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Statistical image reconstruction: a CT revolution

e A picture is worth 1000 words
e (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR Statistical

Seconds A bit longer Much longer

(Same sinogram, so all at same )

NN



Outline

e Image denoising (review)

e Image restoration
Antonios Matakos, Sathish Ramani, JF, IEEE T-IP, May 2013
Accelerated edge-preserving image restoration without boundary artifacts

e Low-dose X-ray CT image reconstruction
Sathish Ramani & JF, IEEE T-MI, Mar. 2012
A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction
Donghwan Kim, Sathish Ramani, JF, Fully3D June 2013
Accelerating X-ray CT ordered subsets image reconstruction with Nesterov’s first-order
methods

e Model-based MR image reconstruction
Sathish Ramani & JF, IEEE T-MI, Mar. 2011
Parallel MR image reconstruction using augmented Lagrangian methods

e Image in-painting (e.g., from cutset sampling) using sparsity


http://dx.doi.org/10.1109/TIP.2013.2244218
http://dx.doi.org/10.1109/TMI.2011.2175233
http://fully3d.org
http://dx.doi.org/10.1109/TMI.2010.2093536

Image denoising



Denoising using sparsity

Measurement model:

y = X_ + _E_

v .
observed unknown noise

Object model: assume Qx is sparse (compressible) for some orthogonal
sparsifying transform Q, such as an orthogonal wavelet transform (OWT).

Sparsity regularized estimator:

. 1
& = argmin |y —x|3+6 O],
x B N——

\ -

data fit ~ sparsity
Regularization parameter 3 determines trade-off.

Equivalently (because Q' = @' is an orthonormal matrix):

~ 1 .
-6 0zarg;nlnille—OHiﬂLBIIOHPZShrlnk(Qy: B,p)

Non-iterative solution!



Orthogonal transform thresholding

Equation:
X = Q'shrink(Qy : B, p)

Block diagram:

Noisy Analysis : Synthesis Denoised

: Shrink A .

image — | Transform | — B — 0 — | Transform |— image
y 0 _ 0 &

todo: show shrink functionfor p=1and p=0

But sparsity in orthogonal transforms often yields artifacts. Spin cycling...



Hard thresholding example

Nolisy 1image Denoised

PSNR = 76.1 dB PSNR = 89.7 dB

p = 0, orthonormal Haar wavelets



Sparsity using shift-invariant models

Analysis form:

Assume Rx is sparse for some sparsifying transform R.

Often R is a “tall” matrix, e.g., finite differences along horizontal and vertical
directions, /.e., anisotropic total variation (TV).

Often R is shift invariant: ||Rx||, = ||Rcircshift(x)||, and R'R is circulant.

. 1
% = argmin [y x|+ B R,
X N——

transform sparsity

Synthesis form
Assume x = S0 where coefficient vector 0 is sparse.
Often S is a “fat” matrix (over-complete dictionary) and S'S is circulant.

N " 1
=256, 6:argmin—H)’—Seﬂg—Fﬁ||9Hp
o 2 S~—~—

sparse coefficients

Analysis form preferable to synthesis form?
(Elad et al., Inv. Prob., June 2007)


http://dx.doi.org/10.1088/0266-5611/23/3/007

Constrained optimization

Unconstrained estimator (analysis form for illustration):

. 1

% = argmin [ly —x|3+ B | Rx]]
(Nonnegativity constraint or box constraints easily added.)

Equivalent constrained optimization problem:
! 2
min 5 |y —x[[5+B][v], sub. tov=Rx.

(Y. Wang et al., SIAM J. Im. Sci., 2008)
(M Afonso, J Bioucas-Dias, M Figueiredo, IEEE T-IP, Sep. 2010)

(The auxiliary variable v is discarded after optimization; keep only x.)

Penalty approach:
|
X = argmin min —
x v 2
Large 11 better enforces the constraint v = Rx, but can worsen conditioning.

