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Outline

• Introduction
• Image registration

◦ Enforcing / encouraging local invertibility (diffeomorphism)
◦ To appear, IEEE J. Selected Topics in Signal Processing.

(And ISBI 2008)
• Motion-compensated image reconstruction

◦ Conventional
◦ Model based
◦ Temporal regularization

Image reconstruction toolbox:
http://www.eecs.umich.edu/∼fessler
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Image Reconstruction

object
f → System →

L

↑
noise

→
measured

data
yyy

→ Reconstruction → f̂

Formulations
• Static f (~r)

• Dynamic f (~r, t)
◦ contrast changes
◦ object motion (synergy with image registration)
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Part 1
Image registration

ensuring local invertibility
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Image Registration

Many applications, e.g., forensics, remote sensing, medicine ...
• rigid transformations
• nonrigid transformations (warps)

Example: Respiratory motion

Target Source

Inhale Exhale
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Image registration: Overview

Given two images (or image volumes): f (~r) and g(~r),~r = (x,y,z),
find a spatial transformation ~T (~r), where ~T : R

3 → R
3,

such that f (~r) “is similar to” the warped image g(~T (~r))

Usual steps:

• parameterize by ααα the spatial transformation: ~T (~r;ααα)

• choose a similarity measure Ψ
(

f (·),g(~T (·))
)

• find optimal deformation parameters ααα numerically:

α̂αα = argmax
ααα

Ψ
(

f (·),g(~T (·;ααα))
)

Challenge: want estimated transformation ~T (~r; α̂αα) to be plausible.
Typically we want it to be diffeomorphic, or topology preserving, or
invertible, or at least locally invertible.



7

Image registration: Similarity measures

sum of squared differences

correlation

mutual information

...
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Image registration: B-spline deformations

Nonrigid spatial transformation:

~T (~r;ααα) =~r +(dx(~r;αααx),dy(~r;αααy),dz(~r;αααz))
︸ ︷︷ ︸

deformation

,

where ααα = (αααx,αααy,αααz) denotes unknown deformation coefficients.

Tensor-product B-spline deformation model:

dx(~r;αααx) = ∑
i, j,k

αx
i jk β(x/mx− i)β(y/my− j)β(z/mz− k)

dy(~r;αααy) = ∑
i, j,k

αy
i jk β(x/mx− i)β(y/my− j)β(z/mz− k)

dz(~r;αααz) = ∑
i, j,k

αz
i jk β(x/mx− i)β(y/my− j)β(z/mz− k)

mx,my,mz denote the knot spacing in each dimension.
These spacings determine the spatial scale of the deformation.
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Cubic B-spline Kernel
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B-spline deformations: Benefits

• differentiable (smooth)
• local support
• recursive filters for computations
• piecewise polynomial
• hierarchical

Nonrigid image registration similarity measures usually have many
local maximizers.

To help find a “good” local maximum, one usually uses
coarse-to-fine search. This is easy with B-spline deformations.
(Thevenaz & Unser, IEEE T-IP, 2000)
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B-spline deformations illustrated

knot locations, mx=8 my=16  

Knot locations Local support
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B-spline deformations illustrated

Invertible Not invertible
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Invertibility

When is~r 7→ ~T (~r) =~r + ~d(~r) a locally invertible transformation?

By the inverse function theorem, it suffices for ~T to
• be continuously differentiable, and

• have positive Jacobian determinant: det
{

∇~T (~r)
}

> 0 for all~r.

Jacobian of transformation/deformation

∇~T (~r) = ∇
(

~r + ~d(~r)
)

=





1 0 0
0 1 0
0 0 1



+






∂
∂xdx ∂

∂ydx ∂
∂zd

x

∂
∂xdy ∂

∂ydy ∂
∂zd

y

∂
∂xdz ∂

∂ydz ∂
∂zd

z






(mathematical theory vs practice)
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Ensuring local invertibility

We need to estimate B-spline deformation coefficients ααα
subject to some local invertiblity constraint ααα ∈C:

α̂αα = argmax
ααα∈C

Ψ(ααα) .

• Ideal local invertibility condition for parametric deformation
model:

ααα ∈C0 =
{

ααα : det
{

∇~T (~r;ααα)
}

> 0, ∀~r ∈ R
3
}

.

