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Lower-dose X-ray CT image reconstruction

MICHIGAN

Thin-slice FBP ASIR Statistical
Seconds A bit longer Much longer
Image reconstruction as an optimization problem:

1
% = argmin = ||y — Ax|[3y, + R(x)
x=0 2

y data, A system model, W statistics, R(x) regularizer

(Same sinogram, so all at same dose)
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Optimization problem setting

X € arg min f(x)
X

» Unconstrained
» Large-scale (Hessian V2f too big to store and/or undefined)

» image reconstruction / inverse problems

» big-data / machine learning
>

» Cost function assumptions (throughout)
» f:RM =R
» convex (need not be strictly convex)
» non-empty set of global minimizers:

xeXx*={x, eR": f(x,) < f(x), Vx e RM}
» smooth (differentiable with L-Lipschitz gradient)
IV f(x) =V f(2)ll, < Lllx — 2], Vx,zeR"
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Example: Fair potential function

Fair's potential function [1] =
(similar to Huber function
and hyperbola):

¥(2) = 6%[12/9] — log(1 + |2/d])] ot
=

O e <t -

Thus L = 1.




Example: Machine learning M

MICHIGAN

To learn weights x of binary classifier given feature vectors {v;}
and labels {y; = +1}:

= arg min f(x), f(x) = Z?/)(yi (x, vi)).

Loss functions (surrogates)

exponential
hinge
logistic

0-1

loss functions (z)
» 0-1: H{ZSO}
» exponential: exp(—2z)

> logistic: log(1 + exp(—2z))
» hinge: max{0,1 — z}

Which of these ¢ fit our conditions?
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Gradient descent M
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Iteration with step size 1/L ensures monotonic descent of f:

1
Xpi1 = Xp — 7 Vi(xn).

Telescoping:

1 n
Xp+1 = X0 — Z ZVf(Xk)
k=0

10/48



Gradient descent convergence rate

v

Classic O(1/n) convergence rate of cost function descent:

_ Llxo—xl3

Flxn) = Fx.) < 20
—————
inaccuracy

v

Drori & Teboulle (2014) derive tightest inaccuracy bound:

L|xo — x5

f(xn) —f(xy) < in o

v

They construct a Huber-like function f for which GD achieves
that bound = case closed for GD with step size 1/L.

v

O(1/n) rate is undesirably slow.
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Generalizing GD slightly

» GD with general step size h:

h
Xpt1 = Xp — 7 Vi(xn).

» Classical monotone descent result:
h € (0,2) = f(xpt1) < f(xn) when x, is not a minimizer.

» If f is quadratic, then asymptotic best is

2L
Amax(V? F) + Amin(V2 1)

he =
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Generalizing GD slightly M
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» GD with general step size h:
h
Xpy1 = Xp — 7 Vi(xn).
» More generally, Taylor et al. [3] conjecture:

Lllxo — x, 2 1
f(xn)—f(x,) < ’2H2 max{2Nh+1, (1— h)2N}.

» Proof for 0 < h <1 by Drori and Teboulle [2]

» Upper bounds achieved by Huber-like function and quadratic
function f(x) = (L/2)x? respectively.

» Best h depends on N !
(For N=1, h, =1.5; for N =100, h, = 1.9705.)
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Heavy ball method

Heavy ball iteration (Polyak, 1987):

e (recursive form
Xn+1 =Xn =7 V#(xn) +\_ﬁ (xn ___./x"_l) for implementing)
momentum!

n

1 i (summation form
Xnt1 = Xn = 7 Z aB"" Vi(xk) for analysis)
=0 coefficients
How to choose ar and 37

How to optimize coefficients more generally?