2 2
ly—x[3+B ||va+§ v — Rx|]3.

Preferable (?) approach: augmented Lagrangian.


http://dx.doi.org/10.1137/080724265
http://dx.doi.org/10.1109/TIP.2010.2047910

Augmented Lagrangian method: V1

General linearly constrained optimization problem:
min¥(u) sub. to Cu = b.

u

Form augmented Lagrangian:
L(w,y) 2 W(u)+7 (Cu—b) + £ |Cu—b|}

where v is the dual variable or Lagrange multiplier vector.

AL method alternates between minimizing over u and gradient ascent on ¥:
u"Y = argminL(u,y")

,y(n—|—1) — Y(n) —I-P (Cu(n+1) —b) .

Desirable convergence properties.
AL penalty parameter p affects convergence rate, not solution!

Unfortunately, minimizing over u is impractical here:

v=Rx equivalentto Cu=>b, C=[R I, u:[x], b=0.



Augmented Lagrangian method: V2

General linearly constrained optimization problem:
min'¥(u) sub. to Cu = b.

Form (modified) augmented Lagrangian by completing the square:
L(u,1) 2 () + |Cu—n]3+Cy,

where n £ b — %y is a modified dual variable or Lagrange multiplier vector.

AL method alternates between minimizing over u and gradient ascent on n:
u™Y = argminL(u,y"™)

,n(n—i—l) _ ,n(n) i (Cu(n—H) —b)

Desirable convergence properties.
AL penalty parameter p affects convergence rate, not solution!

Unfortunately, minimizing over u is impractical here:

v=Rx equivalentto Cu=b, C=[R -1, u:[x], b=0.



Alternating direction method of multipliers (ADMM)

When u has multiple component vectors, e.g., u = ':i :
rewrite (modified) augmented Lagrangian in terms of all component vectors:

L(x,v;n) = P(x,v)+5 |Rx—v -7}

= —IIy x|+ B Ivll, +—||Rx v—nH;
cf. penalty'

because here Cu = Rx —v.

Alternate between minimizing over each component vector:

x"Y = argminL(x,v",n")
X

v = argminL(x"V v, n™)
v

Pt = i (RxtD _ yrtDY

Reasonably desirable convergence properties. (Inexact inner minimizations!)
Sufficient conditions on matrix C.

(Eckstein & Bertsekas, Math. Prog., Apr. 1992)

(Douglas and Rachford, Tr. Am. Math. Soc., 1956, heat conduction problems)


http://dx.doi.org/10.1007/BF01581204

ADMM for image denoising

Augmented Lagrangian:

| ) P 2
Lix,vin) = 5 ly—xl3+B Vil + 2 [Re—v -

Update of primal variable (unknown image):

x"D = argminL(x, v, n™) = [I + pR'R] —11 (y+pR (v +n™))

X

Wiener filter

Update of auxiliary variable: (No “corner rounding” needed for /;.)
v = argmin L(x"*Y, v, n™) = shrink (Rx" " —n™; 3 /p. p)

1%

Update of multiplier: n**! = n® + (Rx"+D — y+1)

Equivalent to “split Bregman” approach.
(Goldstein & Osher, SIAM J. Im. Sci. 2009)

Each update is simple and exact (non-iterative) if [/ -+ pR'R] ' is easy.


http://dx.doi.org/10.1137/080725891

ADMM image denoising example

Denoised

10 15
SNR =535dB ADMM iteration

R : horizontal and vertical finite differences (anisotropic TV),
p=1(ie., t), p=1/2, p=1 (condition number of (I+ pR'R) is 9)



DMM image denoising iterates






X-ray CT image reconstruction
Part 1: ADMM



X-ray CT review 1

Detector Detector elements

Source

X-ray source transmits X-ray photons through object.
Recorded signal relates to line integral of attenuation along photon path.




X-ray CT review 2

Detector elements

X-ray source and detector rotate around object.




