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Statistical image reconstruction: a CT revolution

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR Statistical

Seconds A bit longer Much longer

(Same sinogram, so all at same dose)
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Why statistical/iterative methods for CT?

• Accurate physics models
◦ X-ray spectrum, beam-hardening, scatter, ...
=⇒ reduced artifacts? quantitative CT?
◦ X-ray detector spatial response, focal spot size, ...
=⇒ improved spatial resolution?
◦ detector spectral response (e.g., photon-counting detectors)
=⇒ improved contrast?

• Nonstandard geometries
◦ transaxial truncation (wide patients)
◦ long-object problem in helical CT
◦ irregular sampling in “next-generation” geometries
◦ coarse angular sampling in image-guidance applications
◦ limited angular range (tomosynthesis)
◦ “missing” data, e.g., bad pixels in flat-panel systems

• Appropriate models of (data dependent) measurement statistics
◦ weighting reduces influence of photon-starved rays (cf. FBP)
=⇒ reducing image noise or X-ray dose
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and more...

• Object constraints / priors
◦ nonnegativity
◦ object support
◦ piecewise smoothness
◦ object sparsity (e.g., angiography)
◦ sparsity in some basis
◦ motion models
◦ dynamic models
◦ ...

Henry Gray, Anatomy of

the Human Body, 1918,

Fig. 413.

These constraints may help reduce image artifacts or noise or dose.

Disadvantages?
• Computation time (super computer)
• Must reconstruct entire FOV
• Complexity of models and software
• Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess image quality
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“Iterative” vs “Statistical”

• Traditional successive substitutions iterations
◦ e.g., Joseph and Spital (JCAT, 1978) bone correction
◦ usually only one or two “iterations”
◦ not statistical

• Algebraic reconstruction methods
◦ Given sinogram data yyy and system model AAA, reconstruct object xxx by

“solving” yyy = AAAxxx

◦ ART, SIRT, SART, ...
◦ iterative, but typically not statistical =⇒ limited (if any) dose reduction
◦ Iterative filtered back-projection (FBP):

xxx(n+1) = xxx(n)+ α︸︷︷︸
step size

FBP( yyy
︸︷︷︸

data

− AAAxxx(n)
︸︷︷︸

forward project

)

• Statistical reconstruction methods now come in several flavors:
◦ Image domain
◦ Sinogram domain
◦ Fully statistical (both)
◦ Hybrid methods (e.g., AIR, SPIE 7961-18, 2011, Bruder et al.)

Examine these in more detail next to consider dose.
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“Statistical” methods: Image domain

• Denoising methods

sinogram
yyy

→ FBP →
noisy

reconstruction
x̃xx

→
iterative
denoiser

→
final

image
x̂xx

◦ Relatively fast, even if iterative
◦ Remarkable advances in denoising methods in last decade

Zhu & Milanfar, T-IP, Dec. 2010, using “steering kernel regression” (SKR) method

Challenges:
◦ Typically assume white noise
◦ Streaks in low-dose FBP appear like edges (highly correlated noise)



Example (denoising by wavelet soft thresholding with spin cycling)

FBP Denoised



• Image denoising methods “guided by data statistics”

sinogram
yyy

→ FBP →
noisy

reconstruction
x̃xx

→
magical
iterative
denoiser

↑
sinogram
statistics?

→
final

image
x̂xx

◦ Image-domain methods are fast (thus very practical)
◦ ASIR? IRIS? ...
◦ The technical details are often a mystery...

Challenges:
◦ FBP often does not use all data efficiently (e.g., Parker weighting)
◦ Low-dose CT statistics most naturally expressed in sinogram domain

Several studies of potential dose reduction with image-domain methods:
◦ Hara et al., AJR 193(3) 2009, 32-65 % dose reduction
◦ Silva et al., AJR 194(1) 2010, 50-65 % dose reduction
◦ Leipsic et al., AJR 195(3) 2010, 27 % dose reduction
◦ ...
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“Statistical” methods: Sinogram domain

• Sinogram restoration methods

noisy
sinogram

yyy

→
adaptive

or iterative
denoiser

→
cleaned

sinogram
ŷyy

→ FBP →
final

image
x̂xx

◦ Adaptive: J. Hsieh, Med. Phys., 1998; Kachelrieß, Med. Phys., 2001, ...

◦ Iterative: P. La Riviere, IEEE T-MI, 2000, 2005, 2006, 2008, ...