13 /48



General first-order method classes M
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> General “first-order” (GFO) method:
Xpt+1 = function(xo, f(x0), VF(x0), ..., f(xn), V(xn))

» First-order (FO) methods with fixed step-size coefficients:

1 n
Xnt1 = Xn = | D hng1i VF(xk)
k=0

Primary goals:

> Analyze convergence rate of FO for any given {h, \}
» Optimize step-size coefficients {h, x }
» fast convergence

» efficient recursive implementation
» universal (design prior to iterating, independent of L)

14 /48



Example: Barzilai-Borwein gradient method M
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Barzilai & Borwein, 1988
g =S Vi(xn)

l[xn — Xn—lug
<Xn — Xp—1, g(n) _g(n—1)>

Xnt1 = Xp — ap VI(xp).

an —

> In “general” first-order (GFO) class, but
» Not in class FO with fixed step-size coefficients.
Nor are methods like

» steepest descent (with line search),
» conjugate gradient,
» quasi-Newton ...
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Nesterov's fast gradient method (FGM1)
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Nesterov (1983) iteration: Initialize: ty = 1, zo = xg

1
Zpi1 = Xp — I Vi(xn) (usual GD update)
1 5 .
tot1 = 5 1+ 4/14 4¢3 (magic momentum factors)
tn -1 .
Xni1 = Zpy1 + (zp41 —2z,)  (update with momentum) .
n+1
Reverts to GD if t, = 1,Vn.
. 1 &
FGM1 is in class FO: Xn+l = Xn = | Z hns1k VF(xk)
k=0
th—1
2 A, k=0,...,n=2 1 0 0 0 0 0
tnt1 0 125 0 0 0 0
_ n— _ — 0 010 140 0 0 0
b1 = trit (hnn-1—1), k=n-—1 0 005 020 150 0 0
th — 1 0 0.03 0.11 0.29 1.57 0
1+ s k=n 0 0.02 0.07 0.18 0.36 1.62
th1
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Nesterov FGM1 optimal convergence rate

Shown by Nesterov to be O(1/n?) for “auxiliary” sequence:

2L ||x0 — x4|/5
(n+1)2

Nesterov constructed a function f such that any first-order method
achieves

f(zn) — f(x4) <

%L”XO - X*||§
(n+1)?
Thus O(1/n?) rate of FGM1 is optimal.

New results (Donghwan Kim & JF, 2016):
Bound on convergence rate of primary sequence {x,}:

< f(xp) — f(xy) .

2L [|xo — X*Hg

f(xn) — f(xs) < (n+2)

Verifies (numerically inspired) conjecture of Drori & Teboulle
(2014).
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Overview M
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First-order (FO) method with fixed step-size coefficients:

1 n
Xpt1 = Xp — 7 Z hnt1.6 VF(xk)
L=

» Analyze (i.e., bound) convergence rate as a function of

» number of iterations N

» Lipschitz constant L

> step-size coefficients H = {h,41«}

» Distance to a solution: R = ||xo — x4||

» Optimize H by minimizing the bound

» Seek an equivalent recursive form for efficient implementation

18 /48



Ideal “universal” bound for first-order methods

For given
number of iterations N
Lipschitz constant L
step-size coefficients H = {hpy1 «}
distance to a solution: R = ||xo — X,||,
try to bound the worst-case convergence rate of a FO method:

Bi(H,R,L,N, M) £ max max max f(xy)—f(x
1( ) feF, Xo,X1,...,XNERM X*GX*(f) ( N) ( *)

[xo—xx[|<R

1 n
such that x,11 = x,— 7 Z hny14 VF(xk), n=0,....,N—L1
k=0

Clearly for any FO method, this cost-function bound would hold:
f(xn)—f(xy) < Bi(H,R,L, N, M).

19/48



Towards practical bounds for first-order methods

For convex functions with L-Lipschitz gradients
1
T |VF(x)—VF(2)|]> < f(x)—f(z)— (VF(z), x—z), Vx,zeRM.