X-ray CT review 3

Detector elements

SMalA uoialoid

Measurement data Y

Collection of recorded views called a sinogram.
Goal is to reconstruct (3D) image of object attenuation from sinogram.




Lower-dose X-ray CT

Radiation dose proportional to X-ray source intensity.
Reducing dose — fewer recorded photons — lower SNR
Conventional filter back-project (FBP) method derived for noiseless data

Conventlonal FBP reconstructlon

Statistical image reconstruction

%




Low-dose X-ray CT image reconstruction
Regularized estimator:

. 1
& = argmin [ly — Ax|[} +B | Rx]],
N——

x-0 & /

data fit sparsity

Complications:
e Large problem size
o x: 512 x 512 x 800 ~ 2 -10% unknown image volume
o y: 888 x 64 x 7000 ~ 4 - 10® measured sinogram
o A: (4-10%) x (2-10%) system matrix
o A is sparse but still too large to store
o Projection Ax and back-projection A’ r operations computed on the fly
o Computing gradient VW¥(x) = A'W (Ax—y)+ BV R(x) requires projection
and back-projection operations that dominate computation
o A’A is not circulant (but “approximately Toeplitz” in 2D)
o A'WA is highly shift variant due to huge dynamic range of weighting W
 Non-quadratic (edge-preserving) regularizer e.g., R(x) = [|Rx||,
e Nonnegativity constraint
e Goal: fast parallelizable algorithms that “converge” in a few iterations



Basic ADMM for X-ray CT
Basic equivalent constrained optimization problem (cf. split Bregman):

1 >
) |y — Ax|[y + B [|v]|, sub. tov=Rx.

Corresponding (modified) augmented Lagrangian (cf. “split Bregman”):

1 p
L(x,vin) = 5 ly — Axlly + B ], + 2 [IRx —v— |

ADMM update of primal variable (unknown image):
X" = argmin L(x,v®, n™) = [AWA + pR'R| ' (A'W'y+pR (v’ +1n))

Drawbacks:

e lgnores nonnegativity constraint

o [A'WA+pR'R] ! requires iteration (e.g., PCG) but hard to precondition.
“second order method”

e Auxiliary variable v = Rx is enormous in 3D CT



Improved ADMM for X-ray CT

|
>r_1(1)1n Sy — uHW+B||v|| sub. to v =Rx, u=Ax.

Corresponding (mOdIerd) augmented Lagrangian:

L(x,u,v;n,M,) = —IIy ullw + B IVl +—!|Rx =1+ —HAx—u—nzHi

ADMM update of primal variable (ignoring nonnegativity):
argminL(x,u,v,1,1,) = |02A’A +pR'R| B (PR (v+my) +prA"(u+1,))

X

For 2D CT, [p,A’A+ piR'R] ' is approximately Toeplitz
SO a circulant preconditioner is very effective.

ADMM update of auxiliary variable u:

argminL(x7u7v7n17n2) [W-szl] (Wy—|_p2(Ax 772))
’ dlagonal
v update is shrinkage again. Reasonably simple to code.

(Sathish Ramani & JF, IEEE T-MI, Mar. 2012)


http://dx.doi.org/10.1109/TMI.2011.2175233

2D X-ray CT image reconstruction results: quality

True Hanning FBP Regularized

PWLS with ¢, regularization of shift-invariant Haar wavelet transform.
No nonnegativity constraint, but probably unimportant if well-regularized.



2D X-ray CT image reconstruction results: speed

R Iy
ROy Tt
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Iterations tj (seconds)

Circulant preconditioner for [pzA’A + le’R} “is crucial to acceleration.

Similar results for real head CT scan in paper.