This condition is very difficult to implement.
• Conventional relaxed local invertibility condition: C0 ⊂C1

ααα ∈C1 =
{

ααα : det
{

∇~T (~r;ααα)
}

> 0, ~r ∈ grid points
}

.

This condition does not ensure local invertibility everywhere.
It is also computationally demanding.

We seek simpler sufficient conditions for local invertibility: C ⊂C0.
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Unconstrained vs “constrained” optimization
Source No constraint Jacobian constraint

Target No constraint Jacobian penalty

Image registration is an ill-posed problem.
Jacobian constraint on grid required > 3× computation as unconstrained case.
Nevertheless, some negative Jacobians remain (between grid points) because C0 ⊂C1.

We need a simpler constraint that ensures positive Jacobian determinants everywhere.
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A sufficient condition: Box constraints

Simple lower/upper bounds on B-spline coefficients:

ααα ∈C3 =
{

ααα :

∣
∣αx

i jk

∣
∣ ≤

mx

K
,
∣
∣
∣αy

i jk

∣
∣
∣ ≤

my

K
,
∣
∣αz

i jk

∣
∣ ≤

mz

K
, ∀i, j,k

}

,

where K ≈ 2.05 in 2D and K ≈ 2.48 in 3D.
Choi et al., 2000; Rueckert et al., MICCAI 2006

Fact: C3 ⊂C0.
So constraining ααα ∈C3 ensures local invertibility everywhere.

Box constraints are particularly simple for optimization.

However, C3 is a very restrictive set of deformations.
• Maximum displacement is only about half the knot spacing.
• Precludes even simple (large) global translations.
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Proposed sufficient condition for invertibility

Theorem:
Suppose 0≤ kq < 1

2 for q ∈ {x,y,z}. Define the set:

C4 = {ααα :−mxkx ≤ αx
i+1, j,k −αx

i, j,k ≤ mxKx,

−myky ≤ αy
i, j+1,k −αy

i, j,k ≤ myKy,

−mzkz ≤ αz
i, j,k+1−αz

i, j,k ≤ mzKz,

|αq
i+1, j,k −αq

i, j,k| ≤ mqkq for q = y,z,

|αq
i, j+1,k −αq

i, j,k| ≤ mqkq for q = x,z,

|αq
i, j,k+1−αq

i, j,k| ≤ mqkq for q = x,y , ∀i, j,k} .

If ααα ∈C4, then ∀~r ∈ R
3:

1− (kx + ky + kz) ≤ det
{

∇~T (~r;ααα)
}

≤ (1+Kx)(1+Ky)(1+Kz)+(1+Kx)kykz + kx(1+Ky)kz + kxky(1+Kz).

Corollary:
Choosing kx = ky = kz = 1/3− ε ensures that 0 < det

{

∇~T (~r;ααα)
}

, ∀~r.
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Comparing sufficient conditions

1D example with two coefficients: α1, α2,
for n = 2 (quadratic B-splines)

2

2

1

C0 = C4

C2

α1

α2
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Limitations of sufficient conditions

2D simulations using augmented Lagrange multiplier approach
to enforce the constraint ααα ∈C3 or ααα ∈C4.

Source Box constraint Proposed constraint

Target Box constraint Proposed constraint

Clearly C3 ⊂C0 and C4 ⊂C0.
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Solution: composition of transformations

Composing multiple transformations can overcome the limitations
of sufficient conditions, e.g., ~T , ~Tααα3◦

~Tααα2◦
~Tααα1 where ααα1,ααα2,ααα3 ∈C4.

Proposed constraint Proposed constraint Proposed constraint
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Composition for box constraints

Requires many more compositions: Rueckert et al., MICCAI 2006
Box constraint Box constraint Box constraint

Box constraint Box constraint Box constraint

10 20 30

Each of the 30 warps used many augmented Lagrangian iterations.
Tradeoff: simplicity of constraint and its flexibility.
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Simplyfing further via regularization

Idea: replace constrained optimization

α̂αα = argmax
ααα∈C4

Ψ(ααα)

with simpler unconstrained, but regularized, optimization:

α̂αα = argmax
ααα

Ψ(ααα)−γR(ααα)

where R(ααα) is zero if ααα ∈C4 but is “large” otherwise.
This encourages local invertibility, but does not enforce it strictly.

