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Statistical image reconstruction: a CT revolution

Thin-slice FBP
ASIR

(denoised)
Statistical

Reconstruction

≈ 1974 ≈ 2008 ≈ 2012
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Why statistical/iterative methods for CT?

Benefits:
• Accurate physics models

(reduced artifacts; improved quantification, spatial resolution, contrast)
• Nonstandard geometries
• Appropriate statistical models for measurements

(reduced noise, hence reduced dose)
• Object constraints / priors

Disadvantages:
• Computation time (super computer)
• Must reconstruct entire FOV
• Complexity of models and software
• Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess image quality
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SIR for X-ray CT

Low-dose X-ray CT image reconstruction is a (constrained) optimization problem:

x̂xx = argmin
xxx�000

1
2
‖yyy−AAAxxx‖2

W +βR(xxx)

Ingredients:
• Sinogram data yyy
• System matrix AAA
• Statistical model (diagonal weighting matrix WWW )
• Regularizer / log prior R(xxx)
• Regularization parameter β
• Optimizer “arg min”
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Regularization options for CT reconstruction

• Quadratic regularization: uselessly blurry
• Edge-preserving regularization (used clinically):

R(xxx) =
N

∑
j=1

∑
k∈N j

ψ(x j− xk),

typically with strictly convex, non-quadratic potential functions ψ

• Total variation (akin to ψ(t) = |t|) to encourage “gradient sparsity”
• Extensions of TV
• Wavelet-based sparsity?
• Patch-based regularity:

R(xxx) =
N

∑
j=1

∑
k∈N j

ψ(PPP j(xxx)−PPPk(xxx))

• Sparse representations in terms of patch dictionary
◦ learned from training images (e.g., high-dose CT scans)
◦ learned adaptively from sinogram data

Relatively little work on task-based assessment of IQ for regularizer design in CT!
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Why no consensus on best regularizer?

Non-quadratic regularizers lead to nonlinear estimators x̂xx(yyy).
◦ Hard to analyze.
◦ Tedious to evaluate empirically - 3D helical X-ray CT

Need faster optimization algorithms:
◦ clinical X-ray CT
◦ regularization design
◦ task-based assessment investigations

Optimization problem:

x̂xx = argmin
xxx�000

f (xxx), f (xxx) =
1
2
‖yyy−AAAxxx‖2

W +βR(xxx)︸ ︷︷ ︸
cost function

Challenges:
◦ large-scale
◦ non-quadratic
◦ constraints
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Optimization problems in image reconstruction

(work of Donghwan Kim)

x̂xx ∈ argmin
xxx

f (xxx)

• Unconstrained
• Large-scale
◦ Hessian too big to store
◦ Even limited-memory Quasi-Newton is unattractive

• Cost function assumptions (throughout)
◦ f : RM 7→ R
◦ convex (need not be strictly convex)
◦ non-empty set of global minimizers:

x̂xx ∈X ∗ =
{

xxx? ∈ RM
: f (xxx?)≤ f (xxx), ∀xxx ∈ RM}

◦ smooth (differentiable with L-Lipschitz gradient)

‖∇ f (xxx)−∇ f (zzz)‖2 ≤ L‖xxx− zzz‖2 , ∀xxx,zzz ∈ RM
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Algorithms
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Gradient descent (review)

Iteration with step size 1/L ensures monotonic descent of f :

xxxn+1 = xxxn−
1
L

∇ f (xxxn)

Classic O(1/n) convergence rate of cost function descent:

f (xxxn)− f (xxx?)︸ ︷︷ ︸
inaccuracy

≤ L‖xxx0− xxx?‖2
2

2n
.

O(1/n) rate is undesirably slow.
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Heavy ball method

Heavy ball iteration (Polyak, 1987):

xxxn+1 = xxxn−
α

L
∇ f (xxxn)+β (xxxn− xxxn−1)︸ ︷︷ ︸

momentum!

(for implementation)

= xxxn−
1
L

n

∑
k=0

αβ
n−k︸ ︷︷ ︸

step-size
coefficients

∇ f (xxxk) (for analysis)

• How to choose α and β ?
• How to optimize step-size coefficients more generally?
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General first-order method class

General “first-order” (FO) iteration:

xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

Primary goals:
• Analyze convergence rate of FO for any given set of step-size coefficients

H = {hn,k : n = 0, . . . ,N−1, k = 0, . . . ,n}
• Optimize set of step-size coefficients H.
◦ Fast convergence
◦ Efficient recursive implementation
◦ Universal (design prior to iterating)

Excludes CG, QN, BBGM, etc.



14

Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: t0 = 1, zzz0 = xxx0

zzzn+1 = xxxn−
1
L

∇ f (xxxn) (usual GD update)

tn+1 =
1
2

(
1+
√

1+4t2
n

)
(magic momentum factors)

xxxn+1 = zzzn+1+
tn−1
tn+1

(zzzn+1− zzzn) (update with momentum) .

Reverts to GD if tn = 1,∀n.