◦ Relatively fast even if iterative
Challenges:
◦ Limited denoising without resolution loss =⇒ modest dose reduction?
◦ Difficult to “preserve edges” in sinograms

FBP, 10 mA FBP from denoised sinogram
Wang et al., T-MI, Oct. 2006, using PWLS-GS on sinogram
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“Fully” (?) statistical image reconstruction

• Object model
• Physics/system model
• Statistical model
• Cost function (log-likelihood + regularization)
• Iterative algorithm for minimization

“Find the image x̂xx that best fits the sinogram data yyy according to the physics
model, the statistical model and prior information about the object”

Model
System

Iteration

Parameters

Measurements
Projection

Calibration ...

Ψ
xxx(n) xxx(n+1)

• Repeatedly revisiting the sinogram data can use measurement statistics fully

• Repeatedly updating the image can exploit object properties

• ... greatest potential dose reduction, but repetition is expensive...
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Sub-mSv example

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

FBP ASIR Statistical
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MBIR example: Routine chest CT

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv. Source: Health Physics Society.

http://www.hps.org/publicinformation/ate/q2372.html

FBP MBIR

Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare
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History: Statistical reconstruction for PET

• Iterative method for emission tomography (Kuhl, 1963)

• FBP for PET (Chesler, 1971)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Poisson likelihood (emission) (Rockmore and Macovski, TNS, 1976)

• Expectation-maximization (EM) algorithm (Shepp and Vardi, TMI, 1982)

• Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

• Ordered-subsets EM (OSEM) algorithm (Hudson and Larkin, TMI, 1994)

• Commercial release of OSEM for PET scanners circa 1997

Today, most (all?) commercial PET systems include unregularized OSEM.

15 years between key EM paper (1982) and commercial adoption (1997)
(25 years if you count the R/L paper in 1972 which is the same as EM)
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Key factors in PET

• OS algorithm accelerated convergence by order of magnitude
• Computers got faster (but problem size grew too)
• Key clinical validation papers?
• Key numerical observer studies?
• Nuclear medicine physicians grew accustomed to appearance

of images reconstructed using statistical methods

FBP: ML-EM:

Llacer et al., 1993
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Whole-body PET example

FBP ML-OSEM

Meikle et al., 1994

Key factor in PET: modeling measurement statistics
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History: Statistical reconstruction for CT∗

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• ...

• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)

• EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)

• Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)

• Ordered-subsets algorithms
(Manglos et al., PMB 1995)

(Kamphuis & Beekman, T-MI, 1998)
(Erdoğan & Fessler, PMB, 1999)

• ...

• Commercial introduction of ICD for CT scanners circa 2010

• FDA 510(k) clearance of Veo Sep. 2011
(Prof. William Shuman of UW quoted in GE’s press release.)

(∗ numerous omissions, including many denoising methods)
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RSNA 2010

Zhou Yu, Jean-Baptiste Thibault, Charles Bouman, Jiang Hsieh, Ken Sauer

https://engineering.purdue.edu/BME/AboutUs/News/HomepageFeatures/ResultsofPurdueResearchUnveiledatRSNA
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Five Choices for Statistical Image Reconstruction

1. Object model

2. System physical model

3. Measurement statistical model

4. Cost function: data-mismatch and regularization

5. Algorithm / initialization

No perfect choices - one can critique all approaches!

Historically these choices are often left implicit in publications,
but being explicit facilitates reproducibility.

Next: overview of each choice, focusing on how they may affect dose.
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Choice 1. Object Parameterization

Finite measurements: {yi}
M
i=1. Continuous object: f (~r) = µ(~r).

“All models are wrong but some models are useful.”

Linear series expansion approach. Represent f (~r) by xxx = (x1, . . . ,xN) where

f (~r)≈ f̃ (~r) =
N

∑
j=1

x j b j(~r) ← “basis functions”

Reconstruction problem becomes “discrete-discrete:” estimate xxx from yyy

Numerous basis functions in literature. Two primary contenders:
• voxels
• blobs (Kaiser-Bessel functions)

+ Blobs are approximately band-limited (reduced aliasing?)
– Blobs have larger footprints, increasing computation.

Open question: how small should the voxels be?

