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Low-dose X-ray CT image reconstruction

Thin-slice FBP ASIR
Seconds A bit longer

Image reconstruction as an optimization problem:

|
X= argmini |y —Ax||%v + R(x)

x>0

(Same sinogram, so all at same dose)

Statistical

Much longer
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Outline RHER
e Motivation (done)

e Problem definition

e Existing algorithms

o Gradient descent
o Nesterov's “optimal” first-order methods
o General first-order methods

e Optimizing first-order minimization methods

e Drori & Teboulle's numerical bounds
e Donghwan Kim's analytically optimized (“more optimal™) first-order methods
e Examples:

o logistic regression for machine learning

o CT image reconstruction

e Summary / Future work
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Optimization problem setting

X € argmin f(x)
X

e Unconstrained

e Large-scale (Hessian too big to store)
o Image reconstruction
o big-data / machine learning
O ...

e Cost function assumptions (throughout)
o f:RY - R
o convex (need not be strictly convex)
o non-empty set of global minimizers:

xe 2 ={x, eR". f(x,) < f(x), Vvx e R"}
o smooth (differentiable with L-Lipschitz gradient)
IV @)~V f@)l, <L|x—zll,, VxzeRY
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Example: Machine learning R

To learn weights x of binary classifier given feature vectors {v;} and labels {y;}:
76 = X o x,v)).

where y; = +1.

Loss functions (surrogates)

exponential
hinge
logistic

0-1

loss functions y(¢)

0-1: H{tﬁO}

exponential: exp(—t)
logistic: log(1+exp(—t?))
hinge: max{0,1 —r}

Which of these fit our conditions?
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Gradient descent R

iteration with step size 1/L ensures monotonic descent of f:

|
Xn+1 = Xp — Z Vf(xn)

X1 X0 I Vf(xo)
X X1 1 Vf(xl)
stacking: : = : —7 :
XN—1 XN-2 i (xN—z)
| Xy | XN-1  Vi(xn-1) |
I X1 _ I X0 _ I 1 0 0 ...0 _ I Vf(x'()) _
X X1 1 O1 O . 0 Vf(xl)
le. = = ~7 s e J4 :
XN-1 XN_2 0... 0 10 Vf(xn—2)
i XN i _xN_1 1 _O .. 0 01 i _Vf(xN_l) 1
\ Hap /

Note: N x N coefficient matrix Hgp is diagonal (a special case of lower triangular).



Gradient descent convergence rate (R

Classic O(1/n) convergence rate of cost function descent:

Lon—x*Hg

L) — f(x,) <

— 2n
iInaccuracy

Drori & Teboulle (2013) derive tightest inaccuracy bound:

Lon—x*Hg

f(x) = f(x,) < )

They construct a Huber-like function f for which GD achieves that bound.
Case closed for GD.

O(1/n) rate is undesirably slow.



Heavy ball method T
iteration (Polyak, 1987):
04
Xpil = xn—sz(xn)—l—p (xn—xn_l)J (for implementation)
momentum!
1 n
= xn—zza Oc[?”._k Vf(x) (for analysis)
~coefficients
stacking:
x| x| o 0 0 ...0 Vi (xo)
X> X 1 OCﬁ a 0 ... 0 Vf(xl)
XN_1 XN_2 af > ... af a O Vf(xn—2)
XN _xN_l_ OCﬁN_l Olﬁz op o Vf(xN_l)

\ Hyg )
Here, N X N coefficient matrix Hyg is lower triangular.

e How to choose o and 37
e How to optimize N X N coefficient matrix H more generally?



General first-order method class R

General “first-order” (FO) iteration:

12
Xnrl =Xn— 7 Z hn+1,k Vf(xk)
Lk:O

stacking:

X X0 ho 0 0 ... 0 ] gﬁi"g
Pl T 1] o oy O L 0 |orll. :
V- xva | hyo I ) hyn-2 hnN-1 v (xn-2)
XN XN-—1 \\- I ) Vf(xn-1)

i 1L i e i i

Primary goals:

e Analyze convergence rate of FO for any given H

e Optimize N X N lower-triangular (“causal™) step-size coefficient matrix H.
o fast convergence
o efficient recursive implementation
o universal (design prior to iterating)



Not: Barzilai-Borwein gradient method (R

Barzilai & Borwein, 1988
g = V£x,)
1, — %04
(Xn — X1, 8" — g~ D)
Xp1 =X, — 0, VI(x,).

o, =

Not in “first-order” class FO.

Neither are methods like

o steepest descent (with line search),
o conjugate gradient,

o quasi-Newton ...



