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Motivation: combustion in transparent engine cylinder
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Motivation

Tomographic reconstruction of 3D chemiluminescence patterns
such as flame fronts using a plenoptic camera.

Previous work
I Tomo-PIV (particle image velocimetry) (4–6 cameras) [Elsinga et al.,

2006]

I Plenoptic 1.0 camera for PIV [Fahringer et al., 2012]

I Single-camera stereo [Greene et al., 2013] [Chen et al., 2015]

Depth maps for translucent objects?
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Plenoptic camera

Plenoptic cameras use micro-lens arrays to capture 4-D light field
information of a scene. The angular information enables:

I depth estimation (for object surfaces illuminated externally)
e.g., via triangulation [Perwaß, SPIE, 2012]

I tomographic reconstruction (for luminescent objects)
(cf., digital X-ray tomosynthesis - limited-angle tomography).

� Images courtesy of Raytrix GmbH and Lytro, Inc.
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Model-based image reconstruction (MBIR)

Overall goal: reconstruct 3D chemiluminescence pattern x from
plenoptic camera measurement y.

MBIR components:
I 3D object model (basis coefficients) x

- Image voxel, basis function, ...

I System model A (# of sensor elements × # of object voxels)

- Linearity, finite voxel size, finite pixel size, ...

I Data noise statistics p(y|Ax)

- Additive Gaussian, Poisson, ...

I Cost function Ψ(x)

- Data fidelity, regularizer, physical constraints, ...

I Iterative algorithm (arg minx)

- MART, FISTA, Newton’s methods, ...

[Nuyts et al., Phys. Med. Biol., 2013]
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Model-based image reconstruction (continued)

We reconstructed objects by solving a regularized LS problem:

x? ∈ arg min
x

{
Ψ(x) , 1

2 ‖y − Ax‖2
2 + R(x)

}
s.t. x � 0 ,

where R denotes an edge-preserving corner-rounded TV regularizer.

We focused on R defined as

R(x) ,
∑

i=1 βi
∑

n ϕHuber([Cix]n) ,

I Ci : finite difference matrix along ith direction

I βi : corresponding regularization parameter.

I ϕHuber(t) ≈ |t|
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System model for a plenoptic camera

[Bishop & Favaro, IEEE T-PAMI, 2012]
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System model for a plenoptic camera

Build (pre-compute) system matrix A one column at a time

[Bishop

& Favaro, IEEE T-PAMI, 2012]

8 / 29



System model for a plenoptic camera

| ←− z −→ | ←− Z −→ |
thin lens formula: 1/z + 1/Z = 1/F

[Bishop & Favaro, IEEE T-PAMI,

2012]
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System model for a plenoptic camera

[Bishop & Favaro, IEEE T-PAMI, 2012]
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System model for a plenoptic camera

Use superposition to consider one microlens at a time

[Bishop &

Favaro, IEEE T-PAMI, 2012]
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System model for a plenoptic camera

If microlens had large diameter...

[Bishop & Favaro, IEEE T-PAMI,

2012]
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System model for a plenoptic camera

If main lens had large diameter...

[Bishop & Favaro, IEEE T-PAMI,

2012]
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System model for a plenoptic camera

Combined effect of main lens and microlens

[Bishop & Favaro, IEEE

T-PAMI, 2012]
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System model for a plenoptic camera

Combined effect of main lens and microlens

[Bishop & Favaro, IEEE
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System model - continued

Continuous-space PSF of the ith micro-lens is:

βi (s, t; x , y , z) = βML-µL
i (s, t; x , y , z)︸ ︷︷ ︸
∝ circ

(
s,t;cML-µL

i ,Bi

) ·βµL
i (s, t; x , y , z)︸ ︷︷ ︸
∝ circ

(
s,t;cµL

i ,bi

) ,
where

I (s, t) denotes 2D sensor
coordinates

I centers cML-µL
i , cµL

i , and radii Bi ,

and bi depend on the object

point position (x , y , z) and

camera geometry.

I
∑

i βi (s, t; x , y , z) sketched:
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Computational challenges

I Dense micro-lens array

I Highly shift-variant point spread function

I Non-separable aperture / PSF (cf., X-ray CT)

I Lens aberrations

I Finite sensor pixel size
The discrete PSF of a micro-lens consists of integrals of the circle-circle
intersection over each sensor pixel, where the circle centers depend on the
position of the “point source.”

We approximate each finite-sized sensor pixel as L× L infinitesimal pixels,

i.e., L×-subsampling in each direction.