Lower-memory ADMM for X-ray CT
.1 2
min > |y —ullyy + B |Rz|[, sub. to z =x, u=Ax.
(M McGaffin, S Ramani, JF, SPIE 2012)

Corresponding (modified) augmented Lagrangian:

1 P P
L(x,u,2:11,12) = 5 ly = ully + BlIRz], + 5 llx — 2= m|3+ 5 | Ax —u—1,]3
ADMM update of primal variable (nonnegativity not required, use PCQG):
argmin L(x,u,2,1,,M,) = [02AA+piI| (pi(z+1,) +p2A'(u+1,)).

X

ADMM update of auxiliary variable z:

. . P1
argminL(x, u,2,1,,1,) = argmin 2 |x — 2 — 3+ B | Rzl

z-0 z-0

Use nonnegatively constrained, edge-preserving image denoising.

ADMM updates of auxiliary variables u and v same as before.
Variations...


http://dx.doi.org/10.1117/12.910941

3D X-ray CT image reconstruction results

Awaiting better preconditioner for [pzA/A‘l‘pll] ~in3DCT...
This is not an “easy problem” like in (idealized) image restoration...



X-ray CT image reconstruction
Part 2: OS+Momentum



OS+Momentum preview

e Optimization transfer (aka majorize-minimize, half-quadratic)

e Ordered-subsets (OS) acceleration (aka incremental gradient, block iterative)
° -based acceleration

e Proposed OS+Momentum approach combines both

=)
=
o
%)
=
o

10
Iteration

Donghwan Kim, Sathish Ramani, JF, Fully3D June 2013
Accelerating X-ray CT ordered subsets image reconstruction with Nesterov’s first-order

methods


http://fully3d.org

Optimization transfer method
(aka majorization-minimization or half-quadratic)

e At nth iteration, replace original cost function ¥(x)
by a surrogate function ¢ (x) that is easier to minimize:

(n+1)

x"*t) = argmin ¢ (x)

x>0

o To monotonically decrease ¥(x), i.e., ¥(x""!) < ¥(x"),
surrogate should satisfy the following majorization conditions:

<
s =
e
G
Vol
= 8
CREN
- S
—
&
o
=




Separable quadratic surrogate (SQS)
Quadratic surrogate functions are particularly convenient:
1
P(x) <9”(x) =¥ (x") +V¥(x")(x—x")+ > |x—x™|2,

where D is a specially designed diagonal matrix:
D=D,+pDr, D, =diag{AWA1},  Dg= Anu(V°R(x))I.
(Erdogan and Fessler, PMB, 1999)

(Easier to compute D; than to find Lipschitz constant of AWA.)

SQS leads to trivial M-step:
") = argming ™ (x) = [x" — D'V (x™)]

x>0

“diagonally preconditioned gradient projection method”

X e


http://dx.doi.org/10.1088/0031-9155/44/11/311

Convergence rate of SQS method

Asymptotic convergence rate:
p(I-D'V*¥())

Slightly generalizing Theorem 3.1 of Beck and Teboulle:

2

|

P (x") —P(x) <

2n
(Beck and Teboulle, SIAM J Im. Sci., 2009)

Pro: easily parallelized
Con: very slow convergence


http://dx.doi.org/10.1137/080716542

Accelerating SQS using Nesterov’s momemtum

SQS+Momentum Algorithm:
e Initialize image x’ and
e forn=0,1,...
" = argming™ (2") = [z = D'V¥( ).

x>0

Simple generalization of Thm. 4.4 for FISTA of
(Beck and Teboulle, SIAM J Im. Sci., 2009)

Pro: Almost same computation per iteration; slightly more memory needed.
Con: still converges too slowly for X-ray CT


http://dx.doi.org/10.1137/080716542

Ordered subsets (OS) methods

e Recall: Projection operator A is computationally expensive.

