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Why statistical /iterative methods for CT? e

Benefits:
e Accurate physics models
(reduced artifacts; improved quantification, spatial resolution, contrast)
e Nonstandard geometries
e Appropriate statistical models for measurements
(reduced noise, hence reduced dose)
e Object constraints / priors

Disadvantages:
e Computation (super computer)
e Must reconstruct entire FOV
e Complexity of models and software
e Algorithm
o Difficult to analyze resolution/noise properties (cf. FBP)
o Tuning parameters
o Challenging to characterize performance / assess image quality



SIR for X-ray CT e
Low-dose X-ray CT image reconstruction is a (constrained) optimization problem:

1
% = argmin [y — Ax|fy, + BR(x)

x>0

Ingredients:

e Sinogram data y

e System matrix A

e Statistical model (diagonal weighting matrix W)
e Regularizer / log prior R(x)

e Regularization parameter 3

e Optimizer “arg min”



Regularization options for CT reconstruction

e Quadratic regularization: uselessly blurry
e Edge-preserving regularization (used clinically):

N

R(x) =) X wixj—x0),

j=1keA;

typically with strictly convex, non-quadratic potential functions ¥
e Total variation (akin to y(¢) = |t|) to encourage “gradient sparsity”
e Extensions of TV
e Wavelet-based sparsity?
e Patch-based regularity:

N
R(x) =) ) w(Pj(x)—Pux))
j=1ke A
e Sparse representations in terms of patch dictionary

o learned from training images (e.g., high-dose CT scans)
o learned adaptively from sinogram data

Relatively little work on task-based assessment of 1Q for regularizer design in CT!
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Why no consensus on best regularizer? T

Non-quadratic regularizers lead to nonlinear estimators X(y).
o Hard to analyze.
o Tedious to evaluate empirically - 3D helical X-ray CT

Need faster optimization algorithms:

o clinical X-ray CT

o regularization design

o task-based assessment investigations

Optimization problem:

1
¥ =argminf(x), f(x) = |ly—Axll + BR(x)

xiO \ - P
cost function

Challenges:

o large-scale

o non-quadratic
o constraints



Optimization problems in image reconstruction

(work of Donghwan Kim)

X € argmin f(x)
X

e Unconstrained
e Large-scale

o Hessian too big to store

o Even limited-memory Quasi-Newton is unattractive
e Cost function assumptions (throughout)

o f:R¥M - R

o convex (need not be strictly convex)

o non-empty set of global minimizers:

xe 2 ={x, eR". f(x,) < f(x), Vvx e R"}
o smooth (differentiable with L-Lipschitz gradient)
IV &)=V f@)ly <L|x—z],, VxzeRM
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Gradient descent (review) R

lteration with step size 1/L ensures monotonic descent of f:

|
Xn+1 = Xp — Z Vf(xn)

Classic O(1/n) convergence rate of cost function descent:

Lon—x*Hg

£x) — fx) <

— 2n
inaccuracy

O(1/n) rate is undesirably slow.



Heavy ball method T

Heavy ball iteration (Polyak, 1987):

04
Xpil = X, — 7 Vfx,) +£3 (x,, —xn_ll (for implementation)
momentum!
| ¢
= X,— — apf"" Vfix f lysi
L,g(’) opf f(xe) (for analysis)
step-size

coefficients

e How to choose & and 37
e How to optimize step-size coefficients more generally?



General first-order method class e

General “first-order” (FO) iteration:

1 n
Xpy1 =Xp— — Z N1k V f(xk)
L=

Primary goals:
e Analyze convergence rate of FO for any given set of step-size coefficients
H=Ah,;:n=0,....N—1,k=0,...,n}
e Optimize set of step-size coefficients /.
o Fast convergence
o Efficient recursive implementation
o Universal (design prior to iterating)

Excludes CG, QN, BBGM, etc.



Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: 1o =1, 2o = Xxg
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|
Znil :xn—ZVf(xn) (usual GD update)
fhil = (1 ++/1 —|—4t2) (magic momentum factors)
th—1 .
Xn+1 = Zn+1+ t (Zpe1—2,) (update with momentum) .
n+1
Reverts to GD if ¢, = 1, Vn.
1 n
FGM1 is in class FO: Xy :xn—ZZhnH,kv fx)
k=0
( tn—l n hn,O hn,l
., 110 1250 0 0 0
P g = 4 (hpp1—1), k=n—1 2/0 010 140 0 0 0
Int1 { 3/0 005 020 150 0 0
|z k= n 40 003 011 029 157 0
\ thi1 5/0 002 0.07 0.18 0.36 1.62




Nesterov FGM1 optimal convergence rate

Shown by Nesterov to be O(1/n?) for “auxiliary” sequence:

2L||xo — x5

f(zn> _f(x*) < (n_|_ 1)2

Nesterov constructed a convex function f with L-Lipschitz gradient such that
any first-order method achieves:

2
33—2L\|x0—x*H2
(n+1)2
e O(1/n?) rate of FGM1 is optimal.

e Potential acceleration by constant factor of > 20.

< f(xn) _f(x*) .
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Overview s

General first-order (FO) iteration:

Xntl = Xp— 7 Z Py 1k Vf(xk)
L=

e Analyze (i.e., bound) convergence rate as a function of
o number of iterations N
o Lipschitz constant L
o step-size coefficients H = {11 4}
o Distance to a solution: R = ||xg — x|
e Optimize step-size coefficients H by minimizing the bound



Ideal “universal” bound for first-order methods S

For given

e number of iterations N

e Lipschitz constant L

o step-size coefficients H = {11 x}

e distance to a solution: R = ||xy — x,||

Drori & Teboulle (2014) bound the worst-case convergence rate of FO algorithm:
Bi(H,R,L,N) = max max max flxn)—f(x)

fezy xo,xl,...,xNE]RM X €2 *(f)

10 —x[| <R

11’1
such that xn+1:xn—ZI;)hn+1,ka(xk), n=0,....N—1.

Clearly for any FO method:
f(xN) _f(x*) < Bl(H7R7L7N)'



Towards practical bounds for first-order methods VIO

For convex functions with L-Lipschitz gradients

|
T IVA®) = V@) < f(x)— f(2) — (VF(2), x—2), VxzeR™.
Drori & Teboulle (2014) use this inequality to propose a “more tractable” bound:
By(H,R,L,N) = max max max max LR&;

g0:--8NERM &p,....0NER  xp.xp,... xnyeRM Xt |xo—xx[| <R

1 n
such that x,. 1 =x,—— Zhn+1,kng, n=0,....N—1

_ng g]H 5 6__<gj7xi_xj>7 l,]:O,,N

Looser bound for any FO method:
f(xN) _f(x*) < BI(H7R7L7N) < B2(H7R7L7N)'

However, even B, is as of yet unsolved.



Numerical bounds for first-order methods R

Drori & Teboulle (2014) further relax the bound

Leads eventually to a still simpler optimization problem
(but still with no known closed-form solution):

f(xN)_f(x*) SBl(H7R7L7N) < B2(H7R7L7N) < B3(H7R7L7N)'

For given step-size coefficients H, and given number of iterations N,
they compute B3 numerically, using a semi-definite program (SDP).



Optimizing step-size coefficients numerically MR

Drori & Teboulle (2014) also compute numerically the minimizer over H of their
relaxed bound for given N using a semi-definite program (SDP):

H* = argminB3(H,R,L,N).
H

Numerical solution for H* for N = 5 iterations: [Fig. from Drori & Teboulle (2014)]

o

. Input: f € C_,_ ”:_;d} xp € RY,
X] = Xg — |ﬁ]"'lﬂ‘f {III'
X = X| — r:1?41 f(xg) — = mu“if (x1),

_.x-gz_.x-g—f"'?"”f{ Xg) — “"”'4 B f(x1) — 221 f(xy),

X4 = X3 — ﬂll-lll] f { "} . j-':lﬂ'f {1 ' . DE:I:'—” f |:1 ' . ifﬁﬁ‘f!{.l—'_'\j},

X5 = X4 — ﬂll]?Er (x0) — ﬂ lm[}f (x1) — ﬂ RU-lf (x2) — D.t:f-'l_ﬁf.f{:-_l.s} —

._D??'-:f (x4).

L.
2.
3.
4.
5.

Drawbacks
e Must choose N in advance

e Requires O(N) memory for all gradient vectors {Vf(x,)}
e O(N?) computation for N iterations

N

n=1

Benefit: convergence bound (for specific N) =~ 2x lower than for Nesterov's FGML.
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New results

(paper submitted in May 2014)

(skipping long derivations...)