Nesterov’s fast gradient method (FGM1) R
Nesterov (1983) iteration: Initialize: 1o =1, 2o = Xxg
Zntl =X — %Vf(xn) (usual GD update)
b = (1 + \/m) (magic momentum factors)
t,—1

Xntl = Zne1 + (Zyr1—2,) (update with momentum) .

Int1
Reverts to GD if ¢, = 1, Vn.

- 1 ¢
FGM1 is in class FO: Xyl :x,,,—ZZhnH,kv fx)
k=0
(t,— 1 _ i
P k=0,...n—2 10 0 0 0 0
A 01250 0 0 0
) . 00101400 0 0
14 = < thi Prpt = 1), k=n—1 0 0.05 020 1.50 0 0
t, — 1 0 0.03 0.11 0.29 1.57 0
1+ : k=n. 0 0.02 0.07 0.18 0.36 1.62
\ tn—H - -



Nesterov FGM1 optimal convergence rate

Shown by Nesterov to be O(1/n?) for “auxiliary” sequence:

2L %o — .

f(zn> _f(x*) < (n_|_ 1)2

Nesterov constructed a function f such that any first-order method achieves

;_QLHxO_x*H%
(n+1)2
Thus O(1/n?) rate of FGM1 is optimal.

S f(xn) _f(x*> y

New results (Donghwan Kim, 2014):
e Bound on convergence rate of primary sequence {x,}:

2L [|xo _x*Hg
(n+2)?
e Verifies (numerically inspired) conjecture of Drori & Teboulle (2013).

J(x) = f(x:) <
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Overview s

General first-order (FO) iteration:

Xntl = Xp— 7 Z Py 1k Vf(xk)
L=

e Analyze (i.e., bound) convergence rate as a function of
o number of iterations N
o Lipschitz constant L
o step-size coefficients H = {11 4}
o Distance to a solution: R = ||xg — x|
e Optimize H by minimizing the bound



Ideal “universal”’ bound for first-order methods

For given

e number of iterations N

e Lipschitz constant L

o step-size coefficients H = {11 x}

e distance to a solution: R = ||xy — x,||

bound the worst-case convergence rate of FO algorithm:

Bi(H,R,L,N) = max max max flxn)—f(x)

fe# xo,xl,...,xNeRM x*E%*(f)

10 —x[| <R

1n
such that xn+1:xn—Z];)hn+1,ka(xk), n=0,....N—1.

Clearly for any FO method:
f(xN) _f(x*) < Bl(HaRaLaN)
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Towards practical bounds for first-order methods VIO
For convex functions with L-Lipschitz gradients
|
V@) = V@I < f(x) - f(2) —(Vf(2), x—2), VxzeRY.

Drori & Teboulle (2013) use this inequality to propose a “more tractable” bound:
By(H,R,L,N) = max max max max LR&;

g0:---8NERM &y,....,0NER  x0.x1,.. . xyeRM  xy:[lx0—24[|<R

1 n
such that an:xn——ZhnH,kng, n=0,...,.N—1,
Y

—H& gl < 8- 5——<g],x, X)), ij=0,....N,*
where g, = 75V f(x,) and 6, = 75 (f(xa) — f(x.)).

For any FO method:
f(xN) _f(x*) < Bl(HvRvLaN) < B2(H7R7L7N)

However, even B, is as of yet unsolved.



Numerical bounds for first-order methods R

Drori & Teboulle (2013) further relax the bound leading eventually to a still simpler
optimization problem (with no known closed-form solution):

f(xN)_f(x*) SBI(HaRaLaN) < BZ(H7R7L7N) < B3(H7R7L7N)’

For given step-size coefficients H, and given number of iterations N, they use a
semi-definite program (SDP) to compute B3 numerically.

They find numerically that for the FGM1 choice of H, the convergence bound Bj is
2L ||x _x*Hg
(N+1)>

slightly tighter than



Optimizing step-size coefficients numerically MR

Drori & Teboulle (2013) also compute numerically the minimizer over H of their
relaxed bound for given N using a semi-definite program (SDP):

H* = argminB3(H,R,L,N).
H

Numerical solution for H* for N =5 iterations: [Fig. from Drori & Teboulle (2013)]

o

. Input: f € C_,_ ”:_;d} xp € RY,
X] = Xg — |ﬁ]"'lﬂ‘f {III'
X = X| — r:1?41 f(xg) — = mu“if (x1),

_.x-gz_.x-g—f"'?"”f{ Xg) — “"”'4 B f(x1) — 221 f(xy),

X4 = X3 — ﬂll-lll] f { "} . j-':lﬂ'f {1 ' . DE:I:'—” f |:1 ' . ifﬁﬁ‘f!{.l—'_'\j},

X5 = X4 — ﬂll]?Er (x0) — ﬂ lm[}f (x1) — ﬂ RU-lf (x2) — D.t:f-'l_ﬁf.f{:-_l.s} —

._D??'-:f (x4).

