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Low-dose X-ray CT image reconstruction

Thin-slice FBP ASIR Statistical

Seconds A bit longer Much longer

Image reconstruction as an optimization problem:

x̂xx = argmin
xxx�000

1
2
‖yyy−AAAxxx‖2

W +R(xxx)

(Same sinogram, so all at same dose)
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Outline

• Motivation (done)

• Problem definition

• Existing algorithms

◦ Gradient descent
◦ Nesterov’s “optimal” first-order methods
◦ General first-order methods

• Optimizing first-order minimization methods

• Drori & Teboulle’s numerical bounds
• Donghwan Kim’s analytically optimized (“more optimal”) first-order methods
• Examples:
◦ logistic regression for machine learning
◦ CT image reconstruction

• Summary / Future work
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Problem setting
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Optimization problem setting

x̂xx ∈ argmin
xxx

f (xxx)

• Unconstrained
• Large-scale (Hessian too big to store)
◦ image reconstruction
◦ big-data / machine learning
◦ ...

• Cost function assumptions (throughout)
◦ f : RM 7→ R
◦ convex (need not be strictly convex)
◦ non-empty set of global minimizers:

x̂xx ∈X ∗ =
{

xxx? ∈ RM
: f (xxx?)≤ f (xxx), ∀xxx ∈ RM}

◦ smooth (differentiable with L-Lipschitz gradient)

‖∇ f (xxx)−∇ f (zzz)‖2 ≤ L‖xxx− zzz‖2 , ∀xxx,zzz ∈ RM
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Example: Machine learning

To learn weights xxx of binary classifier given feature vectors {vvvi} and labels {yi}:
f (xxx) = ∑

i
ψ(yi 〈xxx, vvvi〉),

where yi =±1.

loss functions ψ(t)
0-1: I{t≤0}
exponential: exp(−t)
logistic: log(1+ exp(−t))
hinge: max{0,1− t}

Which of these fit our conditions?

0

1
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Loss functions (surrogates)

exponential
hinge

logistic
0-1
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Algorithms
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Gradient descent

iteration with step size 1/L ensures monotonic descent of f :

xxxn+1 = xxxn−
1
L

∇ f (xxxn)

stacking:


xxx1
xxx2
...

xxxN−1
xxxN

 =


xxx0
xxx1
...

xxxN−2
xxxN−1

− 1
L


∇ f (xxx0)
∇ f (xxx1)
...
∇ f (xxxN−2)
∇ f (xxxN−1)



i.e.:


xxx1
xxx2
...

xxxN−1
xxxN

 =


xxx0
xxx1
...

xxxN−2
xxxN−1

− 1
L




1 0 0 . . . 0
0 1 0 . . . 0
... . . .
0 . . . 0 1 0
0 . . . 0 0 1


︸ ︷︷ ︸

HGD

⊗III




∇ f (xxx0)
∇ f (xxx1)
...
∇ f (xxxN−2)
∇ f (xxxN−1)


Note: N×N coefficient matrix HGD is diagonal (a special case of lower triangular).
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Gradient descent convergence rate

Classic O(1/n) convergence rate of cost function descent:

f (xxxn)− f (xxx?)︸ ︷︷ ︸
inaccuracy

≤ L‖xxx0− xxx?‖2
2

2n
.

Drori & Teboulle (2013) derive tightest inaccuracy bound:

f (xxxn)− f (xxx?)≤
L‖xxx0− xxx?‖2

2

4n+2
.

They construct a Huber-like function f for which GD achieves that bound.
Case closed for GD.

O(1/n) rate is undesirably slow.
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Heavy ball method

iteration (Polyak, 1987):

xxxn+1 = xxxn−
α

L
∇ f (xxxn)+β (xxxn− xxxn−1)︸ ︷︷ ︸

momentum!

(for implementation)

= xxxn−
1
L

n

∑
k=0

αβ
n−k︸ ︷︷ ︸

coefficients

∇ f (xxxk) (for analysis)

stacking:


xxx1
xxx2
...

xxxN−1
xxxN

=


xxx0
xxx1
...

xxxN−2
xxxN−1

− 1
L




α 0 0 . . . 0

αβ α 0 . . . 0
. . .