[

e OS methods group projection views into M subsets, and use each subset
per each update, instead of using all measurement data.
(Hudson and Larkin, IEEE T-MI, 1994)
(Erdogan and Fessler, PMB, 1999)

cf block-iterative incremental sub-gradient for machine learning

Detector elements 0S methods with M=3

SM3IIA UOoI1I3l0Ud

Measurem

P .



http://dx.doi.org/ 10.1109/42.363108 
http://dx.doi.org/10.1088/0031-9155/44/11/311

OS projection view grouping

Detector elements 0S methods with M=3

Subset of measurement data Y1

o
=

9,
D
(]
=
o
=3
=,
D
=
v

Measurement data Y




OS projection view grouping

Detector elements 0S methods with M=3

o
=

9,
D
(]
=
o
=3
=,
D
=
v

Subset of measurement data Y2

Measurement data Y




OS projection view grouping

Detector elements

Measurement data Y

smaln uoloalodd

0OS methods with M=3

Subset of measurement data Y3




OS algorithm

Cost function decomposition:

oL 1 1
W)=Y ¥ulx), ¥nl0) =3[y~ Auxlly, + 1 R)
m=1

Y., Am, Wyt Sinogram rows, system matrix rows, weighting elements
for mth subset of projection views

Intuition: in early iterations (when x™ is far from %):
MV, (x") =~ VP(x™).

OS-SQS Algorithm (Erdogan and Fessler, PMB, 1999)
o Initialize image x©

e forn=0,1,...

e form=0,... M—1

x(n—|—(m—|—1)/M) — arg min {x(n—Hn/M) o D—lMV ‘Pm (merm/M))}

x>0 +


http://dx.doi.org/10.1088/0031-9155/44/11/311

0OS-SQ@S algorithm properties

e One iteration corresponds to updating all M subsets.
Computation cost similar to original SQS
(one full forward A and back-projection A’ per iteration)

e + Highly parallelizable

e + In early iterations, “we expect” the sequence {x} to satisfy

=@ -2l
~ o M

W (") — W (3)

M times acceleration!
e - Does not converge to x
Approaches a limit cycle, size related to M
Luo, Neural Computation, June 1991
e - Computing VR(x) for each of M subsets = prefer small M
e Since about 1997, OS methods have been used for (unregularized) PET
reconstruction in nearly every PET scanner sold.
e Still undesirably slow (for small M) or unstable (for large M) in X-ray CT.


http://dx.doi.org/ 10.1162/neco.1991.3.2.226 

OS+ algorithm

o Initialize image x and

e forn=0,1,...
o form=0,1,...
x(n+(m+1)/M) _ |: (n—i—m/M)_D—lMV\Pm( (n—l—m/M))}
+
(n+(m+1)/M) _ _(n+(m+1)/M) (m+1)/M m/M

e + In early iterations, “we expect” the sequence {x} to satisfy

o112
w(en)wie g Al
~  2(nM)?

M?* times acceleration!
e + Very similar computation as OS-SQS
e + Easily implemented
e - Unknown convergence properties



Summary of convergence rates
SQS (optimization transfer) methods:

e Convergence rate

o SQS: 0 (1>
n
1

o SQS+ 0| —

n
e Expected convergence rate with OS method in early iterations

1
o OS-SQS: 0(—M>

n

o Proposed OS-SQS+Momentum: O :
(nM)

e Pros: Owing to M? times acceleration from OS methods, we can use
small M, improving stability and reducing regularizer computation.

e Cons: Behavior of OS methods with momentum is unknown, while or-
dinary OS methods approach a limit-cycle. (Luo, Neural Comp., Jun. 1991)


http://dx.doi.org/ 10.1162/neco.1991.3.2.226 

Patient 3D helical CT scan results

e 3D cone-beam helical CT scan with pitch 1.0
e 3D image x: 512 x 512 x 109
e voxel size: 1.369 mm x 1.369 mm x 0.625 mm
e measured sinogram data y: 888 x 32 x 7146
(detector columns x detector rows x projection views)

Convergence rates (empirical)
o Root mean square difference (RMSD) between current x and converged
image x

where N, = 512 x 512 x 109 is the number of image voxels in x.
e Normalized RMSD:

(n) _ %
NRMSD £ 201log,, (Hx o xH2> [dB].
p)

e X obtained by many iterations of several convergent algorithms



Convergence rate: RMSD [HU]

10 15
Iteration

e Slow convergence without OS methods.

e OS methods with M = 24 subsets needed 20% extra compute time per
iteration due to VR(x).

e OS-SQS-Momentum “converges” very rapidly in early iterations!

e Does not reach RMSD=0...