I Finite object voxel size
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Finite-sized object voxel effects

One (x , y) transaxial plane of a 3D object voxel
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Finite-sized object voxel: baseline approximation

We approximate each cubic voxel as K × K × K equally spaced
infinitesimal voxels, i.e., K×-subsampling in each direction.

PSF
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Why finite voxel size matters

(zoomed)

Infinitesimal voxels
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13 / 29



Why finite voxel size matters (zoomed)

Infinitesimal voxels
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Numerical experiments: imaging geometry
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Numerical experiments: object geometry

I 100× 100× 100 voxel object

I 0.5× 0.5× 0.5 [mm3] voxels

I 50 [mm] field-of-view

I 7× sensor subsampling when
precomputing A

I 50 dB SNR (additive white
Gaussian noise)

I To avoid an inverse crime when synthesizing plenoptic sensor pictures, we
used a voxelized object having a 2× finer grid in 3D, with 11×
subsampling per dimension.
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Numerical experiments: plenoptic cameras

Camera #1 Camera #2 Camera #3

fmain 80 80 80 [mm]
f-number 1.4 2.8 1.4
dmain 57.14 28.57 57.14 [mm]

fmicro 0.35 0.35 0.35 [mm]
dmicro 0.27 0.135 0.135 [mm]

type larger Bishop & Favaro overlaps

I 9µm × 9µm sensor pixel size

I 850× 850 pixel sensor
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Numerical experiments: simulated plenoptic pictures

Camera #1
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Better angular resolution than Camera #2, but worse spatial resolution
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Numerical experiments: simulated plenoptic pictures

Camera #2
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Numerical experiments: simulated plenoptic pictures

Camera #3
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Overlapping (larger) subimages: demultiplexing needed,

but (perhaps) more angular information than Camera #2.
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Numerical experiments: image reconstruction

[Recap] Our image reconstruction problem is:

x? ∈ arg min
x

{
Ψ(x) , 1

2 ‖y − Ax‖2
2 + R(x)

}
s.t. x � 0 ,

I 500 iterations of FISTA with adaptive restart
[Beck & Teboulle, IEEE T-IP, 2009]

[O’Donoghue & Candès, FCM, 2015]

I Precomputed / stored A (column-wise sparse)

- 7× object subsampling (x , y , z)
- 7× sensor subsampling (s, t)
- 320 secs/slice for camera #1

(60 threads @ MATLAB)

I 26 3D neighbors used in the (smoothed) TV regularizer
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Numerical experiments: finite voxel size

Infinitesimal voxels Finite-sized voxels

Contours at isovalue = 20% of maximum intensity.
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Numerical experiments: aperture size

Large aperture/coarse MLA Small aperture/dense MLA

Better lateral resolution of Camera 2 not helpful here.
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Numerical experiments: aperture size - slices
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Numerical experiments: overlapping subimages

Non-overlapping subimages Overlapping subimages
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Numerical experiments: overlapping subimages - slices

Phantom
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Numerical experiments: object distance

dobject = 700 [mm] dobject = 550 [mm]
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Numerical experiments: object distance - slices
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Numerical experiments: sharp vs smooth object

Sharp object edges Smooth object edges
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Numerical experiments: sharp vs smooth object - slices

Sharp phantom
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Conclusions

I Model-based image reconstruction may be viable for 3D
chemiluminescence from plenoptic camera data

I Voxel-size modeling is important

I Larger angular range of incident light improves z-resolution
(but more severe lens aberration?)

I F-number matching can be relaxed (overlapping sub-images)
to improve depth resolution in tomographic formulation

I Need fast on-the-fly forward/back-projections to solve real
large-scale image reconstruction problems
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Approximate box blur

In practice, Bi � bi , so βi is usually a circle.
The continuous-space PSF of a voxel slice at depth z is

∫ x+
4x

2

x−4x
2

∫ y+
4y

2

y−
4y

2

βi (s, t; x̄ , ȳ , z) dȳdx̄

≈
∫ x+

4x
2

x−4x
2

∫ y+
4y

2

y−
4y

2

circ
(
s, t; cµL

i (x̄ , ȳ) , bi
)
dȳdx̄

=

∫ 4x
2

−4x
2

∫ 4y

2

−
4y

2

circ
(
s, t; cµL

i (x + δx , y + δy ) , bi
)
dδydδx

=

∫∫
circ
(
s − δs , t − δt ; cµL

i (x , y) , bi
)
· rect(δs , δt ;ws ,wt) dδtdδs .

Back
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Infinitesimal vs finite-sized sensor pixel: point object
Infinitesimal voxel/pixel
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(For an infinitesimal voxel)
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Infinitesimal vs finite-sized sensor pixel: sphere object
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