One practical compromise: wide FOV coarse-grid reconstruction followed
by fine-grid refinement over ROI, e.g., Ziegler et al., Med. Phys., Apr. 2008
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Global reconstruction: An inconvenient truth

70-cm FOV reconstruction

Thibault et al., Fully3D, 2007

For a statistical approach to interior tomography, see Xu et al., IEEE T-MI, May 2011.
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Voxel size matters?

digital phantom

5122 grid 10242 grid

Unregularized OS reconstructions. Zbijewski & Beekman, PMB, Jan. 2004
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Choice 2. System model / Physics model

• scan geometry
• source intensity I0

◦ spatial variations (air scan)
◦ intensity fluctuations

• resolution effects
◦ finite detector size / detector spatial response
◦ finite X-ray spot size / anode angulation
◦ detector afterglow / gantry rotation

• spectral effects
◦ X-ray source spectrum
◦ bowtie filters
◦ detector spectra response

• scatter
• ...

Challenges / trade-offs
• computation time
• accuracy/artifacts/resolution/contrast
• dose?
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Detector size modeling matters

From (De Man and Basu, PMB, Jun. 2004) MLTR of rabbit heart

Ray-driven (idealized point detector)

Distance-driven (models finite detector width)
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Forward- / Back-projector “Pairs”

Typically iterative algorithms require two key steps.
• forward projection (image domain to projection domain):

ȳyy = AAAxxx, ȳi =
N

∑
j=1

ai jx j = [AAAxxx]i

• backprojection (projection domain to image domain):

zzz = AAA′yyy, z j =
M

∑
i=1

ai jyi

The term “forward/backprojection pair” often refers to some implicit choices
for the object basis and the system model.

Sometimes AAA′yyy is implemented as BBByyy for some “backprojector” BBB 6= AAA′.
Especially in SPECT and sometimes in PET and CT.

Least-squares solutions (for example):

x̂xx = argmin
xxx

‖yyy−AAAxxx‖2 =
[
AAA′AAA

]−1
AAA′yyy 6= [BBBAAA]−1

BBByyy
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Mismatched Backprojector BBB 6= AAA′

xxx x̂xx (PWLS-CG) x̂xx (PWLS-CG)

Matched Mismatched
cf. SPECT/PET reconstruction – usually unregularized
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Choice 3. Statistical Model

The physical model describes measurement mean,
e.g., for a monoenergetic X-ray source and ignoring scatter etc.:

Īi = I0 e
−∑N

j=1 ai jx j .

The raw noisy measurements {Ii} are distributed around those means.
Statistical reconstruction methods require a model for that distribution.

Challenges / Trade offs: using more accurate statistical models
• may lead to less noisy images
• may incur additional computation
• may involve higher algorithm complexity.

CT measurement statistics are very complicated, particularly at low doses.
• incident photon flux variations (Poisson)
• X-ray photon absorption/scattering (Bernoulli)
• energy-dependent light production in scintillator (?)
• shot noise in photodiodes (Poisson?)
• electronic noise in readout electronics (Gaussian?)

Whiting, SPIE 4682, 2002; Lasio et al., PMB, 2007; Massoumzadeh et al., PMB 2009

• Inaccessibility of raw sinogram data
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To log() or not to log() – That is the question

Models for “raw” data Ii (before logarithm)

• compound Poisson (complicated) Whiting, SPIE 4682, 2002;

Elbakri & Fessler, SPIE 5032, 2003; Lasio et al., PMB, Apr. 2007

• Poisson + Gaussian (photon variability and electronic readout noise):

Ii ∼ Poisson{Īi}+N
(
0,σ 2

)

Snyder et al., JOSAA, May 1993 & Feb. 1995 .

• Shifted Poisson approximation (matches first two moments):

Ĩi ,
[
Ii+σ 2

]

+
∼ Poisson

{
Īi+σ 2

}

Yavuz & Fessler, MIA, Dec. 1998

• Ordinary Poisson (ignore electronic noise):

Ii ∼ Poisson{Īi}

Rockmore and Macovski, TNS, Jun. 1977; Lange and Carson, JCAT, Apr. 1984

• Photon-counting detectors would simplify statistical modeling

All are somewhat complicated by the nonlinearity of the physics: Īi = e−[AAAxxx]i
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After taking the log()

Taking the log leads to a simpler linear model (ignoring beam hardening):

yi ,− log

(
Ii

I0

)

≈ [AAAxxx]i+ εi

Drawbacks:
• Undefined if Ii ≤ 0 (due to electronic noise); bad for very low-dose scans
• It is biased (by Jensen’s inequality): E[yi]≥− log(Īi/I0) = [AAAxxx]i
• Exact distribution of log-domain noise εi is intractable.