Convergence rate: Normalized RMSD [dB]

|
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10 15
Iteration

Combining incremental (sub)gradient with Nesterov-type momentum
acceleration may help other “big data” estimation problems.



|




SQS SQS—momentum
RMSD = 29.3 [HU] RMSD = 27.9 [HU]

‘i i i e v

. = . - Y s - _ l . -
. - -1 1 i} oy . - L}
N 4B s ' - . ® +5
It o Fl . ! - . . 1, ¥ a ri R o

1T & i . . .." ’ ' i

i,
(Rl B

- 0S(24)-SQS
RMSD = 16.8 [HU]

Reconstructed images at 12th iteration. ([800 1200] HU)

0S-SQS+Momentum with M = 24 subsets much closer to minimizer x



Difference images

Difference between reconstructed images at 12th iteration
and converged image x. ([-100 100] HU)



Newer Nesterov method

SQS—Nes83
— SQS—-Nes05
—x— 0524-SQS
—6— 0S48-SQS
o 0524-SQS—-Nes83
—¥— 0524-SQS—-Nes05
O 0548-SQS—-Nes83 P
—O6— 0548-SQS—-Nes05

T

lteration

Remains stable even for M = 48 subsets. (Nesterov, Math. Prog., May 2005)


http://dx.doi.org/ 10.1007/s10107-004-0552-5 

Some research problems in CT

1
x= arg min ly — Ax||s + BR(x).

x>0

Reasonably mature research areas
e Design and implementation of system model A
o Statistical modeling W

Open problems
e Design of regularizer R(x) to maximize radiologist performance
o Faster parallelizable algorithms (argmin) with global convergence
e Distributed computation — reducing communication
e Algorithms for more complete/complicated physical models
(e.g., dual energy or spectral CT)
e Dynamic imaging / motion compensated image reconstruction
e Analysis of statistical properties of (highly nonlinear) estimator x



Image reconstruction for parallel MRI



Parallel MRI

Undersampled Cartesian k-space, multiple receive caoils, ...
(Pruessmann et al., MRM, Nov. 1999)

Compressed sensing parallel MRI = further (random) under-sampling
Lustig et al., IEEE Sig. Proc. Mag., Mar. 2008


http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
http://dx.doi.org/10.1109/MSP.2007.914728

Model-based image reconstruction in parallel MRI
Regularized estimator:

. 1
% = argmin ly — FSx||>+8 | Rx||, -
x P N——

\ -

datafit ~ Sparsity
F is under-sampled DFT matrix (fat)

Features:
e coil sensitivity matrix S is block diagonal (Pruessmann et al., MBRM, Nov. 1999)
e F'F is circulant

Complications:

o Data-fit Hessian S'F'F S is highly shift variant due to coil sensitivity maps
» Non-quadratic (edge-preserving) regularization |||,

e Complex quantities

e Large problem size (if 3D)


http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S

Basic ADMM for parallel MRI
Basic equivalent constrained optimization problem (cf. split Bregman):

|
min = ||y — FSx||5+ B ||v], sub. to v = Rx.
xv 2 p

Corresponding (modified) augmented Lagrangian (cf. “split Bregman”):

1 P 2
L(x,vim) = 5 lly = FSx34 B vl + 5 [Rx v

(Skipping technical details about complex vectors.)

