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Overview

= Non-Cartesian k-space trajectories

= Efficient k-space coverage, robustness to motion & off-resonance effects
s Reconstruction is however more involved than for Cartesian trajectories
s More computation: NUFFTs perform interpolation in addition to FFTs

= [his work: An algorithm for non-Cartesian SENSE reconstruction

= Combines majorize-minimize strategy with variable-splitting
= Has reduced need of NUFFTs

= Organization of the talk:

= Quick overview of regularized SENSE

= EXxisting variable-splitting methods for regularized SENSE
= Proposed majorize-minimize + variable-splitting scheme
= Experimental results



Regularized SENSE Reconstruction

= Regularized SENSE reconstruction: model-based optimization problem

X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

-y, -
y = : , Vi € CM: data from lth coil
YL .
- g,
S — : . S; € CNVXN: diagonal sensitivity matrix for Ith coil
| SL
F=1; ® F; F, € CM*XN: non-Cartesian Fourier encoding matrix

= U(Rx) is a suitable regularizer: imposes prior information,

reduces noise & artifacts,
e.g., TV, ¢y-regularizers, etc.

R < RP*N: finite differences, wavelet frames, etc.



Regularized SENSE Reconstruction

Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

Challenges:

= Gram matrix S'F'F'S of data-fit term is highly shift-variant

= F'F not circulant, unlike Cartesian case
= Regularizer ¥ is non-quadratic and often non-differentiable
= Problem size can be large

Inherent mathematical structures in the problem

= F'F is Toeplitz for non-Cartesian trajectories (no field inhomogeneity)
= S’S is diagonal

= R'R is circulant (e.g., finite differences with periodic boundary conditions)

Exploit inherent structures: separate I, S and R via variable splitting



Variable Splitting & Augmented Lagrangian

= Regularized SENSE reconstruction: model-based optimization problem

X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

X

= Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009

u; = Rx only decouples R from regularizer W



Variable Splitting & Augmented Lagrangian

= Regularized SENSE reconstruction: model-based optimization problem

X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}
= Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009

u; = Rx only decouples R from regularizer W
= Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011
up = Sx separates F and S
u; = Rus separates R from regularizer W

us = X separates R from S
min J(z) s.t. Bz=0

= Equivalent constrained problem:
= SB: B=[ —R] and zé[il}
0 —S- U0

-1 0
sAL: B=|0 I -R 0 and z = .
"o 0 I -I | x




Variable Splitting & Augmented Lagrangian

Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
u; = Rx only decouples R from regularizer W
Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011

up = Sx separates F and S
u; = Rus separates R from regularizer W
us = x separates R from S

Equivalent constrained problem: min J(z) s.t. Bz =0

VA

Augmented Lagrangian function: L(z,m) = J(z)+ %HBZ —nlla + ¢(n)

= [ IS a penalty parameter; A = relative weighting of constraints
= 1) is a Lagrange-multiplier-type vector for the constraint Bz = 0



Variable Splitting & Augmented Lagrangian

Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = |ly — FSx||3 + \I!(RX)}

Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
u; = Rx only decouples R from regularizer W
Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011

up = Sx separates F and S
u; = Rus separates R from regularizer W
us = x separates R from S

Equivalent constrained problem: min J(z) s.t. Bz =0

VA

Augmented Lagrangian function: L(z,m) = J(z)+ gHBz —nlla + ¢(n)

Algorithm: Alternating minimization of £(z,n*)) w.r.t. components of z

Update n(* 1) = p(*) — Bzlk+1)



Variable Splitting & Augmented Lagrangian

= Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

= Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009

= U;-update corresponds to a denoising problem

= x-update requires “inverting” the shift-variant matrix (S'F'FS + R'R)

= Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011

= up-update requires “inverting” the Toeplitz matrix (F'F + uI)
= U;-update corresponds to a denoising problem
= uq-update requires “inverting” the circulant matrix (R'R. + 51I)

= Xx-update requires “inverting” the diagonal matrix (S'S + ~I)