Practical approach: assume Gaussian noise model: εi ∼ N
(
0,σ 2

i

)

Options for modeling noise variance σ 2
i = Var{εi}

• consider both Poisson and Gaussian noise effects: σ 2
i = Īi+σ2

Ī2
i

(Thibault et al., SPIE 6065, 2006)

• consider just Poisson effect: σ 2
i = 1

Īi
(Sauer & Bouman, T-SP, Feb. 1993)

• pretend it is white noise: σ 2
i = σ 2

0

• ignore noise altogether and “solve” yyy = AAAxxx

Whether using pre-log data is better than post-log data is an open question,
especially for very low-dose scans (cf. experience with PET rod scans).



31

Choice 4. Cost Functions

Components:
• 4.1 Data-mismatch term
• 4.2 Regularization term (and regularization parameter β )
• 4.3 Constraints (e.g., nonnegativity: minor effect on noise / dose)

Reconstruct image x̂xx by finding minimizer of a cost function:

x̂xx , argmin
xxx≥000

︸ ︷︷ ︸

Constraints

Ψ(xxx)

Ψ(xxx) = DataMismatch(yyy,AAAxxx)+β Regularizer(xxx)

Forcing too much “data fit” alone would give noisy images.

Equivalent to a Bayesian MAP (maximum a posteriori) estimator.

Distinguishes “statistical methods” from “algebraic methods” for “yyy = AAAxxx.”

Such optimization-based formulation appears to be key to low-dose CT.
Theoretically optimizes bias-variance trade-off (Eldar, IEEE T-SP, Jul. 2004).
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Choice 4.1: Data-Mismatch Term

Standard choice is the negative log-likelihood of statistical model:

DataMismatch =−L(xxx;yyy) =− logp(yyy|xxx) =
M

∑
i=1

− logp(yi|xxx) .

• For pre-log data III with shifted Poisson model:

−L(xxx; III) =
M

∑
i=1

(
Īi+σ 2

)
−
[
Ii+σ 2

]

+
log

(
Īi+σ 2

)
, Īi = I0 e−[AAAxxx]i

This can be non-convex if σ 2 > 0;
it is convex if we ignore electronic noise σ 2 = 0. Trade-off ...

• For post-log data yyy with Gaussian model:

−L(xxx;yyy) =
M

∑
i=1

wi

1

2
(yi− [AAAxxx]i)

2 =
1

2
(yyy−AAAxxx)′WWW (yyy−AAAxxx), wi = 1/σ 2

i

This is a kind of (data-based) weighted least squares (WLS).
It is always convex in xxx. Quadratic functions are “easy” to minimize.

• ...

• Effect on dose is related to statistical model accuracy
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Choice 4.2: Regularization

How to control noise due to ill-conditioning in tomography?
Perhaps the most important factor influencing “how low (dose) can we go”

Noise-control methods (used in clinical PET reconstruction today):
• Stop an unregularized algorithm before convergence
• Over-iterate an unregularized algorithm then post-filter

Other possible “simple” solutions:
• Modify the raw data (pre-filter / denoise)
• Filter between iterations
• ...

Appeal:
• simple / familiar
• filter parameters have intuitive units (e.g., FWHM),

unlike a regularization parameter β
• Changing a post-filter does not require re-iterating,

unlike changing a regularization parameter β
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Regularization options

Options for regularizer R(xxx) in increasing complexity:
• quadratic roughness
• convex, non-quadratic roughness
• non-convex roughness
• total variation
• convex sparsity
• non-convex sparsity

Challenges
• Reducing noise without degrading spatial resolution
• Balancing regularization strength between and within slices
• Parameter selection
• Computational complexity (voxels have 26 immediate neighbors in 3D)
• Preserving “familiar” noise texture
• Optimizing clinical task performance

Many open questions...
Which regularization method can enable the lowest-dose scans?
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Roughness Penalty Functions

R(xxx) =
N

∑
j=1

1

2
∑

k∈N j

ψ(x j− xk)

◦ N j , neighborhood of jth pixel
(e.g., left, right, up, down in 2D; 26 neighbors in 3D)
◦ ψ called the potential function

-2 -1 0 1 2
0

0.5

1

1.5

2

2.5

3

Quadratic vs Non-quadratic Potential Functions

Parabola (quadratic)

Huber, δ=1

Hyperbola, δ=1

t = x j− xk

ψ
(t
)

quadratic: ψ(t) = t2

hyperbola: ψ(t) =
√

1+(t/δ )2

(edge preservation)
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Regularization parameters: Dramatic effects on IQ

