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X-ray CT scans

CT image reconstruction problem:
Determine unknown attenuation map x given sinogram data y
using system matrix A.
cf. SPECT with orbiting gamma camera
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MRI scans

(No moving parts
to animate)

MR image reconstruction problem:
Determine unknown magnetization image x given k-space data y
using system matrix A
Defer motion for now...
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Inverse problems

Unknown
object

x
→ Imaging

system → Data
y → Recon → Image

x̂

How to reconstruct object x from data y?
Non-iterative methods:
• analytical / direct
◦ Filtered back-projection (FBP) for CT (textbook: Radon transform)
◦ Inverse FFT for MRI (textbook: FFT)

• idealized description of the system (“textbook model”)
◦ geometry / sampling
◦ disregards noise and simplifies physics

• typically fast
Iterative methods:
• model-based / statistical
• based on “reasonably accurate” models for physics and statistics
• usually much slower
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Statistical image reconstruction: CT example

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

(Same sinogram, so all at same dose)
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Why statistical/iterative methods for CT?

• Accurate physics models
◦ X-ray spectrum, beam-hardening, scatter, ...

=⇒ reduced artifacts? quantitative CT?
◦ X-ray detector spatial response, focal spot size, ...

=⇒ improved spatial resolution?
◦ detector spectral response (e.g., photon-counting detectors)

=⇒ improved contrast between distinct material types?

• Nonstandard geometries
◦ transaxial truncation (wide patients)
◦ long-object problem in helical CT
◦ irregular sampling in “next-generation” geometries
◦ coarse angular sampling in image-guidance applications
◦ limited angular range (tomosynthesis)
◦ “missing” data, e.g., bad pixels in flat-panel systems
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Why iterative for CT ... continued

• Appropriate models of (data dependent) measurement statistics
◦ weighting reduces influence of photon-starved rays (cf. FBP)

=⇒ reducing image noise or X-ray dose

• Object constraints / priors
◦ nonnegativity
◦ object support
◦ piecewise smoothness
◦ object sparsity (e.g., angiography)
◦ sparsity in some basis
◦ motion models
◦ dynamic models
◦ ...

Henry Gray, Anatomy of
the Human Body, 1918,
Fig. 413.

Constraints may help reduce image artifacts or noise or dose.

Similar motivations/benefits in PET and SPECT.
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Disadvantages of iterative methods for CT?

I Computation time
I Must reconstruct entire FOV
I Complexity of models and software
I Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess IQ
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Sub-mSv example

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

FBP ASIR Statistical
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MBIR example: Chest CT

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv.
(Health Physics Soc.: http://www.hps.org/publicinformation/ate/q2372.html)

FBP MBIR
Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare

14 / 74

 http://www.hps.org/publicinformation/ate/q2372.html 


History: Statistical reconstruction for X-ray CT∗

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• ...
• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)

• EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)

• Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)

• Ordered-subsets algorithms (Manglos et al., PMB 1995)
(Kamphuis & Beekman, T-MI, 1998)

(Erdoğan & Fessler, PMB, 1999)

• ...
• Commercial OS for Philips BrightView SPECT-CT (2010)

• Commercial ICD for GE CT scanners (circa 2010)

• FDA 510(k) clearance of Veo (Sep. 2011)

• First Veo installation in USA (at UM) (Jan. 2012)
(∗ numerous omissions, including many denoising methods)
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Statistical image reconstruction for CT: Formulation

Optimization problem formulation: x̂ = arg minx≥0 Ψ(x)

Ψ(x)︸ ︷︷ ︸
cost

function

,
1
2 ‖y − Ax‖2

W︸ ︷︷ ︸
data-fit term

physics & statistics

+β
N∑

j=1

∑
k∈Nj

ψ(xj − xk)

︸ ︷︷ ︸
regularizer

prior models

y : measured data (sinogram)
A : system matrix (physics / geometry)
W : weighting matrix (statistics)
x : unknown image (attenuation map)
β : regularization parameter(s)
Nj : neighborhood of jth voxel
ψ : edge-preserving potential function
(piece-wise smoothness / gradient sparsity)
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Statistical image reconstruction for CT: Research

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2

W +
∑

j

∑
k

βj,k ψ(xj − xk)

Apparent topics:
• regularization design / parameter selection ψ, βjk
• statistical modeling W , ‖·‖
• system modeling A
• optimization algorithms (arg min)
• assessing IQ of x̂

Other topics:
• system design
• motion
• spectral
• dose ...
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MRI: Why iterative reconstruction?