αβ N−2 . . . αβ α 0
αβ N−1 . . . αβ 2 αβ α


︸ ︷︷ ︸

HHB

⊗III




∇ f (xxx0)
∇ f (xxx1)
...
∇ f (xxxN−2)
∇ f (xxxN−1)


Here, N×N coefficient matrix HHB is lower triangular.
• How to choose α and β ?
• How to optimize N×N coefficient matrix H more generally?
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General first-order method class

General “first-order” (FO) iteration:

xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

stacking:
xxx1
xxx2
...

xxxN−1
xxxN

=


xxx0
xxx1
...

xxxN−2
xxxN−1

− 1
L




h1,0 0 0 . . . 0
h2,0 h2,1 0 . . . 0

. . .
hN,0 hN,1 . . . hN,N−2 hN,N−1


︸ ︷︷ ︸

HFO

⊗III




∇ f (xxx0)
∇ f (xxx1)
...
∇ f (xxxN−2)
∇ f (xxxN−1)


Primary goals:
• Analyze convergence rate of FO for any given H
• Optimize N×N lower-triangular (“causal”) step-size coefficient matrix H.
◦ fast convergence
◦ efficient recursive implementation
◦ universal (design prior to iterating)
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Not: Barzilai-Borwein gradient method

Barzilai & Borwein, 1988
ggg(n) , ∇ f (xxxn)

αn =
‖xxxn− xxxn−1‖2

〈xxxn− xxxn−1, ggg(n)−ggg(n−1)〉
xxxn+1 = xxxn−αn ∇ f (xxxn) .

Not in “first-order” class FO.
Neither are methods like
◦ steepest descent (with line search),
◦ conjugate gradient,
◦ quasi-Newton ...
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Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: t0 = 1, zzz0 = xxx0

zzzn+1 = xxxn−
1
L

∇ f (xxxn) (usual GD update)

tn+1 =
1
2

(
1+
√

1+4t2
n

)
(magic momentum factors)

xxxn+1 = zzzn+1+
tn−1
tn+1

(zzzn+1− zzzn) (update with momentum) .

Reverts to GD if tn = 1,∀n.

FGM1 is in class FO: xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

hn+1,k =



tn−1
tn+1

hn,k, k = 0, . . . ,n−2

tn−1
tn+1

(hn,n−1−1) , k = n−1

1+
tn−1
tn+1

, k = n.


1 0 0 0 0 0
0 1.25 0 0 0 0
0 0.10 1.40 0 0 0
0 0.05 0.20 1.50 0 0
0 0.03 0.11 0.29 1.57 0
0 0.02 0.07 0.18 0.36 1.62


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Nesterov FGM1 optimal convergence rate

Shown by Nesterov to be O(1/n2) for “auxiliary” sequence:

f (zzzn)− f (xxx?)≤
2L‖xxx0− xxx?‖2

2

(n+1)2 .

Nesterov constructed a function f such that any first-order method achieves

3
32L‖xxx0− xxx?‖2

2

(n+1)2 ≤ f (xxxn)− f (xxx?) .

Thus O(1/n2) rate of FGM1 is optimal.

New results (Donghwan Kim, 2014):
• Bound on convergence rate of primary sequence {xxxn}:

f (xxxn)− f (xxx?)≤
2L‖xxx0− xxx?‖2

2

(n+2)2 .

• Verifies (numerically inspired) conjecture of Drori & Teboulle (2013).
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Overview

General first-order (FO) iteration:

xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk)

• Analyze (i.e., bound) convergence rate as a function of
◦ number of iterations N
◦ Lipschitz constant L
◦ step-size coefficients H = {hn+1,k}
◦ Distance to a solution: R = ‖xxx0− xxx?‖

• Optimize H by minimizing the bound
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Ideal “universal” bound for first-order methods

For given
• number of iterations N
• Lipschitz constant L
• step-size coefficients H = {hn+1,k}
• distance to a solution: R = ‖xxx0− xxx?‖

bound the worst-case convergence rate of FO algorithm:

B1(H,R,L,N), max
f∈FL

max
xxx0,xxx1,...,xxxN∈RM

max
xxx?∈X ∗( f )

‖xxx0−xxx?‖≤R

f (xxxN)− f (xxx?)

such that xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,k ∇ f (xxxk), n = 0, . . . ,N−1.

Clearly for any FO method:

f (xxxN)− f (xxx?)≤ B1(H,R,L,N)
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Towards practical bounds for first-order methods

For convex functions with L-Lipschitz gradients

1
2L
‖∇ f (xxx)−∇ f (zzz)‖2 ≤ f (xxx)− f (zzz)−〈∇ f (zzz), xxx− zzz〉, ∀xxx,zzz ∈ RM.

Drori & Teboulle (2013) use this inequality to propose a “more tractable” bound:

B2(H,R,L,N), max
ggg0,...,gggN∈RM

max
δ0,...,δN∈R

max
xxx0,xxx1,...,xxxN∈RM

max
xxx? :‖xxx0−xxx?‖≤R

LRδ
2
N

such that xxxn+1 = xxxn−
1
L

n

∑
k=0

hn+1,kRgggk, n = 0, . . . ,N−1,

1
2

∥∥gggi−ggg j

∥∥2 ≤ δi−δ j−
1
R
〈ggg j, xxxi− xxx j〉, i, j = 0, . . . ,N,∗

where gggn =
1

LR ∇ f (xxxn) and δn =
1

LR ( f (xxxn)− f (xxx?)) .