Drori & Teboulle (2014) use this inequality to propose a “more
tractable” (finite-dimensional) bound:

By(H,R,L,N,M) 2  max ma max max LR&3,

8os---8NERM b0, 6N€R X0,X1,--, XNERM X, ¢ [[xo—x,[|[<R

1
such that x,,+1:x,,—th,,+1kng, n=0,...,N—1,
L™

gJH <6—5 R<gj7x’_x_]>7 i?.jZOJ“'?N?*?

where g, = 7= Vf(x,) and 6, = 7= (f(xn) — f(x4)).
For any FO method:

f(xn)—f(xx) < By(H,R,L,N,M) < By(H,R,L,N, M)

However, even B is as of yet unsolved.
20/48



Numerical bounds for first-order methods

v

Drori & Teboulle (2014) further relax the bound leading to a
still simpler optimization problem:

f(XN) — f(X*) < Bl(H, .. ) < BQ(H, . ) < Bg(H, R, L, N)

» For given step-size coefficients H, and given number of
iterations N, they use a semi-definite program (SDP) to
compute B3 numerically.

» They find numerically that for the FGM1 choice of H, the

2L || %0 — X413
(N +1)?

» Suggested improvements on FGM1 could exist.

convergence bound Bjs is slightly below
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Optimizing step-size coefficients numerically M
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Drori & Teboulle (2014) also compute numerically the minimizer
over H of their relaxed bound for given N using a SDP:

H* = argmin B3(H, R, L, N).
H

Numerical solution for H* for N =5 iterations: [2, Ex. 3]
0. Input: f € Ci"{]Rd). xo € B4,
1 x = xg — L6180 £r(xg),
2. xp=x — 0’1LMI fxo) — 2'02941”(1139
3. x3 = xp — DOI0 p(xg) — O35 pryy) — 2T i),
4 xg=x3— o.osm Flxo) — 0.2350]‘/(){1) _ 0.6241 Fon) — 2.3L656ff(x3))
5. x5 = xy — S4B f/(xg) — SR /() — 22 /() — 2PEF(3) —
2.0778 rr
= f ).

Drawbacks
Must choose N in advance
Requires O(N) memory for all gradient vectors {Vf(x,,)},’)l:1
O(N?) computation for N iterations
Benefit: convergence bound (for specific N) ~ 2x lower than for
Nesterov's FGM1.



New analytical solution

» Analytical solution for optimized step-size coefficients [7], [8]:
0,—1

9n+1h”7k’ k:O,...,n—2
H* o hpage=9 9t (hop1-1), k=n-1
1+2g,,—17 k=n.
n+1

1, n=20

Op=1{ 3(1+1+402)), n=1,... ,N-1
L1+ 1+862,), n=N.

> Analytical convergence bound for this optimized H*:

1L |[xo _X*Hg
f(xn)—f(xy) < Bs(H*,R,L,N) = .
be) = Flxe) < B ) (N+1)(N+1+V2)
» Of course bound is O(1/N?), but constant is twice better

» No numerical SDP needed = feasible for large N.
> (History: sought banded / structured lower-triangular form)
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Optimized gradient method (OGM1)

Donghwan Kim & JF (2016) also found efficient recursive iteration:
Initialize: 0y =1, zg = xo

1
Zpi1 = Xp — 7 Vi(xn)

b %(14_\/@), n=1,...,N—-1
" %(1+\/1+879,2,,1), n=N

0,—1
Xpt+l = Zpy1 + 0

0
(zn+1 —zn)‘|’ ein(szrl *Xn)-
n+1 n+1

new momentum

Reverts to Nesterov's FGM1 if the new terms are removed.
Very simple modification of existing Nesterov code
No need to solve SDP
Factor of 2 better bound than Nesterov's “optimal” FGM1.

(Proofs omitted.)
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Recent refinement of OGM1

New version OGM1' [9], [10]

1
Zpt1 = Xp — Z Vf(Xn) (usual GD update)
1
th+1 = 5 (1 +4/14+ 4t,27> (momentum factors)
t,—1 t
Xpi1 = Znt1 + ——— (Zn+1 = Zp) + —— (Znt1 — Xn)
th1 n+1

OGM1 momentum

New convergence bound for every iteration:

1L [|x0 — x.|f5

f(zn) — f(xs) < (n 12

Simpler and more practical implementation.
Need not pick N in advance.
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Optimized gradient method (OGM) is optimal!

