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Motivation

I Statistical image reconstruction (SIR) methods for CT are
nonlinear, complicating analysis of noise (co)variance

I Predicted (co)variance can inform:
I Regularization design
I Reconstruction analysis
I Tube current modulation

I Prior methods exist for fast variance prediction for 2DCT and
for some limited 3DCT geometries (Zhang-O’Connor 2007)
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Contribution

I Fast variance prediction for SIR with arbitrary CT geometries
I Frequency response approximation for A′WA operator

(projection, statistical weighting, and backprojection)
I Extends previous 2D fan-beam methods to any CT geometry
I Further simplification to 3DCT with small cone angles
I Evaluation of methods with simulated and real sinogram data

I Example with real data
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Prior work on variance prediction for SIR

* J. A. Fessler, “Mean and variance of implicitly defined biased estimators (such
as penalized maximum likelihood): Applications to tomography,” IEEE Trans.
Im. Proc., vol. 5, no. 3, 493–506, Mar. 1996.

* J. Qi and R. M. Leahy, “A theoretical study of the contrast recovery and
variance of MAP reconstructions from PET data,” IEEE Trans. Med. Imag.,
vol. 18, no. 4, 293–305, Apr. 1999.

* Y. Zhang-O’Connor and J. A. Fessler, “Fast predictions of variance images for
fan-beam transmission tomography with quadratic regularization,” IEEE Trans.
Med. Imag., vol. 26, no. 3, 335–46, Mar. 2007.

* ——,“Fast variance predictions for 3D cone-beam CT with quadratic
regularization,” in Proc. SPIE 6510 Medical Imaging 2007: Phys. Med. Im.,
2007, 65105W:1–10.

* S. M. Schmitt and J. A. Fessler, “Fast variance computation for iterative
reconstruction of 3D helical CT images,” in Proc. Intl. Mtg. on Fully 3D Image
Recon. in Rad. and Nuc. Med, 2013, 162–5.

I Too slow or too geometry specific

4 / 31



Outline

Introduction

Background

Local frequency response approximation

Fast Variance Prediction

5 / 31



SIR formulation

I Reconstruct image x̂ via a (strictly convex) minimization:

x̂ = argminx L(Y; x) + αR(x)

I Data-fit term assumes independent observations {Yi}:

L(Y; x) =
∑NY

i=1 Li (Yi ; [Ax]i ), A is system matrix

For PWLS: Li (Yi ; y) = 1
2 wi (log(I0,i/Yi )− y)2

I Regularizer has general form:

R(x) =
∑

d rd
∑

k ψ([Cdx]k)

I rd : direction-dependent regularization parameters;
I ψ : edge-preserving potential function (smooth), ψ̈(0) = 1
I Cd : finite-differencing matrix in dth direction
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Covariance approximation - Matrix form

I Covariance matrix of reconstruction x̂ is approximately (JF ’96):

cov(x̂) ≈
[
F̄ + α∇2R(x̆)

]−1
F̂
[
F̄ + α∇2R(x̆)

]−1

F̄ , A′W̄A (Fisher information)
F̂ , A′ŴA

I ∇2R : Hessian of regularizer
I x̆: reconstruction from noiseless (!) data
I Diagonal weighting matrices W̄ and Ŵ:

[W̄]ii ,
∂2

∂y2 Li (Yi ; y)
∣∣∣∣∣
y=[Ax̆]i

[Ŵ]ii , var(Yi ) ·
∂2

∂y ∂Yi
Li (Yi ; y)

∣∣∣∣∣
y=[Ax̆]i

(Ŵ = W̄ for PWLS with appropriate statistical weighting.)
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Towards Tractable (Co)Variance Prediction

cov(x̂) ≈
[
F̄ + α∇2R(x̆)

]−1
F̂
[
F̄ + α∇2R(x̆)

]−1
(JF 96)

Empirical covariance VP by FFT-based methods
(Qi & Leahy 99, JF 99, Stayman & JF 00)

FVP for 2DCT
(Zhang-O’Connor & JF 07)

FVP for General CT
(Schmitt & JF 15)