ADMM update of primal variable (unknown image):

x"*tY = argmin L(x,v™,n™) = [SF'FS+ pR'R] B (S'F'y+pR (v?"+1n™))

o [SF'FS+pRR| - requires iteration (e.g., PCG) but hard to precondition
e (Trivial for single coil case with § =1.)
e The “problem” matrix is on opposite side:

o MRI: F

o Restoration: 7'A



Improved ADMM for parallel MRI
|
min = ||ly— Fu|5+p|/v|, sub.tov=Rz, u=Sx, z—=x
x,u,v,z2 p
Corresponding (modified) augmented Lagrangian:

1 P1 2 P2 2 P3 2
Sy = Ful2+B vl + 2 Rz v =y B+ 2w — = 3+ 22— 2=y

ADMM update of primal variable

argminL(xv u,v,2;Mn, Ny, 773) — lp2S,S + p31} i (p2S/ (u‘Hh) +P3 (Z + ’73))
diadanal

ADMM update of auxiliary variables:
argminL(x, u,v,2;M,, Ny, n3) — LF/F —|_p2I] _i(F/y—I_pZ(Sx i ’72))
) circulant

argminL(x,u,v,z;1N,M,,M3) = LPIR/R + p3l| _l (PR (v+n,)+p3(x—n3))
‘ circulant

v update is shrinkage again.
Simple, but does not satisfy sufficient conditions.
(Sathish Ramani & JF, IEEE T-MI, Mar. 2011)


http://dx.doi.org/10.1109/TMI.2010.2093536

2.5D parallel MR image reconstruction results: data

Fully sampled body coil image of human brain
Poisson-disk-based k-space sampling, 16% sampling (acceleration 6.25)
Square-root of sum-of-squares inverse FFT of zero-filled k-space data



2.5D parallel MR image reconstruction results: 1Q

e Fully sampled body coil image of human brain
e Regularized reconstruction x (1000s of iterations of MFISTA)

(A Beck & M Teboulle, SIAM J. Im. Sci, 2009)

Combined TV and ¢; norm of two-level undecimated Haar wavelets
e Difference image magnitude


http://dx.doi.org/10.1137/080716542

2.5D parallel MR image reconstruction results: speed

—¥— MFISTA-1
—8— MFISTA-5
—6— NCG-1
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AL approach converges to x> much faster than MFISTA and CG




Current and future directions with ADMM

e Motion-compensated image reconstruction: y =AT (at)x+ €
(J H Cho, S Ramani, JF, 2nd CT meeting, 2012)
(J H Cho, S Ramani, JF, IEEE Stat. Sig. Proc. W., 2012)

e Dynamic image reconstruction

e Improved preconditioners for ADMM for 3D CT
(M McGaffin and JF, Submitted to Fully 3D 2013)

e Combining ADMM with ordered subsets (OS) methods
(H Nien and JF, Submitted to Fully 3D 2013)

e Generalize parallel MRI algorithm to include spatial support constraint
(M Le, S Ramani, JF, To appear at ISMRM 201 3)

e Non-Cartesian MRI (combine optimization transfer and variable splitting)
(S Ramani and JF, ISBI 2013, to appear.)

e SPECT-CT reconstruction with non-local means regularizer
(SY Chun, Y K Dewaraja, JF, Submitted to Fully 3D 2013)

e Estimation of coil sensitivity maps (quadratic problem!)
(M J Allison, S Ramani, JF, IEEE T-MI, Mar. 2013)

e L1-SPIRIT for non-Cartesian parallel MRI (D S Weller, S Ramani, JF, IEEE
T-Ml, 2013, submitted)

e Multi-frame super-resolution

e Selection of AL penalty parameter p to optimize convergence rate

e Other non-ADMM methods... /


http://dx.doi.org/10.1109/SSP.2012.6319667
http://dx.doi.org/10.1109/TMI.2012.2229711
http://dx.doi.org/
http://dx.doi.org/
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Image reconstruction toolbox

MATLAB (and increasingly Octave) toolbox for imaging inverse problems
(MRI, CT, PET, SPECT, Deblurring)

web.eecs.umich.edu/~fessler



web.eecs.umich.edu/~fessler
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