For the class of first-order (FO) methods with fixed step sizes:

10
Xpn+1 = Xnp — 7 Z hn+l,k Vf(’“()v
L k=0

we optimized OGM and proved the convergence rate upper bound:

Llxo — X*||§
N2 '
Recently Y. Drori [11] considered the class of general FO methods:

f(xn) = f(xy) <

Xp+1 = F(Xo, f(X0)7 Vf(XO)a RN f(X,,), Vf(Xn)) )
and showed any algorithm in this case has a function f such that

L [[xo — X413
N2
Thus OGM has optimal complexity among all FO methods!

< f(xn) — F(xy).



MICHIGAN

Worst-case functions for OGM

From [9], [10]:

-t 002
0 1

OAO%J
-1 0 1 -1
X
(@) N =5: fo(e)

(e) N =5: fioam (2:5)

OGM has two worst-case functions (like GM), a Huber-like

function and a quadratic function.
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Machine learning (logistic regression)

To learn weights x of binary classifier given feature vectors {v;}
and labels {y; = £1}:

x = argmin f(x), f(x) = Z@M%‘ (x, vi)) +ﬁ% ||X||§

X
logistic:

o) =g+, i) = g i) = e (0]

Gradient V£ (x) = 3, yi vit(yi (x, v;)) +px
Hessian is positive definite so strictly convex:

:Zvi"L(Yi <X7 V/ +BI'< ZV/V +BI

L2 Lllp<zI: v vf) +p > m)?xp(v2 f(x))
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Numerical Results: logistic regression
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|
2,
+
+
+
S o, o yt * +
++
+ +
+
+ T+
+ ¢+
2 HTF o+
2 0 2
U1

Training data (points); initial decision boundary (red);
final decision boundary (magenta).
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Numerical Results: convergence rates
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—GD
Nesterov
—— OGM1

%0 — x|

Iteration
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MICHIGAN

Numerical Results: adaptive restart

10' ;
GD
—— Nesterov (restart)
ool ——OGM1 (restart)
N
»
[ 107
k3l
102
10'3 1
20 40

0
Iteration

O'Donoghue & Candés, 2014
How to best “restart” OGM1 is an open question.
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Low-dose 2D X-ray CT image reconstruction simulation M
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30

cree GD
--- FGM
25/ o
__20
)
2\ e
g* o\~
AN
=
oc
10
5
0] ‘ ‘ o
0 50 ot - "

Iteration
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Outline

MICHIGAN

Numerical examples

Further acceleration using OS
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Combining ordered subsets (OS) with momentum

» Optimization problems in image reconstruction (and machine
learning) involve sums of many similar terms:

M
f(x) = Z fm(x) .
m=1

» Approximate gradients using just one term at a time:
V f(x) = MV fn(x)

» Ordered subsets (OS) in tomography
» Incremental gradients in optimization / machine learning

» Combining OS with momentum dramatically accelerates!

36/48



OS + OGM1 method

Initialize: 8 = 1, zg = xg
For each iteration n

For each subset m=1,.... M
k=nM+m-1
M
Zi41 = Xi — T me(xk) (USU3| oS update)
1
Ok = 5 (1 +4/14 49%_1) (momentum factors)
(9;( -1 Qk

Xk+1 = Zk41 + (zZk41—2zk) + 57— (Zky1 — xk) -
Ok+1 Okt1

new momentum

Simple modification of existing OS code
~ O(1/(Mn)?) decrease of cost function f in early iterations
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Results: 3D X-ray CT patient scan
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3D cone-beam helical CT scan with pitch 0.5

950

900

850

800

Convergence rate in RMSD [HU], within ROI, versus iteration:

158, = &rotll2

vV Nror

(Disclaimer: RMSD may not relate to task performance...)