FVP for small cone angle
(Schmitt & JF 15)
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Local Frequency Response

I F̄ and R ,
∑

d rdC′dCd are approximately locally shift
invariant near the jth voxel,

I so the DFT Q approximately locally diagonalizes them:

F̄ ≈ Q′ diag
{

F̄j(~νk)
}

Q (local frequency response)

R ≈ Q′ diag {R(~νk)}Q ~νk : spatial frequencies

I Diagonalization (somewhat) simplifies variance prediction:

var(x̂j) = e′j cov(x̂) ej ≈ e′j
[
F̄ + αR

]−1
F̂
[
F̄ + αR

]−1
ej

≈ e′jQ′ diag {Sj(~νk)}Qej = 1
Nx

∑
k Sj(~νk)

≈
∫

[− 1
2 ,

1
2 ]d

Sj(~ν) d~ν, local NPS: Sj(~ν) , F̂j(~ν)
(F̄j(~ν) + αR(~ν))2

I Tolerable computation for one voxel; impractical for many/all
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Regularizer Hessian Approximation

I (Co)variance prediction needs regularizer Hessian:

∇2R(x) =
∑

d
rdC′dΨ̈d (x)Cd ,

[
Ψ̈d (x)

]
kk

= ψ̈([Cdx]k)

I Near edges, predicted variance sensitive to (unknown) x̆
I Even when x̆ is known (simulations), variance predictions near

edges are inaccurate due to local shift variance
I To remove x̆ dependence and simplify, we approximate:
ψ̈([Cd x̆]k) ≈ ψ̈(0) = 1. In matrix form: Ψ̈d (x̆) ≈ I.

I Shift-invariant regularizer Hessian approximation:

∇2R(x̆) ≈
∑

d
rdC′dCd , R, R(~ν) ≈ ‖~ν‖2

2

Approximation is accurate (only) away from edges.
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Local Frequency Response Factorization

I Need local frequency response F̄j(~ν) of A′W̄A near jth voxel
I Skipping long derivation...
I We derive a factorization of the local frequency response:

F̄j(~ν) =
∑

k
[F̄]kj exp (−ı2π~ν · (~nk − ~nj)) (DFT-based)

≈ J(~ν) Ēj(~Θ) (Approximation)

I J is independent of system geometry, voxel location, weighting
I Ēj depends on angle ~Θ = ~ν/||~ν||, not on % = ||~ν||
I Applicable to arbitrary CT geometries (generalizes F3D 2013)

I Also useful for regularization design (Cho & JF, F3D, 2013)
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Local Frequency Response

FT−based LFR (log scale)

 

 
Approximated LFR (log scale)

 

 

2D slices through 3D LFR F̄j(~ν)

I For parallel-beam CT with W = I these would look like 1/ρ.
I Infamous “missing cone” is evident
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Local Noise Power Spectrum (NPS)

Local NPS: Sj(~ν) = F̂j(~ν)
(F̄j(~ν) + αR(~ν))2

FT−based NPS (linear scale) Approximated NPS

(reverse color scale: NPS is small at DC and for large frequencies)
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Variance Prediction — Arbitrary Geometries

I Recall that noise variance is integral of local NPS:

var(x̂j) ≈
∫

[− 1
2 ,

1
2 ]d

Sj(~ν) d~ν =
∫

[− 1
2 ,

1
2 ]d

F̂j(~ν)
(F̄j(~ν) + αR(~ν))2 d~ν

I Using LFR factorization and rewriting in spherical coordinates:

var(x̂j) ≈
1
α

∫
Sd

Êj(~Θ)
Ēj(~Θ)

G(α−1Ēj(~Θ), ~Θ) d~Θ

I Tabulate based on voxel basis and regularizer:

G(γ, ~Θ) ,
∫ %max(~Θ)

0

γJ(%, ~Θ)
(γJ(%, ~Θ) + R(%, ~Θ))2

%d−1 d%
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Variance Prediction — 3DCT

I For 3DCT geometries with small cone angles, factor LFR
using cylindrical spatial frequency coordinates:

F̄j(~ν) ≈ Jcyl(~ν)Ē cyl
j (Φ)

I In cylindrical coordinates, the NPS integral becomes 1D:

var(x̂j) ≈
1
α

∫ 2π

0

Ê cyl
j (Φ)

Ē cyl
j (Φ)

Gcyl(Φ, α−1Ē cyl
j (Φ)) dΦ

I Tabulate Gcyl using voxel basis and regularizer.
I Variance approximation requires just 1D integral (per voxel)

akin to back-projection
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Local Frequency Response — Cylindrical Factorization

FT−based LFR (log scale)

 

 
Approximated LFR, Theta=0 (log scale)

 

 

F̄j(~ν)
I Still reasonable agreement, albeit somewhat less so
I Infamous “missing cone” is absent

18 / 31



Local NPS — Cylindrical Factorization

FT−based NPS (linear scale) Approximated NPS, Theta=0

NPS Sj(~ν)
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Towards Tractable (Co)Variance Prediction

cov(x̂) ≈
[
F̄ + α∇2R(x̆)

]−1
F̂
[
F̄ + α∇2R(x̆)

]−1
(JF 96)

Empirical covariance VP by FFT-based methods
(Qi & Leahy 99, JF 99, Stayman & JF 00)

FVP for 2DCT
(Zhang-O’Connor & JF 07)

FVP for General CT
(Schmitt & JF 15)

FVP for small cone angle
(Schmitt & JF 15)
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Results — Simulation

I 512× 512× 320 voxel section of an XCAT phantom (Segars 08)

I Voxel size 0.976× 0.976× 0.625 mm
I 888× 64× 2952 sinogram (3 turn helix, pitch = 1)
I Detector element size 1.024× 1.096 mm

I Huber potential, δ = 10HU: ψ(x) =
{

x2/2, |x | ≤ δ
δ|x | − δ2/2, |x | > δ,

I Empirical SD from many realizations,
smoothed with a 3-voxel FWHM kernel

I Two regularization penalties:
I Space-varying regularization for uniform resolution

(Fessler 96), 111 realizations
I Uniform (conventional) regularization 61 realizations

I Variance prediction computed once per 4× 4× 4 block
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Results: Simulation — Space-Varying Regularization
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Results: Simulation — Uniform Regularization
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Results: Real CT scans — Setup

I GE Discovery CT750 HD scanner;
888× 16× 984 sinogram with detector element size
1.024× 1.096 mm; 40mA tube current

I 512× 512× 32 voxel reconstruction of a chest phantom
I Voxel size 0.976× 0.976× 0.625 mm
I Empirical SD from 10 reconstructions, each slice smoothed

with a 3-voxel FWHM kernel
I Two regularization penalties:

I Space-varying regularization, quadratic penalty
I Uniform regularization, Huber penalty, δ = 10HU

I Variance prediction computed once per 4× 4× 1 block
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Results: Real CT Scans — Example Reconstruction
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Results: Real CT Scans — Example Reconstruction
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Results: Real CT — Space-Varying Regularization
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Results: Real CT — Conventional Regularization
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Summary

I Analytical LFR and NPS expressions for SIR in general CT
I Fast variance prediction – akin to a back-projection
I Accurate for various regularizers except near edges
I Prediction near edges remains open problem (Ahn and Leahy, 08)

I Most error is due to local shift invariance approximation
I Proposed method is faster by orders of magnitude than

both DFT-based methods and empirical methods
I Local frequency response (LFR) approximation useful in other

statistical applications, such as regularization design and
prediction of observer performance (Schmitt 15 thesis)

I Application to tube current modulation is work-in-progress
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Results: Real CT Scans — Compute Time

Total computation time (CPU-seconds)
Empirical DFT-based Proposed

Simulation 1.64 · 107 7.23 · 108 1.21 · 103

111 realizations, 512× 512× 320 image, 888× 64× 2952 detector

Real 3.63 · 105 1.07 · 108 6.73 · 102

10 realizations, 512× 512× 32 image, 888× 16× 984 detector
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