New analytical solution T

e Analytical solution for optimized step-size coefficients (Donghwan Kim, 2014):

( onlp o k=0,....n—2
o ()
H . =14 2y —1), k=n—1
26,—1 i

N 1_|_ On—i—l’ k—l’l

(1, n=>0

6, — %(1+\/1+492 ) n=1,...N—1
l(1+\/1+892 ) _N.

e Analytical convergence bound for these optimized step-size coefficients:
LL|x0 — .13
(N+1)(N+14++/2)

Of course bound is O(1/N?), but constant is twice better than that of Nesterov.
No numerical SDP needed = feasible for large N.

f(xN) _f(x*) < B3(H*7R7L7N) —



Optimized gradient method (OGM1) T
Donghwan Kim (2014) found efficient recursive iteration:

Initialize: 6y =1, zo = xo

|
Zntl = Xn— —Vf(xn) (usual GD update)

(1+\/1+492 ) n=1,...N—1
(momentum factors)

(1+\/1+892 ) =N

6,—1 0,
n T 4n ‘A \Ln —Xn).
9n+1 (Z +1 4 )—I_ \GnJr] (Z +1 )J

v
new momentum

Reverts to Nesterov's FGM1 if the new terms are removed.
e Very simple modification of existing Nesterov code

e No need to choose N in advance (or solve SDP);
use favorite stopping rule then run one last “decreased momentum” step.

e Factor of 2 better upper bound than Nesterov's “optimal” FGM1.

N =

D=

Xn+1 = Zn+1 +

(Proofs omitted.)
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Combining ordered subsets (OS) with momentum ik

Optimization problems in image reconstruction (and machine learning)
involve sums of many similar terms:

f(x) — Zlfm(x)

Approximate gradients using just one term at a time:
V £(x) ~ MV f,(x)

o Ordered subsets (OS) in tomography
o Incremental gradients in optimization / machine learning

Combining OS with momentum leads to dramatic acceleration!



0OS + OGM1 method e

Initialize: 6 = 1, Zo = Xy
For each iteration n
For each subset m=1,.... M

k=nM+m—1
M
Zkt1 = Xk — ZVf,n(xk) (usual OS update)
|
O, = 5 (1 + \/1 —|—49k21) (momentum factors)
O, — 1 6
Xit1 = k41T . (Zk+1—21) + = (21— Xk) -
Or 11 Bkt ,

o
new momentum

e Simple modification of existing OS code
e Roughly 0(1/(Mn)2) decrease of cost function f in early iterations
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Results: 3D X-ray CT patient scan A

e 3D cone-beam helical CT scan with pitch 0.5

Initial FBP |mage x)

e Convergence rate in RMSD [HU], within ROI, versus iteration:

(n) o
» |ror— £roilf2
vV NRrot

(Disclaimer: RMSD may not relate to task performance...)

RMSDROI (xn)



Results: RMSD [HU] vs. iteration: without OS NCHER

100
lteration

e Convergence speed: GD < <
o requires about \%—times fewer iterations than to reach the same RMSD.



Results: RMSD [HU] vs. iteration: with OS NCHER

—%—0S(12)-GD
—6—0S(12)-FGM
—8—0S(12)-0GM

lteration

e M = 12 subsets in OS algorithm.
e Proposed OS- converges faster than OS-
e Computation time per iteration of all algorithms are similar.



Summary e

e New optimized first-order minimization algorithm

e Simple implementation akin to Nesterov's FGM

e Analytical converge rate bound

e Bound is 2x better than Nesterov

e Combining with ordered subsets (OS) provides dramatic acceleration



Future work e
e Optimization method

o Constraints

o Non-smooth cost functions, e.g., ¢;
o Tighter bounds

o Strongly convex case

o Asymptotic / local convergence rates
o Incremental gradients / relaxation

o Stochastic gradient descent

o Adaptive restart

e Low-dose X-ray CT image reconstruction

o Regularization design
o Task-based |Q assessment
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Not: Barzilai-Borwein gradient method (R

Barzilai & Borwein, 1988
g = V£x,)
1, — %04
(Xn — X1, 8" — g~ D)
Xp1 =X, — 0, VI(x,).

o, =

Not in “first-order” class FO.

Neither are methods like

o steepest descent (with line search),
o conjugate gradient,

o quasi-Newton ...