L.
2.
3.
4.
5.

Drawbacks
e Must choose N in advance

e Requires O(N) memory for all gradient vectors {Vf(x,)}
e O(N?) computation for N iterations

N

n=1

Benefit: convergence bound (for specific N) =~ 2x lower than for Nesterov's FGML.



New analytical solution T

e Analytical solution for optimized step-size coefficients (Donghwan Kim, 2014):

( onlp o k=0,....n—2
o ()
H . =14 2y —1), k=n—1
26,—1 i

N 1_|_ On—i—l’ k—l’l

(1, n=>0

6, — %(1+\/1+492 ) n=1,...N—1
l(1+\/1+892 ) _N.

e Analytical convergence bound for these optimized step-size coefficients:
LL|x0 — .13
(N+1)(N+14++/2)

Of course bound is O(1/N?), but constant is twice better than that of Nesterov.
No numerical SDP needed = feasible for large N.

f(xN) _f(x*) < B3(H*7R7L7N) —

(History: sought banded / structured lower-triangular form)



Optimized gradient method (OGM1) T
Donghwan Kim (2014) found efficient recursive iteration:

Initialize: 6y =1, zo = xo

|
Zntl = Xn— —Vf(xn) (usual GD update)

(1+\/1+492 ) n=1,...N—1
(momentum factors)

(1+\/1+892 ) =N

6,—1 0,
n T 4n ‘A \Ln —Xn).
9n+1 (Z +1 4 )—I_ \GnJr] (Z +1 )J

v
new momentum

Reverts to Nesterov's FGM1 if the new terms are removed.
e Very simple modification of existing Nesterov code

e No need to choose N in advance (or solve SDP);
use favorite stopping rule then run one last “decreased momentum” step.

e Factor of 2 better upper bound than Nesterov's “optimal” FGM1.

N =

D=

Xn+1 = Zn+1 +

(Proofs omitted.)
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Machine learning (logistic regression) RIS

To learn weights x of binary classifier given feature vectors {v;} and labels {y;}:

X

= argmin f(x),  f(x) = Y wlulx,v) +B5 I,

where y; = £1.

ogistic: (1) = log(1+e), W)= ——, W(t)=—° 26(0711

Gradient V f(x) = ¥ yivi W(yi (x, vi)) +Bx

Hessian is positive definite so strictly convex:

V2 £( Zv,y/ yi(x, Vi) V4RI <~ Zv,v +B31

= %p (Zi:v,-v§> +p3 > max p (V2 f(x))



Numerical Results: logistic regression (R

Training data, initial decision boundary (red), final decision boundary (magenta)



Numerical Results: convergence rates B

GD
Nesterov
OGM1 ——

20
lteration




Numerical Results: adaptive restart T

GD
Nesterov (restart)
OGMT1 (restart)

20
lteration

O'Donoghue & Candes, 2014



Low-dose 2D X-ray CT image reconstruction simulation s

N
)

N
o

D
L
N 15
)
>
oC

—
o

150
lteration




Summary

New optimized first-order minimization algorithm
Simple implementation akin to Nesterov's FGM
Analytical converge rate bound

Bound is 2x better than Nesterov

Future work

e Constraints

e Non-smooth cost functions, e.g., ¢;

e Tighter bounds

e Strongly convex case

e Asymptotic / local convergence rates

e Incremental gradients

e Stochastic gradient descent

e Adaptive restart

e Low-dose 3D X-ray CT image reconstruction

UNIVERSITY OF
MICHIGAN



Bibliography

[1] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimization: A novel approach.
Mathematical Programming, 145(1-2):451-82, June 2014.

[2] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence O(1/k?).
Dokl. Akad. Nauk. USSR, 269(3):543-7, 1983.

[3] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127-52, May
2005.

[4] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization. Mathematical Program-
ming, 2015. Submitted.

[5] D. Bohning and B. G. Lindsay. Monotonicity of quadratic approximation algorithms. Ann. Inst. Stat. Math.,
40(4):641-63, December 1988.

[6] B. O'Donoghue and E. Candes. Adaptive restart for accelerated gradient schemes. Found. Computational Math.,
15(3):715-32, June 2015.