FGM1 is in class FO: xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

hn+1,k =



tn−1
tn+1

hn,k, k = 0, . . . ,n−2

tn−1
tn+1

(hn,n−1−1) , k = n−1

1+
tn−1
tn+1

, k = n.

n hn,0 hn,1 . . .
0 1 0 0 0 0 0
1 0 1.25 0 0 0 0
2 0 0.10 1.40 0 0 0
3 0 0.05 0.20 1.50 0 0
4 0 0.03 0.11 0.29 1.57 0
5 0 0.02 0.07 0.18 0.36 1.62
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Nesterov FGM1 optimal convergence rate

Shown by Nesterov to be O(1/n2) for “auxiliary” sequence:

f (zzzn)− f (xxx?)≤
2L‖xxx0− xxx?‖2

2

(n+1)2 .

Nesterov constructed a convex function f with L-Lipschitz gradient such that
any first-order method achieves:

3
32L‖xxx0− xxx?‖2

2

(n+1)2 ≤ f (xxxn)− f (xxx?) .

• O(1/n2) rate of FGM1 is optimal.
• Potential acceleration by constant factor of > 20.
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Overview

General first-order (FO) iteration:

xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

• Analyze (i.e., bound) convergence rate as a function of
◦ number of iterations N
◦ Lipschitz constant L
◦ step-size coefficients H = {hn+1,k}
◦ Distance to a solution: R = ‖xxx0− xxx?‖

• Optimize step-size coefficients H by minimizing the bound
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Ideal “universal” bound for first-order methods

For given
• number of iterations N
• Lipschitz constant L
• step-size coefficients H = {hn+1,k}
• distance to a solution: R = ‖xxx0− xxx?‖

Drori & Teboulle (2014) bound the worst-case convergence rate of FO algorithm:

B1(H,R,L,N), max
f∈FL

max
xxx0,xxx1,...,xxxN∈RM

max
xxx?∈X ∗( f )

‖xxx0−xxx?‖≤R

f (xxxN)− f (xxx?)

such that xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk), n = 0, . . . ,N−1.

Clearly for any FO method:

f (xxxN)− f (xxx?)≤ B1(H,R,L,N).
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Towards practical bounds for first-order methods

For convex functions with L-Lipschitz gradients

1
2L
‖∇ f (xxx)−∇ f (zzz)‖2 ≤ f (xxx)− f (zzz)−〈∇ f (zzz), xxx− zzz〉, ∀xxx,zzz ∈ RM.

Drori & Teboulle (2014) use this inequality to propose a “more tractable” bound:

B2(H,R,L,N), max
ggg0,...,gggN∈RM

max
δ0,...,δN∈R

max
xxx0,xxx1,...,xxxN∈RM

max
xxx? :‖xxx0−xxx?‖≤R

LRδ
2
N

such that xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,kRgggk, n = 0, . . . ,N−1

1
2

∥∥gggi−ggg j

∥∥2 ≤ δi−δ j−
1
R
〈ggg j, xxxi− xxx j〉, i, j = 0, . . . ,N.

Looser bound for any FO method:

f (xxxN)− f (xxx?)≤ B1(H,R,L,N)≤ B2(H,R,L,N).

However, even B2 is as of yet unsolved.
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Numerical bounds for first-order methods

Drori & Teboulle (2014) further relax the bound

Leads eventually to a still simpler optimization problem
(but still with no known closed-form solution):

f (xxxN)− f (xxx?)≤ B1(H,R,L,N)≤ B2(H,R,L,N)≤ B3(H,R,L,N).

For given step-size coefficients H, and given number of iterations N,
they compute B3 numerically, using a semi-definite program (SDP).



20

Optimizing step-size coefficients numerically

Drori & Teboulle (2014) also compute numerically the minimizer over H of their
relaxed bound for given N using a semi-definite program (SDP):

H∗ = argmin
H

B3(H,R,L,N).

Numerical solution for H∗ for N = 5 iterations: [Fig. from Drori & Teboulle (2014)]

Drawbacks
• Must choose N in advance
• Requires O(N) memory for all gradient vectors {∇ f (xxxn)}N

n=1
• O(N2) computation for N iterations

Benefit: convergence bound (for specific N) ≈ 2× lower than for Nesterov’s FGM1.



21

New results

(paper submitted in May 2014)

(skipping long derivations...)
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New analytical solution

• Analytical solution for optimized step-size coefficients (Donghwan Kim, 2014):

H∗ : hn+1,k =


θn−1
θn+1

hn,k, k = 0, . . . ,n−2
θn−1
θn+1

(hn,n−1−1) , k = n−1
1+ 2θn−1

θn+1
, k = n.

θn =


1, n = 0
1
2

(
1+
√

1+4θ 2
n−1

)
, n = 1, . . . ,N−1

1
2

(
1+
√

1+8θ 2
n−1

)
, n = N.