Variable Splitting & Augmented Lagrangian

= Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = |ly — FSx||3 + \I!(RX)}

= Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
= X-Update requires “inverting” the shift-variant matrix (S'F'FS + R'R))
= Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011

= up-update requires “inverting” the Toeplitz matrix (F'F + uI)
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Variable Splitting & Augmented Lagrangian

= Regularized SENSE reconstruction: model-based optimization problem
X = arg min {J(X) = |ly — FSx||3 + \I!(RX)}

= Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
= X-Update requires “inverting” the shift-variant matrix (S'F'FS + R'R))

= Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011
= uo-update requires “inverting” the Toeplitz matrix (F'F + uI)

s Non-Cartesian MRI: Need iterative solvers for x in SB and ug in ALA

= F'F =1, ® F/,F, = L solvers needed for L coils
= Repeated products with F, F',, = more computation
e.g., embedding F/,F',, in a larger circulant matrix = FFTs of larger size

= Proposed approach: Majorize-minimize strategy

= Replaces F'F with a circulant matrix
11



Majorize-Minimize Approach

= Regularized SENSE reconstruction: model-based optimization problem

X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

X

A

= Majorization: D(y, Sx) = ||y — FSx||3

< D(y,Sx(j)) +2R{(x — x(;)) VD(y, Sx)}
—I—(X — X(j))/S/C/CS(X — X(j))

= 2R{—x'S"[F'y + MSx;|} +x'S'C'CSx + c

JAN
— Dmaj (y, SX, X(j))
= Circulant matrix C =1, ® C,, suchthat C! C, = F/ F',

£CC-FF=I,8[C,C, —F,F,] =0

12



Majorize-Minimize Approach

Regularized SENSE reconstruction: model-based optimization problem

X = arg min {J(X) = ||y — FSx||2 + \I!(RX)}

Diaj(y, Sx,x¢5)) = 2R{—x'S"[Fy + MSx;|} +x'S'C'CSx + ¢

= C'C-FF

JAN

Majorizer:  Jimaj(X,X(j)) = Dmaj(y, Sx,%(;)) + Y(Rx)

Jmaj (X, %)) < J(x) V x with equality at x ;)

Majorize-minimize scheme

X(j4+1) = argmin Jumaj(X, X))

13



Variable Splitting for Minimization Step
s Jmaj(X, X)) = 2R{—x'S"|[F'y + MSx;]} + x'S'C'CSx + ¥(Rx)

= C'C-FF

= Minimization of Jy,,; using variable-splitting and augmented Lagrangian

ug = Sx separates C and S
u; = Rus separates R from regularizer W
us = X separates R from S

= Equivalent constrained problem: min Jmaj(z) s.t. Az=0
"1 0 0 -S- B
uq

A= O I R O and z =
0O 0 || —1 <




Augmented Lagrangian for Minimization Step
s Jmaj(X, X)) = 2R{—x'S"|[F'y + MSx;]} + x'S'C'CSx + ¥(Rx)

= C'C-FF

= Minimization of Jy,,; using variable-splitting and augmented Lagrangian

ug = Sx separates C and S
u; = Rus separates R from regularizer W
us = X separates R from S

= Augmented Lagrangian function:

L(ug, ur,us,x) = 2R{—u)[F'y + MSx ]} + u(C'Cug + ¥(u,)
+ plluo — Sx —nol|3 4 prilur — Ruz — 13

+uvz|luz — x — 923

u, v, v2 > 0 are penalty parameters
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Algorithm Summary
s Jmaj(X, X)) = 2R{—x'S"|[F'y + MSx;]} + x'S'C'CSx + ¥(Rx)
= Every jth majorize-minimize iteration involves

= One product with M = C'C — F'F = one product with F'F
= k=1-.-. K iterations of alternating minimization of £ and n¢.1 2-updates
= Warm-starting of constraint variables ugp 1.2 and 7o .12

= Every kth iteration of alternating minimization involves

= Inversion of circulant matrices (C'C + ulI) & (R'R + v2/111)

= Inversion of diagonal matrix (S'S + v-1)

= Denoising problem that admits closed-form solutions for many W
= Trivial Lagrange-multiplier no. 1 2-updates