“q generalized gaussian” potential function with tuning parameters: β ,δ , p,q:

βψ(t) = β

1
2
|t|p

1+ |t/δ |p−q. (Thibault et al., Med. Phys., Nov. 2007)

p = q = 2 p = 2, q = 1.2, δ = 10 HU p = q = 1.1

noise: 11.1 10.9 10.8
(#lp/cm): 4.2 7.2 8.2

Which parameter choice enables the lowest dose scan?
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Piecewise constant phantoms

Phantom: FBP:

MLEM: MAP:

Lee et al., IEEE T-NS, 2002, 300K counts

non-convex “broken parabola” potential function and deterministic annealing
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Summary of statistical image reconstruction choices

1. Object parameterization

2. System physical model

3. Measurement statistical model

4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method , Models + Cost Function + Algorithm

5. Minimization algorithms: x̂xx = argmin
xxx

Ψ(xxx)

◦ The minimization algorithm has no affect on image quality / dose
if we iterate “until convergence.”
◦ For convergent algorithms, IQ determined entirely by cost function Ψ

including the models within it.
◦ What happens we stop iterating “before convergence?” Affects dose?

(Depends on algorithm and initial image...)
◦ Finding fast algorithms for arg min is key to ubiquitous low-dose CT.

e.g., alternating direction method of multipliers (ADMM)
(Ramani & Fessler, IEEE T-MI, Mar. 2012)
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Summary: Factors that affect dose reduction

In conjectured order from most important to least:

1. Regularizer

2. Statistical model / data-mismatch term

3. System model

4. Object model / non-negativity constraint

5. Iterative minimization algorithm
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Other considerations that affect dose reduction

• 2D versus 3D reconstruction
◦ 8 immediate neighbors in 2D versus 26 neighbors in 3D
◦ transaxial versus axial relationships

• axial versus helical scans
• angular sampling: fine versus sparse
• dual energy / spectral CT versus single kVp
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Recent dose figures for statistical image reconstruction

Yadava et al., AAPM 2010, AAPM 2011

“average-probability-of-detection and average-detection-score of full dose
FBP and 1/4th dose Veo [MBIR] are comparable.”

Cohen et al., AAPM 2011

[Phantom] “measurement differences between full dose FBP and 1/4th dose
Veo were found to be statistically insignificant, indicating similar image qual-
ity.”

Katsura et al., Eur. Radiol. Aug. 2012 (hot off the press)

Compared FBP, ASIR, and “MBIR” (with no almost description);
concluded MBIR can work with “80% less radiation.”



42

How low (dose) can you go?

http://laidoffinnyc.wordpress.com/2009/03/04/

• Depends on where you start
• Depends on many reconstruction method choices
• all of which affect IQ

(which is harder to assess for nonlinear reconstruction methods)
• Conjecture: sub-mSv exams are achievable
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Contrast-dependent edge resolution: 1D

Orig:

 

Noiseless

blurry

image:

 

Restored

image

using

PWLS

δ = 1:
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Challenge: Shape of edge response depends on contrast when “preserving edges.”
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Contrast-dependent edge resolution: 2D CT

FBP

PWLS

-15 0 15
0

1000

Profile

-15 0 15
0

1000

Profile

-3 -2 -1

0

1

Edge response

 

 

10 HU

20 HU

40 HU

80 HU

-3 -2 -1

0

1

Edge response

 

 

10 HU

20 HU
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80 HU

Challenge:
Shape of edge response depends on contrast for edge-preserving regularization.
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Assessing image quality

Challenges:
• Resolution (PSF, edge response, MTF)
• Noise (predictions)
• Task-based performance measures

Known-location versus unknown-location tasks
• ...

“How low can the dose go” – quite challenging to answer
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Some open problems in statistical image reconstruction

• Modeling
◦ Statistical modeling for very low-dose CT
◦ Resolution effects
◦ Spectral CT
◦ Object motion
◦ Dynamic imaging (perfusion CT)

• Parameter selection / performance characterization
◦ Performance prediction for nonquadratic regularization
◦ Effect of nonquadratic regularization on detection tasks
◦ Choice of regularization parameters for nonquadratic regularization

• Algorithms
◦ optimization algorithm design
◦ software/hardware implementation
◦ Moore’s law alone will not suffice

(dual energy, dual source, motion, dynamic, smaller voxels ...)
• Clinical evaluation
• ...

Many research opportunities to aid this CT revolution...
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