ |x — Dyzg||5
—
“classification” regression

= mkin B% Hx — DkD;foz

v

R(x) = 0 if x lies in the span of any of the dictionaries { Dy}

v

otherwise, distance to nearest subspace (discourage, not constrain)

v

Non-convex (hlghly?) (cf. preceding picture)

v

Apply to image patches to be practical

v

Equivalent Bayesian interpretation? (not a mixture model here)
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Regularizers using sparse coding with dictionaries M
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Assume x ~ Dz where D is a dictionary (often over-complete)
and z is a sparse coefficient vector. Corresponding regularizers:

R(x) = 5 H — Dz

z: HZH <s

1
R(x) = min (612 Ix— Dz[3+ 2 2], )

» Convex in z (for given x) if p > 1.
» R(x) typically non-convex in x.

» Could be equivalent to a union-of-subspaces regularizer
if D= [D1 DK] and
if we constrain coefficient vector z in a non-standard way.
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Union-of-subspaces vs sparse-coding-with-dictionary

MICHIGAN

Consider union-of-subspaces model with p; = [ cl) (:f ] , Dy = [ 8 ] :
So D; spans x-y plane and D, spans z-axis. 0 1

A dictionary model with D = [D; D] = [ clJ (1) 8

and sparsity s = 2, happily represents all thr(:ee (():arélinal planes

)/
N

2

=

vl

<

SV

)
T
NS

Thus dictionary model seems “less constrained” than union-of-subspaces model.

(Still, focus on sparse dictionary representation hereafter.)
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Dictionary learning from training data

Given training data x1,...,xy € RY (image patches)
Assumed model: x, ~ Dz,

unknown d x J dictionary D = [d1 ... d/]
coefficient vectors z1, ..., zy € R? assumed “sparse”

K-SVD dictionary learning formulation [14]:

N .
n> mi )l =17
D* = arg min min ||x, — Dz st d;
DEngXJ I;IZ"GRJ || n n”2 HZnHO g sVn
—argmin min [[X — DZ||f st. |dj| =1V
DeRdxJ ZcERIXN ||Zn||0 <s Vn

A A
X = [X1 XN], Z= [Zl ZN]
Computationally expensive and no convergence guarantees.
Inherently non-convex due to product of unknowns DZ.
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New dictionary learning method (SOUP-DIL) M
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Joint work with Sai Ravishankar and Raj Nadakuditi [15]-[18]
Write sparse representation as Sum of OUter Products (SOUP):

X~DZ=DC =Y/, dc

where Z/ = C = [C1 R C_j] e RNxJ (coefficients for each atom)
Replace individual atom sparsity constraint ||z,||, < s
with aggregate sparsity regularizer: | Z|lo = ||Cllo-
» Natural for Dictionary Learning (DIL) from training data
» Unnatural for image compression using sparse coding

SOUP-DIL ¢ formulation:

. . dill,=1Vj
D* = argmin min || X — DC'||% + \?| C s.t. 1l )
DengXJ i Il Iz ICllo leil < LY
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SOUP-DIL algorithm

SOUP-DIL formulation:

D* =argmin min || X —DC'||2 +\?||C|lo s-t. Idill, =1 VJ'
DeRdxJ CERNXJ HCJHOO <L Vj

v

Block coordinate descent (BCD) algorithm
Sparse coding step for C
Dictionary update step for D

v

Very simple update rules (low compute cost)
Monotone descent of W(D, C)

Convergence theorem: for any given initialization (D°,C0),
all accumulation points of sequence (D,C)

are critical points of cost WV and

are equivalent (reach same cost function value ¥*).

Furthermore: {HD(k) — D(k_l)H} — 0. Same for {C(k)}.

v

v
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SOUP-DIL updates M
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dil|l,=1Vj
D =agmin_min |X-DC+NYclo st | P2 1T
DcRdxJ CERN HCJHOO <L v./

Alternate: update one column d; of D then one column c; of C.

» Sparse coding step: update c; using residual E; = Dokt dic)

min IE; — djcjllz + M licilly, st el <L

Truncated (via L) hard thresholding of E’;d; with threshold A
» Dictionary atom step: update d;

min|[E; — djcillF st [djf, =1
J

Constrained least-squares solution: d; = (Ejc;)/ || Ejcj]|,
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Truncated hard thresholding for SOUP-DIL M
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CJERN

A L Eid; c RV

(Acts element-wise.) (In practice take L = 00.)

(Algorithm also provides a simple sparse coding method.)

38 /45



Example: dictionary learning for Barbara

Wi ﬂ.u"i"
A

[
[
v
It
'|

Barbara K-SvD D SOUP-DIL D

Denoising PSNR (dB) from [15]
o || Noisy || O-DCT | K-SVD | SOUP-DIL
20 || 22.13 29.95 30.83 30.79
25 || 20.17 28.68 29.63 290.64
30 || 18.59 || 27.62 | 28.54 28.63
100 || 8.11 21.87 21.87 21.97
SOUP-DIL faster than K-SVD
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Regularization using SOUP-DIL M
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» Large image x, extract M patches X = [P1x ... Pyx]
» Assume patch x, = P,x ~ Dz, has (aggregate) sparse
representation in dictionary D € R¥*/ where d is patch size

R(x) = R(X) = Ce’}ww|||X—DC'|||/2E+>\2|||C|H0 st el <LV

» R(x) = 0 if patches can be represented exactly with
“sufficiently few" non-zero coefficients (depends on \)

» lIgnore constraint ||¢jl| <L

» Bayesian interpretation?
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CT reconstruction using (known) dictionary regularizer

. .1
k = argmin - [ly — Ax||3, + B R(x)
X
. 1 2 P
=argmin _min  ly ~ Ax|fy + 5 (IX — DC'lt + 1 Cllo)

Alternating (nested) minimization:
Fixing x, updating each column of C sequentially
involves (truncated?) hard-thresholding
Fixing C, updating x is (large-scale) quadratic problem

M

1 1
g(x) = 5IX = DCIz = 3 5 |Pux — DPuC;
m=1
M
V2g(x) = Z P P, is diagonal
m=1

Work in progress...
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Why Bayesian?

v

Numerous “normal-dose” CT images!

v

learn D, or most of it, from “big data”

v

learn statistics of sparse coefficients Z7

v

replace generic || Z||, with p(Z)?
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Extensions / future work

>

Use majorization to update multiple columns of D or C
simultaneously

DC atom

Rotate/flip atoms [19] [20]

rank constraints on dictionary atoms [16]

Tensor structured atoms for 3D / dynamic imaging
Combined transform learning / dictionary learning

Union of manifolds instead of union of subspaces?

| S

Open problems
Model selection
Parameter selection
Performance guarantees
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