Inverse FFT is fast (like FBP). Why change?
(Joint work with D. Noll, J. Nielsen, ...)

Recall rationale for CT/PET/SPECT:
I physics modeling
◦ reduce artifacts
◦ improve resolution
◦ improve contrast

I noise modeling: (dose, variability)
I sampling: non-standard geometries
I constraints on object

Which of these matter for MRI?
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MRI why iterative: Physics
Physics modeling (e.g., field inhomogeneity) =⇒ reduced artifacts

Example: T2*-weighted imaging (Sutton et al., IEEE T-MI, 03)

uncorrected traditional iterative field map

x̂ = arg min
x

1
2 ‖y − Ax‖2

2 + βR(x)

System matrix A depends on (measured) field map:

aij = e−ıωj ti e−ı2π~νi ·~rj

No analytical inverse of A. cf. nonuniform attenuation correction in SPECT
19 / 74
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MRI why iterative: Physics
Joint estimation of field map ω and magnetization image x:

(x̂, ω̂) = arg min
x,ω

1
2 ‖y − A(ω)x‖2

2 + β1 R1(x) +β2 R2(ω)

Useful when field map drifts in dynamic imaging.
(Sutton et al., MRM 04) (Olafsson et al., T-MI 08)

cf. joint estimation of attenuation map µ and activity image λ
in SPECT, PET and TOF-PET.
(Censor et al., T-NS 79) (Clinthorne et al., NSS 91) (Rezaei, Defrise, Nuyts, T-MI 14)
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MRI why iterative: Physics

RF pulse design

RF pulse
b → Bloch Eqn → Excited magnetization

m

Small-tip approximation: m ≈ Ab
Iterative RF pulse design (with RF power regularization):

arg min
b
‖m − Ab‖2

2 + β ‖b‖2
2

Minimize using CG. (Yip et al., MRM, Oct. 2005)

d. Non-iterative:
e. Iterative:
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MRI why iterative: Noise

I MRI measurements: (complex) AWGN =⇒ easy !?

I Variance of image phase depends on image magnitude.
I Image phase useful in some applications, e.g., B1 mapping:

Unregularized vs regularized phase estimate. (Zhao et al., T-MI 14)

22 / 74



MRI why iterative: Noise

I MRI measurements: (complex) AWGN =⇒ easy !?
I Variance of image phase depends on image magnitude.
I Image phase useful in some applications, e.g., B1 mapping:

Unregularized vs regularized phase estimate. (Zhao et al., T-MI 14)
23 / 74



MRI why iterative: Sampling

I Reducing k-space sampling =⇒ reduced scan time
I Especially compelling for dynamic imaging (cf. CT and SPECT)

I Popular “under-sampled” patterns: (cf. sparse-view CT)

Random Cartesian

kx

ky
Radial

I Solution strategies
◦ Multiple receive coils
◦ Object model assumptions (e.g., sparsity)
◦ iterative reconstruction (“compressed sensing”)
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Parallel MRI

Under-sampled Cartesian k-space: use multiple receive coils with
individual spatial sensitivity patterns. (Pruessmann et al., MRM, 1999)

Array coil images

1 64

1

64 A =

 FS1
FS2

...



Compressed sensing parallel MRI ≡ (random) under-sampling
Lustig et al., IEEE Sig. Proc. Mag., Mar. 2008
cf. multiple-source CT (speed) or multi-camera SPECT (counts)
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Model-based image reconstruction in parallel MRI

Regularized estimator:

x̂ = arg min
x

1
2 ‖y − FSx‖2

2︸ ︷︷ ︸
data fit

+β ‖Rx‖p︸ ︷︷ ︸
sparsity

.