16



Algorithm Summary
Jmaj (X, X(jy) = 2R{—x'S'[F'y + MSx(;)|} + x'S'C'CSx + ¥(Rx)
Every j5th majorize-minimize iteration involves

= One product with VI = C'C — F'F = one product with F'F
= k=1-.-. K iterations of alternating minimization of £ and 7n¢.1 2-updates
= Warm-starting of constraint variables ug 1.2 and 7o .12

Every kth iteration of alternating minimization involves

= Inversion of circulant matrices (C'C + ulI) & (R'R + v2/111)

= Inversion of diagonal matrix (S'S + v-1I)

= Denoising problem that admits closed-form solutions for many W
= Trivial Lagrange-multiplier no 1 2-updates

Acceleration using two-step strategy Beck et al. SIAM J. Img. Sci., 2009

X(j+1) = arg min Jmaj(x, w(;)); Form Jmaj at w(;) instead of x )
Wi =Xy + (a5 — 1) /aj1(XG) —XG-1));  ajr1=[1+ \/1 + 4a3]/2
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Construction of the Majorizer
= Obtain circulant C such that C’C ~ F'F in Frobenius-norm
Chan et al. SIAM J. Sci. Stat. Comp. 1988
= Find o > 0 such that «C’C = F’'F using Power method

= Requires matrix-vector products with F'F
= Depends only on the trajectory: can be precomputed for various trajectories

= Desired circulant matrix in the majorizer: C = \/56
= lllustration for a radial trajectory with 16 spokes containing 512 samples each

Magnitude of
Frequency FFT of
response of
response FF,
associated t; .
CV\,”E; unit impulse
e at the

] -scal .
(log-scale) image center

(log,,-scale)
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Algorithms Compared in This Work

s Compared proposed methods with recent splitting-based algorithms

= Split-Bregman (SB-n) Goldstein et al. SIAM J. Img. Sci. 2009
= Bregman Operator Splitting (BOS) Zhang et al. SIAM J. Img. Sci. 2010
= Augmented Lagrangian (AL-n) Ramani et al. IEEE TMI 2011

s Proposed: MAjorize-Minimize AL (MAMAL-K)
s Proposed: Majorize-minimize AL with Two-Step (MALTS-K)

n inner PCQG iterations for SB and AL
K inner AL iterations for MAMAL & MALTS

= Circulant preconditioner using C/C for inner-linear-systems in SB & AL

= Denoising-like step involves shrinkage: common to all algorithms

= Automatically set penalty parameters of all algorithms
to obtain same shrinkage-threshold
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Simulation with Analytical Shepp-Logan Phantom
= Simulated noisy data using analytical Shepp-Logan phantom

Guerquin-Kern et al. IEEE TMI 2012
= Radial trajectory: 16 spokes each with 512 samples ~ 32X acceleration
s L = 8 coils with simulated sensitivity maps

= SNR of data = 40 dB; SNR = 101log,, (||ytruell3/No?)

s Simulated 32 x 32 Cartesian low-resolution data for body and surface coils

= Estimated smoothed sensitivity maps Allison et al. IEEE TMI 2013

= Initialization: sum-of-squares (So0S) of conjugate phase (CP) reconstruction
= Regularization parameter adjusted manually
= Reconstructed 512 x 512 images using TV regularizer

= Ran 1000 iterations of SB-10 to obtain a solution x*

= Computed NRMSD w.r.t. x* as 2

20



Simulation with Analytical Shepp-Logan Phantom

Noisefree
discretized
phantom

Radial trajectory;
16 spokes with
512 samples each

Estimated sensitivity maps
21



Simulation with Analytical Shepp-Logan Phantom

Noisefree phantom

&)

(c)

Regularized reconstruction x*

SoS of CP Reconstruction

Absolute difference
22



Simulation with Analytical Shepp-Logan Phantom

Plot of NRMSD as function of runtime
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Simulation with a T2-weighted Brainweb Image
= Simulated noisy data from a 2048 x 2048 interpolated I5-weighted image

= Variable density spiral; 5 interleaves; reduction factor ~ 5
s L = 8 coils with simulated sensitivity maps

= SNR of data = 50 dB; SNR = 101log,, (|| ytruel|3/No?)