The regularization parameter γ controls the tradeoff between
◦ image similarity
◦ regularity of the deformation (local invertibility).
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Proposed regularizer
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Interval constraints in C4 replaced by piecewise quadratic penalty
function of differences of neighboring B-spline coefficients.
cf. conventional quadratic roughness regularization

mx = my = mz = 1,kx = ky = kz = 1/3, and Kx = Ky = Kz = 4/3.
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Regularization tradeoffs

As regularization parameter γ ↑
◦ # of negative Jacobian determinants ↓ so
◦ RMS difference between images ↑
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Proposed regularizer: good image similarity, few negative Jacobian determinants.
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3D registration of CT inhale/exhale scans

3D CT scans of a cancer patient at exhale and inhale,
for radiation treatment planning. 396×256×128voxels.

Source: Coronal Target: Coronal
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CT inhale/exhale scans: Sagittal

Source: Sagittal Target: Sagittal
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3D registration results: Unconstrained

No constraint: Sagittal No constraint: Sagittal
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No constraint: Sagittal

Relatively small difference image values,
but many negative Jacobian determinants
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3D registration results: Jacobian

Jacobian penalty: Sagittal Jacobian penalty: Sagittal
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Jacobian penalty: Sagittal

Jacobian penalty based on C1 (grid)
Better behaved warp and reasonable difference image.
But slow.
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3D registration results: Proposed regularizer

Proposed method: Sagittal Proposed method: Sagittal
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Proposed method: Sagittal

Proposed regularizer based on C4.
Tailored design of constraint/penalty: kx = ky = 1/4, kz = 1/2.
Similar warp and difference image, but faster.
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Quantification

Method CPU time RMS difference # negative
(seconds) (HU) Jacobians

Unconstrained 25.7 19.9 316914
Jacobian penalty 81.1 25.9 0
Proposed penalty 27.4 29.2 0

Computation time per iteration (in seconds) at the finest level

Regularization parameter adjusted empirically in both penalized cases to be the smallest
value that yields no negative Jacobian determinants on the voxel grid.

3 multiresolution levels: knot spacings 8 pixels with downsampled images, 8 pixels with

original images, 4 pixels with original images. 120 iterations of CG at each level.

Work in progress to compose a couple coarse-scale deformations
before refining to fine scale to reduce RMS differences.

Code on web site: http://www.eecs.umich.edu/∼fessler
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Diffeomorphisms: To be or not to be...

Source Target Invertibility penalty

Sliding at diaphragm / rib cage interface.
Enforcing smoothness leads to bone warping.
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Work in progress...

Requiring the warp to be smooth everywhere seems suboptimal.
One possible solution submitted to SPIE 2009. Stay tuned...
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Summary

• Simple condition for ensuring local invertibility everywhere
• Admits more deformations than conventional box constraints
• Simple regularizer requires comparable computation as

unregularized image registration and much less computation
than Jacobian determinant constraints / penalties

Open problems

• Rigid structures (bones)
• Sliding tissue interfaces
• Parameter selection
• Computation (GPUs?)
• Performance characterization
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Part 2
Model-based image reconstruction

with motion compensation
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Motion in image reconstruction

Object being scanned: f (~r, t)
Measured data vector: yyy = (y1, . . . ,yM)

Static image reconstruction:
◦ Assume f (~r, t) = f (~r, t0) = f (~r) during scan.
◦ Estimate f (~r) from measurements yyy. (Ill posed.)

Dynamic image reconstruction (“List-mode” data model)
◦ Assume each data point yi is acquired instantaneously at a

corresponding time instant ti
◦ Relate yi to object at time ti, e.g.,

yi =
Z

ai(~r)
︸ ︷︷ ︸

physics

f (~r, ti)d~r + εi.︸︷︷︸

statistics

More generally: p(yi | f (·, ti)).
◦ Estimate f (~r, t) from measurements yyy. (Even “more” ill posed!)
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Gated data model

• Group data into K vectors, e.g., K respiratory phases: yyy1, . . . ,yyyK

• Assume f (~r, t) is stationary during kth phase of data acquisition

• Relate yyyk to fk(~r) , f (~r, tk) using physics and statistics
• From K data vectors yyy1, . . . ,yyyK, reconstruct object: ?
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Gated data model: Illustration
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Imaging

... ...