F is under-sampled DFT matrix (wide)
Features:
• coil sensitivity matrix S is block diagonal
• F ′F is circulant (for Cartesian sampling)

Challenges:
• Data-fit Hessian S ′F ′FS is highly shift variant due to coil

sensitivity maps
• Non-quadratic (edge-preserving) regularization ‖·‖p
• Non-smooth regularization ‖·‖1 (cf. sparse view CT)
• Complex quantities
• Large problem size (if 3D or dynamic or many coils)
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2.5D parallel MR image reconstruction

Example of “compressed sensing” MRI reconstruction:
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original k-space IFFT iterative difference

• Fully sampled body coil image of human brain (144 × 128)
• Poisson-disk-based k-space sampling, 16% sampling (acceleration 6.25)
• Square-root of sum-of-squares inverse FFT of zero-filled k-space data for 8 coils
• Regularized reconstruction x (∞)

combined TV and `1 norm of two-level undecimated Haar wavelets
• Difference image magnitude

(Sathish Ramani & JF, IEEE T-MI, Mar. 2011)
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Summary of “What” and “Why”

I CT and MRI both involve inverse problems
I Some similarities in motivations and formulations
I Some similarities in computation challenges
I Some opportunities for cross-fertilization
I Caution: MRI reconstruction field is crowded!
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SIR for CT: Optimization challenges

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2

W +
N∑

j=1

∑
k

βj,k ψ(xj − xk)

Optimization challenges:
• large problem size: x ∈ R512×512×600, y ∈ R888×64×7000

• A is sparse but still too large to store; compute Ax on-the-fly
• W has enormous dynamic range (1 to exp(−9) ≈ 1.2 · 10−4)
• Gram matrix A′WA highly shift variant
• Ψ is non-quadratic but convex (and often smooth)
• nonnegativity constraint
• data size grows: dual-source CT, spectral CT, wide-cone CT, ...
• Moore’s law insufficient
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Optimization transfer (Majorize-Minimize) methods: 1D
Ψ
(x
) Ψ(x)

φ(n)(x)

x
(n)

x
(n+1)

x

Surrogate function (majorizer)
Cost function

φ(n)(x (n)) = Ψ(x (n))
φ(n)(x) ≥ Ψ(x)

cf. ML-EM

x (n+1) = arg min
x

φ(n)(x)
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Optimization transfer (Majorize-Minimize) methods: 2D
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Separable Quadratic Surrogates (SQS): Math

L(x) = 1
2 ‖y − Ax‖2

W

= L
(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′A′WA

(
x − x (n))︸ ︷︷ ︸

non-separable

≤ L
(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′D (

x − x (n))︸ ︷︷ ︸
separable

, φ(n)
L (x), a “SQS”,

where A′WA � D = diag{A′WA1} . (De Pierro, T-MI, Mar. 1995)
Proofs:
• Convexity of x2

• Geřsgorin disk theorem
• Cauchy-Schwarz inequality
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Separable Quadratic Surrogates (SQS): Pictures

• Find minimizer of L(x): challenging
• Find minimizer of φ(n)

L (x): easy (separate 1D problems)
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WLS-SQS: Iteration

General optimization transfer (majorize-minimize) method:

x (n+1) = arg min
x

φ(n)
L (x)

For SQS:

φ(n)
L (x) = L

(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′D (

x − x (n))
∇φ(n)

L (x) = ∇ L
(
x (n))+D

(
x − x (n))

0 = ∇φ(n)
L

(
x (n+1)

)
= ∇ L

(
x (n))+D

(
x (n+1) − x (n)

)
x (n+1) = x (n) −D−1∇ L

(
x (n))

“diagonally preconditioned gradient descent”
(Erdoğan & JF, PMB, 1999)
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SQS versus GD: Math

Ordinary gradient descent (GD) for WLS:

x (n+1) = x (n) − α∇ L
(
x (n)) = x (n) − αA′W (Ax (n) − y),

where textbook step size is reciprocal of Lipschitz constant:

α = 1
λmax(A′WA) .

WLS-GD is equivalent to WLS-SQS with “isotropic” majorizer
Hessian:

D = λmax(A′WA)I.

Drawbacks:
• λmax(A′WA) usually impractical to compute (in CT)
• Usually slower convergence due to smaller step sizes
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SQS versus GD: Pictures
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SQS versus GD: Pictures
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Classical gradient descent (GD)
Assumptions:
• Ψ is convex (need not be strictly convex)
• Ψ has non-empty set of global minimizers

x̂ ∈ X ∗ =
{

x (?) ∈ RN : Ψ(x (?)) ≤ Ψ(x), ∀x ∈ RN
}

• Ψ is smooth (differentiable with L-Lipschitz gradient)
‖∇Ψ(x)−∇Ψ(z)‖2 ≤ L ‖x − z‖2 , ∀x, z ∈ RN

GD with step size 1/L ensures monotonic descent of Ψ:

x (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) .