• Analytical convergence bound for these optimized step-size coefficients:

f (xxxN)− f (xxx?)≤ B3(H∗,R,L,N) =
1L‖xxx0− xxx?‖2

2

(N +1)(N +1+
√

2)
.

Of course bound is O(1/N2), but constant is twice better than that of Nesterov.
No numerical SDP needed =⇒ feasible for large N.
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Optimized gradient method (OGM1)

Donghwan Kim (2014) found efficient recursive iteration:

Initialize: θ0 = 1, zzz0 = xxx0

zzzn+1 = xxxn−
1
L

∇ f (xxxn) (usual GD update)

θn =


1
2

(
1+
√

1+4θ 2
n−1

)
, n = 1, . . . ,N−1

1
2

(
1+
√

1+8θ 2
n−1

)
, n = N

(momentum factors)

xxxn+1 = zzzn+1+
θn−1
θn+1

(zzzn+1− zzzn)+
θn

θn+1
(zzzn+1− xxxn)︸ ︷︷ ︸

new momentum

.

Reverts to Nesterov’s FGM1 if the new terms are removed.
• Very simple modification of existing Nesterov code
• No need to choose N in advance (or solve SDP);

use favorite stopping rule then run one last “decreased momentum” step.
• Factor of 2 better upper bound than Nesterov’s “optimal” FGM1.

(Proofs omitted.)
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Further acceleration...
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Combining ordered subsets (OS) with momentum

Optimization problems in image reconstruction (and machine learning)
involve sums of many similar terms:

f (xxx) =
M

∑
m=1

fm(xxx) .

Approximate gradients using just one term at a time:

∇ f (xxx)≈M∇ fm(xxx)

◦ Ordered subsets (OS) in tomography
◦ Incremental gradients in optimization / machine learning

Combining OS with momentum leads to dramatic acceleration!
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OS + OGM1 method

Initialize: θ0 = 1, zzz0 = xxx0
For each iteration n
For each subset m = 1, . . . ,M

k= nM+m−1

zzzk+1 = xxxk−
M
L

∇ fm(xxxk) (usual OS update)

θk =
1
2

(
1+
√

1+4θ 2
k−1

)
(momentum factors)

xxxk+1 = zzzk+1+
θk−1
θk+1

(zzzk+1− zzzk)+
θk

θk+1
(zzzk+1− xxxk)︸ ︷︷ ︸

new momentum

.

• Simple modification of existing OS code
• Roughly O

(
1/(Mn)2

)
decrease of cost function f in early iterations
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New empirical results
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Results: 3D X-ray CT patient scan

• 3D cone-beam helical CT scan with pitch 0.5

 

 

 Initial FBP image x
(0)

 

 Converged image x
(∞)
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• Convergence rate in RMSD [HU], within ROI, versus iteration:

RMSDROI(xxxn),
||x(n)ROI− x̂ROI||2√

NROI
.

(Disclaimer: RMSD may not relate to task performance...)
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Results: RMSD [HU] vs. iteration: without OS
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• Convergence speed: GD � FGM < OGM
• OGM requires about 1√

2
-times fewer iterations than FGM to reach the same RMSD.
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Results: RMSD [HU] vs. iteration: with OS
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OS(12)−GD

OS(12)−FGM
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• M = 12 subsets in OS algorithm.
• Proposed OS-OGM converges faster than OS-FGM.
• Computation time per iteration of all algorithms are similar.
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Summary

• New optimized first-order minimization algorithm
• Simple implementation akin to Nesterov’s FGM
• Analytical converge rate bound
• Bound is 2× better than Nesterov
• Combining with ordered subsets (OS) provides dramatic acceleration
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Future work

• Optimization method

◦ Constraints
◦ Non-smooth cost functions, e.g., `1
◦ Tighter bounds
◦ Strongly convex case
◦ Asymptotic / local convergence rates
◦ Incremental gradients / relaxation
◦ Stochastic gradient descent
◦ Adaptive restart

• Low-dose X-ray CT image reconstruction

◦ Regularization design
◦ Task-based IQ assessment



Bibliography
[1] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimization: A novel approach.

Mathematical Programming, 145(1-2):451–82, June 2014.
[2] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2).

Dokl. Akad. Nauk. USSR, 269(3):543–7, 1983.
[3] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127–52, May

2005.
[4] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization. Mathematical Program-

ming, 2015. Submitted.
[5] D. Kim, S. Ramani, and J. A. Fessler. Combining ordered subsets and momentum for accelerated X-ray CT image

reconstruction. IEEE Trans. Med. Imag., 34(1):167–78, January 2015.



34

Not: Barzilai-Borwein gradient method

Barzilai & Borwein, 1988
ggg(n) , ∇ f (xxxn)

αn =
‖xxxn− xxxn−1‖2

〈xxxn− xxxn−1, ggg(n)−ggg(n−1)〉
xxxn+1 = xxxn−αn ∇ f (xxxn) .

Not in “first-order” class FO.
Neither are methods like
◦ steepest descent (with line search),
◦ conjugate gradient,
◦ quasi-Newton ...