Method

Reconstruction

 

f1
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fK

yyy1

yyy2

yyyK

f̂ ?
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Gated data: Image reconstruction options

• Pool all data and ignore motion
◦ fast
◦ low noise variance
◦ motion induced blur

• Frame-wise: reconstruct each gate/frame separately: yyyk 7→ f̂k
◦ simple
◦ high noise variance
◦ no motion blur (except within-gate motion)

• Frame-wise with post-reconstruction averaging (FW-PRA)
◦ map each reconstructed frame onto 1st frame, then average
◦ averaging should reduce noise
◦ should avoid motion blur if registration is accurate
◦ registration accuracy limited by noise in the individual gates

• FW-PRA with motion estimates from a separate modality
◦ use another modality (e.g., PET-CT) to estimate motion
◦ performance depends on consistency of motion between modalities
◦ Thorndyke et al., Med Phys, 2006

• ...
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Frame-wise with post-reconstruction averaging

Image
Reconstruction

ConsolidationPost−Registration

common target image

SSD registration

yyy1

yyy2

yyyK

1
K

1
K

1
K

f̂α̂αα2

α̂ααK
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Forward model with motion

Post-reconstruction averaging assumes an implicit model
that relates the frames f2, . . . , fK to the first frame f1.

We now make the (motion) model explicit:

fk = WWW (αααk) f1, k = 2, . . . ,K.

WWW (αααk) is the linear (!) transformation of the image values
corresponding to motion αααk.

This model suggests additional image reconstruction approaches.
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Linear interpolation and Nonrigid deformations

B-spline interpolation model for continuous-space image:

f (~r) = f (x,y,z) = ∑
n,m,l

cnml β(x−n)β(y−m)β(z− l)

Find coefficients ccc = {cnml} by prefiltering digital image f [n,m, l].

Nonrigid deformation of f :

g(~r) = f
(

~T (~r;ααα)
)

= ∑
n,m,l

cnml β(T x(~r;ααα)−n)β(T y(~r;ααα)−m)β(T z(~r;ααα)− l) .

Resample warped image on grid (of target image):

g(~r j) = ∑
n,m,l

cnmlW~r j;n,m,l(ααα), j = 1, . . . ,N

W~r;n,m,l(ααα) , β(T x(~r;ααα)−n)β(T y(~r;ααα)−m)β(T z(~r;ααα)− l)

In matrix-vector form, where ggg = {g(~r j)} and fff = { f [n,m, l]}:

ggg = WWW (ααα)ccc, ccc = WWW−1(000) fff =⇒ ggg = WWW (ααα)WWW−1(000) fff .
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Forward model with motion

Measured
Process

AcquisitionMotion Model
Data

yyy1

yyy2

yyyK

εεε1

εεε2

εεεK

AAA

AAA

AAA

f1

WWW (ααα2) f1

WWW (αααK) f1
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Gated data: More image reconstruction options

• Model-based image reconstruction with motion compensation
◦ given motion estimates, from FW-PRA or from separate modality,
◦ compensate for motion in reconstruction process.
◦ Qiao et al., PMB 2006; Taguchi et al., SPIE 2007.

• Model-based image reconstruction jointly with registration
◦ Jacobson & Fessler, IEEE NSS-MIC 2003, IEEE SSP 2003, ISBI 2006
◦ Odille et al., MRM 2008
◦ estimate jointly the first frame and the motion from all data

• Model-based image reconstruction with temporal regularization
◦ Mair et al., IEEE T-MI, 2006
◦ estimate all frames and the motion between frames from all data
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Model-based image reconstruction
with motion compensation

• Given: motion estimates α̂ααk for k = 2, . . . ,K,
from FW approach or from a separate modality,

• model for system physics / statistics: p(yyyk | fk) = p(yyyk |WWW (α̂ααk) f1) .

Perform penalized-likelihood (aka MAP) estimation of one image:

f̂1 = argmax
f1

Ψ( f1; α̂αα2, . . . , α̂ααK;yyy1, . . . ,yyyK)

Ψ( f1; α̂αα2, . . . , α̂ααK;yyy1, . . . ,yyyK) ,
K

∑
k=1

logp(yyyk |WWW (α̂ααk) f1)−βR( f1) .

R( f ) is optional regularization to control noise in ill-posed image reconstruction problems.