Drori & Teboulle (2014) derive tightest “inaccuracy” bound:

Ψ
(
x (n))−Ψ

(
x (?))︸ ︷︷ ︸

inaccuracy

≤
L
∥∥x (0) − x (?)

∥∥2
2

4n + 2 .

For a Huber-like function Ψ, GD achieves that (tight) bound.
O(1/n) rate is undesirably slow.
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Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: t0 = 1, z (0) = x (0)

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(magic momentum factors)

x (n+1) = z (n+1) + tn − 1
tn+1

(
z (n+1) − z (n)

)
(update with momentum)

I Reverts to GD if tn = 1, ∀n.
I Comparable computation as GD
I Store one additional image-sized vector z (n)
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FGM1 properties

FGM1 shown by Nesterov to be O(1/n2) for “primary” sequence:

Ψ
(
z (n))−Ψ

(
x (?)) ≤ 2L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 .

Nesterov constructed a function Ψ such that any first-order
method achieves

3
32L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 ≤ Ψ

(
x (n))−Ψ

(
x (?)) .

Thus O(1/n2) rate of FGM1 is optimal.
Donghwan Kim (2014) analyzed “secondary” sequence:

Ψ
(
x (n))−Ψ

(
x (?)) ≤ 2L

∥∥x (0) − x (?)
∥∥2

2
(n + 2)2 .
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SQS plus momentum for parallel MRI

I “Traditional” iterative soft thresholding algorithm (ISTA)
uses (global) Lipschitz constant of data-fit term:

∇2 1
2 ‖y − FS‖2

2 = S ′F ′FS ≤ S ′S ≤ λmaxI, λmax = max
j

[
S ′S

]
j,j

λmax is maximum sum-of-squares value of sensitivity maps.
I Augmented Lagrangian (AL) methods converge faster than

ISTA, FISTA, MFISTA (Ramani & JF, T-MI, 2011)

I BARISTA (B1-based, adaptive restart, ISTA)
(Muckley, Noll, JF, T-MI, 2015)

For synthesis operator x = Qz with z sparse:

∇2 1
2 ‖y − FSQ‖2

2 = Q′S ′F ′FSQ ≤ Q′S ′SQ ≤ D

for a suitable diagonal matrix D. (cf., SQS)
I D−1 becomes voxel-dependent step size, akin to SQS in CT
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BARISTA convergence rates

“Compressed sensing” MRI reconstruction:
Total variation (TV) regularizer Undecimated Haar Wavelets

Corresponding D for each of the two cases:
BARISTA requires no algorithm parameter tuning, unlike AL.
Includes momentum with adaptive restart of O’Donoghue and
Candès (2014).
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Generalizing Nesterov’s FGM

FGM1 is in the general class of first-order methods:

x (n+1) = x (n) − 1
L

n∑
k=0

hn+1,k ∇Ψ
(
x (k)

)
where the step-size factors {hn,k} are

1 0 0 0 0 0
0 1.25 0 0 0 0
0 0.10 1.40 0 0 0
0 0.05 0.20 1.50 0 0
0 0.03 0.11 0.29 1.57 0
...

. . .


Use of previous gradients =⇒ “momentum”
Is this the optimal choice for {hn,k} ?
Can we improve on the constant 2 in worst-case convergence rate?
Drori & Teboulle (2014) numerically found 2× better {hn,k}
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Optimized gradient method (OGM1)
New approach by optimizing {hn,k} analytically
Initialize: t0 = 1, z (0) = x (0) (Donghwan Kim and JF; 2014, 2015)

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(momentum factors)

x (n+1) = z (n+1) + tn − 1
tn+1

(
z (n+1) − z (n)

)
+ tn

tn+1

(
z (n+1) − x (n)

)
︸ ︷︷ ︸

new momentum

Smaller (worst-case) convergence bound than Nesterov by 2×:

Ψ
(
z (n))−Ψ

(
x (?)) ≤ 1L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 .