RMSDgor(x,) £
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Results: RMSD [HU] vs. iteration: without OS
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301 | | e GD
N ---FGM
' —OGM
25f \\
=200 \.% e
E ‘\
215 *
2 \\
o N
10t
5 [ ) - IRRET
O L L L
0 50 100 150 200
Iteration

e Computation time: OGM < FGM <« GD
e OGM requires about %—times fewer iterations than FGM

to reach the same RMSD.
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Results: RMSD [HU] vs. iteration: with OS M
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N
o
T

—OGM
——(0S(12)-GD
—6—0S(12)-FGM

RMSD [HU]
o

10f —B—0S(12)-0GM
5,
H—=—-a-a-9
O L
0 5 10 15 20

Iteration

e M = 12 subsets in OS algorithm.
e Proposed OS-OGM converges faster than OS-FGM.
o Computation time per iteration of all algorithms are similar.
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Generalizing OGM - gradient decrease

» Cost function decrease: f(x,)— f(xx) ~ O(1/n?)
» Gradient norm decrease? ||Vf(x,)|| — 0 at what rate?

Important especially for problems involving duality.
Known (recent) result [15]:

V2
: i Dl = < —
GM OgygNIIVf(X W =1VFxn)ll < S LR

2
FGM: ||[Vf(xpn)| < NLR
New results by DK & JF [16], [17]:

2V3
FGM: m|n |]Vf(x,,)\|< e LR

V2
) . < < 1=
OGM: min [IVF(xn)ll < [IVF(xn)Il < LR
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Generalized OGM (GOGM)

Input: £ € Fp, xo € RN, zg = xo, to € (01].

forn=0,1,...
1
Zpi1 = Xp — ZVf(x,,)

Choose momentum factors: t,11 > 0 s.t. t§+1 < Thi1 2 Z”‘H

(2tr2; - Tn)tn+1

(Tn - tn)tn+1 (
Tn+1tn

V4 — Xpn) -
Tn+1 th ( i n)

Xpt1 = Zpy1+ Zptl — zn)+

Optimized choice of momentum factors (for decreasing gradient
norm) [16], [17]:

1, n=0,
20 31\ 1+42,), n=0,..,[N/2] -1,
(N—n+1)/2, :U\//zj,.../v.

Dubbed “OGM-OG" for OGM with optimized gradients
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OGM-OG convergence rate bounds M
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» Convergence bound for cost function for OGM-OG:

2L ||xq — x4||2
flaw) — F(x) < 200Xl

Same as FGM

Convergence bound for gradient norm is best known:

V6
omin IVFzZa) < min [[VF(xa)| < 7575 LR

v

v

v

/2 better than FGM’s smallest gradient norm bound

v

Variations that do not require choosing N in advance, but
that have slightly larger constants in bounds.

v

Derivation uses relaxations that are not tight.

v

Is N3/2 best possible? What is best possible constant?
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Summary of (fast?) gradient decreasing FO methods

From [16], [17]:

. Asymptotic convergence rate bound | Require selecting
Algorithm - . .
Cost function Gradient norm N in advance
GM IN-t V2N~! No
FGM 2N~—2 2V/3N "2 No
OGM N—2 NoI No
OGM-H AN-2 AN"32 Yes
OGM-0G 2N—2 VBN~3 Yes
a -2 a\/g — 'r‘-

OGM-a (a > 2) 5N 2\/mN 32 No
OGM-a=4 2N 2 2v/3N~2

Numerical examples are work-in-progress.

MICHIGAN
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Summary

MICHIGAN

New optimized first-order minimization algorithm (optimall)

v

v

Simple implementation akin to Nesterov's FGM

v

Analytical converge rate bound

Bound on cost function decrease is 2x better than Nesterov

v

Future work
Constraints
Non-smooth cost functions, e.g., {1
Tighter bounds
Strongly convex case
Asymptotic / local convergence rates
Incremental gradients
Stochastic gradient descent
Adaptive restart
Low-dose 3D X-ray CT image reconstruction
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