= Simulated 32 x 32 Cartesian low-resolution data for body and surface coils

= Estimated smoothed sensitivity maps Allison et al. IEEE TMI 2013

= Initialization: sum-of-squares (SoS) of conjugate phase (CP) reconstruction
= Regularization parameter adjusted manually
= Reconstructed 256 x 256 images using ¢ -regularizer

= Ran 1000 iterations of SB-10 to obtain a solution x*

= Computed NRMSD w.r.t. x* as
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Simulation with a T2>-weighted Brainweb Image

Noisefree Variable density spiral
‘I5-weighted 5 interleaves
test image reduction factor = 5

Estimated sensitivity maps
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Simulation with a T2>-weighted Brainweb Image
Noisefree I5-weighted image SoS of CP Reconstruction

Regularized reconstruction x* Absolute difference
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Simulation with a T2-weighted Brainweb Image

Plot of NRMSD as function of runtime
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Summary & Conclusion
Regularized SENSE reconstruction for non-Cartesian trajectories

= Some existing variable-splitting methods can exploit
iInherent structures in the problem
s These require repeated NUFFT-type computations for non-Cartesian MRI

Our method combines majorize-minimize & variable-splitting concepts

= Appropriate majorization can lead to an auxiliary cost function
that is "more amenable” to variable splitting

s Proposed method: noniterative update steps,
also amenable to two-step acceleration

Preliminary results indicate faster convergence of the proposed method

Useful for 3D non-Cartesian trajectories

Future work: find suitably tight circulant majorizers
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Simulation with Analytical Shepp-Logan Phantom

Plot of NBRMSD as function of iterations
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Simulation with a T2-weighted Brainweb Image

Plot of NBRMSD as function of iterations
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Alternating Minimization of Augmented Lagrangian
s Jmaj(X, X)) = 2R{—x'S"|[F'y + MSx;]} + x'S'C'CSx + ¥(Rx)
= C'C-F'F
= Augmented Lagrangian function:

L(up,ur,uz,x) £ 2R{—u[F'y + Sx (]} + u,C'Cup + ¥(uy)
+ulluo — Sx —noll3 + prillur — Rus — 013

+pvzlluz — x —n2l|3

= Alternating minimization of £ at jth iteration of majorize-minimize step
ug(p41) = (C'C+ p)~HFy + MSx ;) + SX(j 1) + N0 (k)]

Ul (j41) = arg nlal11n W(ur) + priflur — Rua gy — 01 12 (denoising problem)

uz (1) = (R'R + V2/V11)_1[R(U.1(]<;_|_1) — nl(k)) + va/v1(X(5 k) ‘|"'72(k))]

X(j, k1) = (8'S + 12D THS (W0 1) = Mo)) + v2(W2(k+1) — N2(k))]
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Alternating Minimization of Augmented Lagrangian
s Jmaj(X, X)) = 2R{—x'S"|[F'y + MSx ]} + x'S'C'CSx + ¥(Rx)
2 C'C-F'F
= Alternating minimization of £ at jth iteration of majorize-minimize step
ug(p11) = (C'C + pI) " HFy + MSx(;) + Sx(j, k) + 10 (k)]

Ul (ft1) = arg nglln W(ur) + prr|lur — Rug ) — n1p) 12 (denoising problem)

uz(pt1) = (R'R +vo/vil) "HR(u1 (1) — 01 ) + v2/v1(X (k) +02(0))]
X(jk+1) = (S'S + v2l) T HS(uo (ky1) — Mo (k) + v2(U2(ky1) — M2(k))]
= Every kth iteration of alternating minimization involves

= Inversion of circulant matrices (C'C + uI) & (R'R + v2/111)

= Inversion of diagonal matrix (S’S + v»1I)

= Denoising problem that admits closed-form solutions for many W
= Trivial Lagrange-multiplier no 1 2-updates
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