Recently DK found a Huber-like function for which OGM1 achieves that upper bound
(thus tight), inspired by numerical work of Taylor et al. (2015).
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Example: Image restoration (!?)

True
x

 

Blurry
y

 

Restored
x̂

 

Rate

0 50 100 150 200

10
−2

10
0

 

 

GM

FGM

OGM

Ψ(x (n))−Ψ(x̂) vs iteration n
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Ordered subsets approximation

I Data decomposition (aka incremental gradients, cf. stochastic GD):

Ψ(x) =
M∑

m=1
Ψm(x), Ψm(x) , 1

2 ‖ym − Amx‖2
Wm︸ ︷︷ ︸

1/Mth of measurements

+ 1
M R(x)

I Key idea. For x far from minimizer: ∇Ψ(x) ≈ M∇Ψm(x)
I SQS:

x (n+1) = x (n) −D−1∇Ψ
(
x (n))

I OS-SQS:
for n = 0, 1, . . . (iteration)

for m = 1, . . . ,M (subset)
k = nM + m (subiteration)

xk+1 = xk −D−1M∇Ψm
(
xk
)

︸ ︷︷ ︸
less work

I Coil-wise in parallel MRI (Muckley, Noll, JF, ISMRM 2014)
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Ordered subsets version of OGM1

For more acceleration, combine OGM1 with ordered subsets (OS).

OS-OGM1:
Initialize: t0 = 1, z (0) = x (0)

for n = 0, 1, . . . (iteration)
for m = 1, . . . ,M (subset)

k = nM + m (subiteration)

zk+1 =
[
xk −D−1M∇Ψm

(
xk
)]

+
(typical OS-SQS)

tk+1 = 1
2

(
1 +

√
1 + 4t2

k

)
xk+1 = zk+1 + tk − 1

tk+1

(
zk+1 − zk

)
+ tk

tk+1

(
zk+1 − xk

)
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OS-OGM1 properties

I Approximate convergence rate for Ψ: O
(

1
n2M2

)
(Donghwan Kim and JF; CT 2014)

I Same compute per iteration as other OS methods
(One forward / backward projection and M regularizer gradients per iteration)

I Same memory as OGM1 (two more images than OS-SQS)

I Guaranteed convergence for M = 1
I No convergence theory for M > 1
◦ unstable for large M
◦ small M preferable for parallelization

I Now fast enough to show X-ray CT examples...
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OS-OGM1 results: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image x: 512× 512× 109 with 70 cm FOV and 0.625 mm slices
• sinogram : y 888 detectors × 32 rows × 7146 views
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OS-OGM1 results: convergence rate

Root mean square difference (RMSD) between x (n) and x (∞) over
ROI (in HU), versus iteration.
(Compute times per iteration are very similar.)
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OS-OGM1 results: images

At iteration n = 10 with M = 12 subsets.
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OS divergence example

1 1

4

◦ one-pixel image
◦ three intersecting rays

◦ A =

 1
1
4


◦ x = 2, y = Ax =

 2
2
8


◦ condition number of A′A = 1
◦ consistent system of eqns.
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OS divergence example

OS-SQS-LS for M = 3 subsets:

xnew = xold −D−13∇mxold = xold −D−13A′(Axold − y)

D = diag{A′A1} = 12 + 12 + 42 = 18
After 3 updates:

x (n+1) − x =
(

1− 3
1812

)(
1− 3

1812
)(

1− 3
1842

) (
x (n) − x

)
= −2(15/18)3 (x (n) − x

)
= −125

108
(
x (n) − x

)
Divergence of OS-SQS-LS is possible even in well-conditioned,
consistent case
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Amazon Cloud version of OS-OGM
Distribute long object (320 useful slices) into (overlapping) slabs
(128 slices each) across 5 separate clusters, each with 10 nodes
having 16 cores.
Use MPI (message passing interface) for within-cluster
communication:

Forward 
Projection

Back 
Projection

Regularization Update
Forward 

Projection

. . .
Broadcast

Communication
Broadcast

Communication
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Rosen, Wu, Wenisch, JF (Fully 3D, 2013)
• Overlapping slabs is inefficient
• Communication time (within cluster, after every subset) is

serious bottleneck
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Block-separable surrogates for distributed reconstruction