For any FO method:

f (xxxN)− f (xxx?)≤ B1(H,R,L,N)≤ B2(H,R,L,N)

However, even B2 is as of yet unsolved.
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Numerical bounds for first-order methods

Drori & Teboulle (2013) further relax the bound leading eventually to a still simpler
optimization problem (with no known closed-form solution):

f (xxxN)− f (xxx?)≤ B1(H,R,L,N)≤ B2(H,R,L,N)≤ B3(H,R,L,N).

For given step-size coefficients H, and given number of iterations N, they use a
semi-definite program (SDP) to compute B3 numerically.

They find numerically that for the FGM1 choice of H, the convergence bound B3 is

slightly tighter than
2L‖xxx0− xxx?‖2

2

(N +1)2 .
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Optimizing step-size coefficients numerically

Drori & Teboulle (2013) also compute numerically the minimizer over H of their
relaxed bound for given N using a semi-definite program (SDP):

H∗ = argmin
H

B3(H,R,L,N).

Numerical solution for H∗ for N = 5 iterations: [Fig. from Drori & Teboulle (2013)]

Drawbacks
• Must choose N in advance
• Requires O(N) memory for all gradient vectors {∇ f (xxxn)}N

n=1
• O(N2) computation for N iterations

Benefit: convergence bound (for specific N) ≈ 2× lower than for Nesterov’s FGM1.
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New analytical solution

• Analytical solution for optimized step-size coefficients (Donghwan Kim, 2014):

H∗ : hn+1,k =


θn−1
θn+1

hn,k, k = 0, . . . ,n−2
θn−1
θn+1

(hn,n−1−1) , k = n−1
1+ 2θn−1

θn+1
, k = n.

θn =


1, n = 0
1
2

(
1+
√

1+4θ 2
n−1

)
, n = 1, . . . ,N−1

1
2

(
1+
√

1+8θ 2
n−1

)
, n = N.

• Analytical convergence bound for these optimized step-size coefficients:

f (xxxN)− f (xxx?)≤ B3(H∗,R,L,N) =
1L‖xxx0− xxx?‖2

2

(N +1)(N +1+
√

2)
.

Of course bound is O(1/N2), but constant is twice better than that of Nesterov.
No numerical SDP needed =⇒ feasible for large N.

(History: sought banded / structured lower-triangular form)
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Optimized gradient method (OGM1)

Donghwan Kim (2014) found efficient recursive iteration:

Initialize: θ0 = 1, zzz0 = xxx0

zzzn+1 = xxxn−
1
L

∇ f (xxxn) (usual GD update)

θn =


1
2

(
1+
√

1+4θ 2
n−1

)
, n = 1, . . . ,N−1

1
2

(
1+
√

1+8θ 2
n−1

)
, n = N

(momentum factors)

xxxn+1 = zzzn+1+
θn−1
θn+1

(zzzn+1− zzzn)+
θn

θn+1
(zzzn+1− xxxn)︸ ︷︷ ︸

new momentum

.

Reverts to Nesterov’s FGM1 if the new terms are removed.
• Very simple modification of existing Nesterov code
• No need to choose N in advance (or solve SDP);

use favorite stopping rule then run one last “decreased momentum” step.
• Factor of 2 better upper bound than Nesterov’s “optimal” FGM1.

(Proofs omitted.)
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Numerical Example(s)
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Machine learning (logistic regression)

To learn weights xxx of binary classifier given feature vectors {vvvi} and labels {yi}:

x̂xx = argmin
xxx

f (xxx), f (xxx) = ∑
i

ψ(yi 〈xxx, vvvi〉)+β
1
2
‖xxx‖2

2 ,

where yi =±1.

logistic: ψ(t) = log(1+ e−t), ψ̇(t) =
−1

et +1
, ψ̈(t) =

et

(et +1)2 ∈
(

0,
1
4

]
Gradient ∇ f (xxx) = ∑i yi vvvi ψ̇(yi 〈xxx, vvvi〉)+βxxx

Hessian is positive definite so strictly convex:

∇
2 f (xxx) = ∑

i
vvvi ψ̈(yi 〈xxx, vvvi〉)vvv′i+βIII � 1

4 ∑
i

vvvi vvv′i+βIII

=⇒ L ,
1
4

ρ

(
∑

i
vvvi vvv′i

)
+β≥max

xxx
ρ
(
∇

2 f (xxx)
)
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Numerical Results: logistic regression
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Numerical Results: convergence rates
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Numerical Results: adaptive restart
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Low-dose 2D X-ray CT image reconstruction simulation
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Summary

New optimized first-order minimization algorithm
Simple implementation akin to Nesterov’s FGM
Analytical converge rate bound
Bound is 2× better than Nesterov

Future work

• Constraints
• Non-smooth cost functions, e.g., `1
• Tighter bounds
• Strongly convex case
• Asymptotic / local convergence rates
• Incremental gradients
• Stochastic gradient descent
• Adaptive restart
• Low-dose 3D X-ray CT image reconstruction
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