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Goal:

Faster iterative (fully statistical) 3D CT reconstruction

Thin-slice FBP ASIR Statistical
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Cost function

Penalized weighted least-squares (PWLS):

x̂xx = argmin
xxx

Ψ(xxx), Ψ(xxx) =
M

∑
i=1

wi

2
(yi− [AAAxxx]i)

2+R(xxx)

• unknown 3D image xxx = (x1, . . . ,xN) with N voxels
• yyy = (y1, . . . ,yM) CT (log) projection data with M rays
• wi statistical weighting for ith ray, i = 1, . . . ,M

• AAA: M×N system matrix
• R(xxx): edge-preserving regularizer
• forward projector : [AAAxxx]i = ∑N

j=1 ai jx j.

The principles generalize readily to other statistical models.
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Traditional iterative minimization algorithms

• Iterative coordinate descent (ICD)
Sauer & Bouman, 1993; Thibault et al., 2007

+ few iterations
- challenging to parallelize because sequential

• Preconditioned conjugate gradient (PCG)
+ simultaneous update of all voxels using all views
- more iterations
- challenging to precondition effectively for 3D WLS
- challenging to precondition effectively for nonquadratic R(xxx)
Fessler & Booth, 1999

• Ordered-subsets (OS) based on separable quadratic surrogates (SQS)
Kamphuis & Beekman, 1998, Erdoğan & Fessler, 1999

+ update all pixels simultaneously using some views
- regularizer gradient ∇R(xxx) for every block of views
- does not converge, worsening for large number of subsets
- requires many more iterations to converge than ICD
Deman et al., 2005

Update each voxel sequentially or update all voxels simultaneously?
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Block coordinate descent / Grouped coordinate descent

• Update a block of voxels simultaneously.
• Loop over all blocks.

Long history in general optimization
Bertsekas, 1999, Nonlinear programming

Global convergence for strictly convex cost functions

Long history in general statistical estimation problems
Hathaway and Bezdek, 1991; Jensen, 1991

Applications to tomographic image reconstruction
Sauer et al., 1995; Fessler et al., 1995; Fessler et al., 1997; Benson et al., 2010

Choice of order important for fastest possible convergence
Yu et al., 2011
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2D grouped coordinate descent

Fessler et al., 1997

• Spatially separated grouped of pixels (in 2D)
• Pixels within group updated simultaneously using optimization transfer
• Moderately strong coupling of pixels within slice
=⇒ undesirably high surrogate curvatures
=⇒ modest acceleration compared to all-voxel SPS
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3D (transaxial) block coordinate descent

Benson et al., 2010

• Blocks of k× k neighboring pixels – strongly coupled
• Solved simultaneously by inverting a dense k2× k2 matrix
• Loop over z before proceeding to next transaxial block

x

y

2

3

3 3

2 3 3

4 5

4

4

4 64

4

6

5 5

5

4 5 5

65

65

6

6544

11 1

11 1

1 1 1

2 2 2

2

3

2 2

2



9

3D axial block coordinate descent (ABCD)

Proposed approach:
• update a block of all Nz voxels along an axial line simultaneously
• loop over all x,y locations sequentially

(possibly inhomogeneously, cf. Yu et al., T-IP, 2011)
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Axial block coordinate descent (ABCD) outline

for k = 1, . . . ,K: (K = # of x-y locations ≤ NxNy)

xxx
(n+1)

k = argmin
xxxk∈R

Nz

Ψ
(

xxx
(n+1)
1 , . . . ,xxx

(n+1)

k−1 ,xxxk,xxx
(n)

k+1, . . . ,xxx
(n)
K

)

.

end

If the regularizer is quadratic, then the ABCD update is simply:

xxx
(n+1)

k = xxx
(n)

k −
[

HHH
(n)

k

]−1

∇xxxk
Ψ
(

xxx
(n+1)
1 , . . . ,xxx

(n+1)

k−1 ,xxxk,xxx
(n)

k+1, . . . ,xxx
(n)
K

)
∣

∣

∣

xxxk=xxx
(n)
k

.

Requires inverting the Nz×Nz Hessian matrix

HHH
(n)

k = ∇2
xxxk

Ψ
(

xxx
(n+1)
1 , . . . ,xxx

(n+1)
k−1 ,xxxk,xxx

(n)

k+1, . . . ,xxx
(n)
K

)
∣

∣

∣

xxxk=xxx
(n)
k

= AAA′
kWWW AAAk +∇2

xxxk
R(xxx)

where AAAk is the M ×Nz submatrix of AAA with the columns that correspond to
the voxels in the block being updated. AAA = [AAA1 AAA2 . . . AAAK]

(For edge-preserving case we use a quadratic surrogate for the regularizer.)
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Axial block coordinate descent (ABCD) properties

• Nz-times more parallelism opportunities than ICD
(e.g., Nz = 64 for axial study; Nz = 700 for helical scan)

• Weak coupling among voxels axially =⇒ reasonably fast convergence
• Nz×Nz Hessian matrix is banded; typically tri-diagonal or penta-diagonal.

Invertible in O(Nz) operations, not O(N2
z )

• Particularly well suited to separable footprint (SF) projector
Long et al., 2010.
Assumes alignment of rotation axis with detector axis (no C-arms?)

• Converges much faster than conventional optimization transfer methods
based on separable quadratic surrogates [5,16].
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Axial footprint overlap

z

Source

Detector

Footprints

Typically the axial footprints of 2-3 voxels overlap on any given detector cell.
Amount of overlap depends on magnification factor.
The Nz×Nz Hessian matrix is banded; typically penta-diagonal.
(In contrast, for transaxial blocks the Hessian is dense.)
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Banded Hessian matrix for axial block
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Example for axial scan with Nz = 64 slices.
In contrast, for any transaxial block the Hessian is dense.
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3D Regularizer

3D edge-preserving regularizer couples each voxel to 26 nearest neighbors:

R = ∑
x,y,z

∑
j,k,l∈{−1,1}

ψ( f [x+ j,y+ k,z+ l]− f [x,y,z]) .
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3D Regularizer for Axial Block

z

3D regularizer couples each voxel in an axial block to two adjacent voxels.
(One in the slice above, one in the slice below.)
... The Nz×Nz Hessian of the regularizer for each axial block is tri-diagonal.

Inverting Nz×Nz penta-diagonal + tri-diagonal matrix is easy.
Easily fits in cache.

Alternatives
• Use separable quadratic surrogate (diagonal Hessian) for the axial block.

Less work per iteration but probably more iterations.
• Use quasi-separable surrogate with tri-diagonal Hessian.

Compromise between work per iteration and convergence rate?
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Algorithm comparison

• ICD: “blocks” with just one voxel
• ABCD-BAND: axial blocks with banded Hessian
• ABCD-SQS: axial blocks with separable quadratic surrogate

(small diagonal Hessian)
• SQS: entire 3D image is one “block” with separable quadratic surrogate

(large diagonal Hessian)

Expected wall time per iteration for well-parallelized implementations:
SQS < ABCD-SQS < ABCD-BAND < ICD
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Matlab simulation example

PHANTOM
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Reconstructed images after 15 iterations for a small 3D problem.
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Convergence rate comparison
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Cost function Ψ(xxx(n)) versus iteration n for four algorithms.
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Summary

• ICD: small number of iterations but hard to parallelize
• ABCD: small number of iterations but more amenable to parallelization
• SQS: most amenable to parallelization but slowest convergence rate

ICD ABCD CG / SQS / EM etc.
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