Conventional OS approach uses a voxel-wise SQS:

Ψ(x) ≤ Ψ
(
x (n))+∇Ψ

(
x (n))(x − x (n)) + 1

2(x − x (n))′D(x − x (n))

= Ψ
(
x (n))+

N∑
j=1

∂

∂xj
Ψ
(
x (n))(xj − x (n)

j ) + 1
2 dj

(
xj − x (n)

j

)2

Diagonal matrix D majorizes the Hessian of Ψ: ∇2 Ψ(x) � D.
Distributed computing alternative: slab-separable surrogate:

Ψ(x)−Ψ
(
x (n)) ≤ B∑

b=1
Ψb(xb)

Ψb(xb) , ∇xb Ψ
(
x (n))(xb − x (n)

b ) + 1
2
(
xb − x (n)

b

)′
Hb
(
xb − x (n)

b

)
Block diagonal matrix H = diag{H1, . . . ,HB} majorizes ∇2 Ψ(x) .
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BSS continued

Ψb(xb) , ∇xb Ψ
(
x (n))(xb − x (n)

b ) + 1
2
(
xb − x (n)

b

)′
Hb
(
xb − x (n)

b

)

Hb , A′bW ΛbAb, Λb , diag{A1� Ab1b}

Updates parallelizable across blocks (slabs):

x (n+1)
b , arg min

xb�0
Ψb(xb) .

I Reduces communication.
I (Apply favorite optimization method within slab.)
I (Donghwan Kim and JF; Fully 3D, 2015) [Mo18]
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Block-separable surrogate (BSS) OS-OGM
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BSS OS-OGM: data

• 256× 256× 160 XCAT phantom (Segars et al., 2008)
• Simulated helical CT, 444× 32× 492
• M = 12 subsets, B = 10 blocks, L = 5 inner iterations
• Matlab emulation

FBP initializer x (0) Converged x (∞)
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BSS OS-OGM: rates

• Outer loop interrupts momentum
=⇒ BSS is slower per iteration than OS-OGM

• Reduced communication reduces overall time

64 / 74



BSS OS-OGM: images

• Comparable images
• Algorithm designed for distributed computation
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Duality approach for using GPU
• Data transfer between system RAM and GPU can be bottleneck
• “Hide” communication time by overlapping with computation

Algorithm synopsis: (Madison McGaffin and JF; Fully 3D, 2015) [Wed. AM]
• Write cost function Ψ(x) in terms of dual variables v and u for

data-fit and regularizer:

Ψ(x) =
M∑

i=1
hi ([Ax]i ) +

∑
k
ψ([Cx]k)

x (n+1) = arg min
x

sup
u,v(

A′ u +C ′ v
)′ x − M∑

i=1
h∗i (ui )−

∑
k
ψ∗(vk) +µ

2
∥∥x − x (n)

∥∥2
2

h∗i and ψ∗ denote convex conjugates of hi and ψ
• Alternate between updating
◦ several projection view dual variables {ui}
◦ dual variables for one regularization direction {vk}

• Using dual variables “decouples” regularizer and data terms
• OS-like method with convergence theorem
• More details in Dr. McGaffin’s talk
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Duality-GPU: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image x: 512× 512× 109 with 70 cm FOV and 0.625 mm slices
• sinogram : y 888 detectors × 32 rows × 7146 views
• OpenCL on aging NVIDIA GTX 480 GPU with 2.5 GB RAM

FBP initializer x (0) Converged x (∞)
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Duality-GPU: timing results

• Algorithm designed specifically for GPU architecture
characteristics
• Future work:
◦ combine with BSS for multiple nodes ?
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Duality-GPU: image results
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Summary

I Model-based image reconstruction can
• improve image quality for low-dose X-ray CT
• enable faster MRI scans via under-sampling

I Much more: dynamic image reconstruction, motion
compensation, ...

I Computation time remains a significant challenge
I Moore’s law will not solve the problem
I Algorithms designed for distributed computation are essential
• Block-separable surrogates to reduce communication

(Donghwan Kim and JF; Fully 3D, 2015) [Mo18]
• Duality approach to overlap communication with

computation
Also provides a OS-like algorithm with convergence theory
(Madison McGaffin and JF; Fully 3D, 2015) [Wed. AM]
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