For linear model with additive gaussian noise yyyk = AAAk fk +εεεk :

f̂1 = argmin
f1

K

∑
k=1

‖yyyk −AAAkWWW (α̂ααk) f1‖
2+βR( f1) .
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Motion compensated image reconstruction

Image
Reconstruction ConsolidationPost−Registration

common source image

SSD registration

yyy1

yyy2

yyyK

argmaxf1 Ψ( f1; α̂αα2, . . . , α̂ααK;yyy1, . . . ,yyy

f̂1α̂αα2

α̂ααK
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Joint image reconstruction / registration

Previous approach used possibly suboptimal motion estimates:

f̂1 = argmax
f1

Ψ( f1; α̂αα2, . . . , α̂ααK;yyy1, . . . ,yyyK)

Alternative: jointly estimate one image and K −1 deformation
parameters:

( f̂1, α̂αα2, . . . , α̂ααK) = argmax
f1,ααα2,...,αααK

Ψ( f1;ααα2, . . . ,αααK;yyy1, . . . ,yyyK)

Ψ( f1;ααα2, . . . ,αααK;yyy1, . . . ,yyyK) =
K

∑
k=1

logp(yyyk |WWW (αααk) f1)−βR( f1)

Natural optimization strategy is to alternate between:
◦ updating image estimate f̂1 using current motion parameters,
◦ updating motion estimates {α̂ααk} using current image estimate.

Can initialize motion parameters using frame-wise method.
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Joint estimation illustrated

yyy1

yyy2

yyyK

argmaxΨ( f1;ααα2, . . . ,αααK;yyy1, . . . ,yyyK)

α̂αα

f̂1

Goal: find image estimate and motion parameters that best fit all
measured data.
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Motion-compensated temporal regularization

Previous joint estimation approach:
( f̂1, α̂αα2, . . . , α̂ααK) = argmax

f1,ααα2,...,αααK

Ψ( f1;ααα2, . . . ,αααK;yyy1, . . . ,yyyK)

Alternative approach based on temporal regularization:
( f̂1, . . . , f̂K; α̂αα2, . . . , α̂ααK) = argmax

f1,..., f̂K;ααα2,...,αααK

Ψ( f1, . . . , fK;ααα2, . . . ,αααK;yyy1, . . . ,yyyK)

Ψ( f1, . . . , fK;ααα2, . . . ,αααK;yyy1, . . . ,yyyK) =
K

∑
k=1

logp(yyyk | fk)−βR( fk)

− γ
K

∑
k=2

‖ fk+1−WWW (αk) fk‖
2

︸ ︷︷ ︸

temporal
regularization

with motion effects

Pro: no warp in log-likelihood. Con: more unknowns; γ choice?
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Ten-Gate 3D PET Simulation
True Image

 

(a) Mean Pre−Image of Ungated Data

 

(b)

• 80K total counts/axial mm and 30% randoms (ECAT HR+),
divided across 10 gates.

• Derived from 17 slices of real thorax anatomy.

• B-spline deformations (11x14x5x3 control grid),
derived from helical CT scans at multiple inspirations

(Matt Jacobson, 2006 thesis)
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Sample Reconstructed Images

True Activity Image

 

(a) PL with Known Motion

 

(b)

Fully Joint Estimation
(JEDM)

 

(c)

Frame−Wise
Semi−Statistical (FWPR−PLC)

 

(d)

Frame−Wise
Post−Averaging (FWPR−PA)

 

(e) Ungated PL

 

(f)
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Mean Reconstructed Images

True Activity Image

 

(a) PL with Known Motion

 

(b)

Fully Joint Estimation
(JEDM)

 

(c)

Frame−Wise
Semi−Statistical (FWPR−PLC)

 

(d)

Frame−Wise
Post−Averaging (FWPR−PA)

 

(e) Ungated PL

 

(f)
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Lesion Recovery Comparison
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Motion Tracking Performance
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Regularization Using PET-CT Side Info.

Relax regularization strength in neighborhood of lesion.

 

(a)

 

(b)
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Regularization Using PET-CT Side Info. (cont’d)

Uniformly Penalized 
Ungated PL 

Uptake Error = 54.65%

(a)

Uniformly Penalized
JEDM

Uptake Error = 36.89%

(b)

JEDM with
Unpenalized ROI

Uptake Error = 13.85%

(c)

Very “weak” use of boundary side information
=⇒ robust to mis-registration.
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Summary

• Several possible methods for motion-compensated image
reconstruction

• Model-based approaches such as joint estimation have potential
• Repeated motion estimation steps necessitate simple

invertibility regularizers
• More work needed on algorithms, acceleration, evaluation, ...


