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e MR image reconstruction problem description
e Overview of image reconstruction methods

e MR image reconstruction introduction

e Conventional reconstruction

e Model-based image reconstruction

e |terations and computation (NUFFT etc.)

e Regularization

e Field inhomogeneity correction

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er
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Introduction to Reconstruction



Standard MR Image Reconstruction

MR k—space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (256) per second.



Non-Cartesian MR Image Reconstruction

“k-space” data Image
y= (Y-, ¥m) t(r)
ky

k-space trajectory: spatial coordinates:
K(t) = (ke(t), k(1)) FeRe



Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:
y|—St| + noise, 1=1....M

/f 2T i — F (R (L))

r. spatial coordlnates
(t): k-space trajectory of the MR pulse sequence
(7'): object’s unknown transverse magnetization
(K): Fourler transform of f(r). We get noisy samples of this!
O provides spatial information = Nobel Prize

Goal of image reconstruction: find f(F) from measurements {y;} .

The unknown object f(T) is a continuous-space function,
but the recorded measurements y = (yi,...,ym) are finite.

Under-determined (ill posed) problem — no canonical solution.

All MR scans provide only “partial” k-space data.



Image Reconstruction Strategies

e Continuous-continuous formulation
Pretend that a continuum of measurements are available:

F(R) = / f(F)e 2T gp
The “solution” Is an inverse Fourier transform:
f(r):/F(R)e'Zﬂﬁ-f’dR.

Now discretize the integral solution:
A M — M —
Hr) =3 Fk)e™ w2 3 e N
= =

where w; values are “sampling density compensation factors.”
Numerous methods for choosing w; values in the literature.

For Cartesian sampling, using w; = 1/N suffices,
and the summation is an inverse FFT.

For non-Cartesian sampling, replace summation with gridding.



e Continuous-discrete formulation
Use many-to-one linear model:

y=4a f+€, where 2 : £,(RY) — CM.
Minimum norm solution (cf. “natural pixels”):
min||f]|, subjecttoy=2a f
f

f=a*(aa*)y=3sM,ce'?™ 7 where 212*c=Yy.

e Discrete-discrete formulation
Assume parametric model for object:

f(F) = > fipi(r).
]1=1

Estimate parameter vector f = (fy,..., fy) from data vector y.



Model-Based Image Reconstruction: Overview



Model-Based Image Reconstruction

MR signal equation with more complete physics:
/ f(F) 00 (F) @Mt g RANt g 12K(0) 7 g

yi = S(tj) + noise, 1=1,....M

o () Receive-coil sensitivity pattern(s) (for SENSE)

e w(r) Off-resonance frequency map
(due to field iInhomogeneity / magnetic susceptibility)

e Ri(T) Relaxation map

Other physical factors (?)

o Eddy current effects; in K(t)
e Concomitant gradient terms
e Chemical shift

e Motion

Goal?
(it depends)



Field Inhomogeneity-Corrected Reconstruction

S(t) _ / f (r) Scoil(r») e—l(,o(?)t e R(T)t e—IZTIR(t) T dr

Goal: reconstruct f (1) given field map w(r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)



Sensitivity-Encoded (SENSE) Reconstruction

/f r» c0|I |w(?) R(T)t e 12TTK(t) rdr»

Goal: reconstruct f(F) given sensitivity maps s°°'(T).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)



Joint Estimation of Image and Field-Map

S(t) = / £ (7) 00 () @100t g RANt 127K ¥ g

Goal: estimate both the image f(r) and the field map w(T)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; I1SBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)



The Kitchen Sink

s(t) = / £ (F) 01 () @01t @ RANt g 127K() 7 e

Goal: estimate image f(F), field map w(T), and relaxation map R5(T)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)



Estimation of Dynamic Rate Maps

s(t) = / £ () 00 () @t @RIt g 12TK(Y) ¥ g

Goal: estimate dynamic field map w(T) and “BOLD effect” R;(T)
given baseline image f (1) in fMRI.

Motion...

(Olafsson et al., IEEE T-MI 2008)



Model-Based Image Reconstruction: Detalls



Basic Signal Model

yi = s(ti) + &, Elyi] = s(ti) / f(F o 12T T 4
Goal: reconstruct f(T) fromy = (y1,...,Ym).

Series expansion of unknown object:

N
~ > fjp(r—rj) < usually 2D rect functions.
=1

Substituting into signal model yields

Ely) = | Jif,- p(r—7;) | &2 T %[ [ pr-tpe a1,

\
= Safj, a=Pk)e?NT,  pF) < PR).
=1

Discrete-discrete measurement model with system matrix A= {a; }:
y=Af+e&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.




Small Pixel Size Need Not Matter
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Least-Squares Estimation

Estimate object by minimizing a simple cost function:

f=argminw(f), W)=y Af|°
feCN

o data fit term |ly— Af||
corresponds to negative log-likelihood of Gaussian distribution
e Equivalent to maximum-likelihood (ML) estimation

Issues:
e computing minimizer rapidly

e stopping iteration (?)
e Image quality



lterative Minimization by Conjugate Gradients

Choose initial guess f© (e.g., fast conjugate phase / gridding).
lteration (unregularized):

g = mtpgfm)) = A(Af™ —y) gradient
p" = Pg" precondition

(0, n=0
Yn = < < o ) p . >
(g o, pryy T °
d" =—p" +ynd (=1 search direction
v<”> — Ad™
ap = (d"”, —g" >/HV Ik step size
fO Y — O 4 q,d™ update

Bottlenecks: computing Af"™ and A'r.
e Ais too large to store explicitly (not sparse)

e Even if A were stored, directly computing Af is O(MN)
per iteration, whereas FFT is only O(MlogM).



Computing Af Rapidly
N N
Afl =S aifi=PK)S e?®Tif,  i=1..M
LY ;1 i fj=P( )J; j

o Pixel locations {r;} are uniformly spaced
e k-space locations {K;} are unequally spaced

— needs nonuniform fast Fourier transform (NUFFT)



NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal samples
e Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: nttp://ww. eecs. uni ch. edu/ ~f essl er/ code
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Worst-Case NUFFT Interpolation Error

Maximum error for K/IN=2

Min—Max (uniform)
107° | Gaussian (best)
—%— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—A— Min—-Max (L=13, =1 fit)
2 4 6 8 10
N

10—10




Further Acceleration using Toeplitz Matrices

Cost-function gradient:

where
T=AA  b=Ay.
In the absence of field inhomogeneity the Gram matrix T is Toeplitz:

A/ jk_ ZI“;) 2 —I2T[K| (Ti—Ti)

Computing T f™ requires an ordinary (2x over-sampled) FFT.

(Chan & Ng, SIAM Review, 1996)
In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of T and b requires a couple NUFFTSs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

This formulation seems ideal for “hardware” FFT systems.



Toeplitz Acceleration

Example: 256’ image. radial trajectory, 2x angular under-sampling.

CG-NUFFT CG-Toeplitz CG-NUFFT CG-Toeplitz

(Iterative provides reduced aliasing energy.)



Toeplitz Acceleration

Method ADy b=Ay T 20 iter Total Time|NRMS (50dB)
Conj. Phase | 0.3 0.3 7.8%
CG-NUFFT 12.5 12.5 4.1%
CG-Toeplitz 0.3 |0.8] 35 4.6 4.1%

e Toeplitz aproach reduces CPU time by more than 2x
on conventional workstation (Xeon 3.4GHz)

e Eliminates k-space interpolations — ideal for FFT hardware

e No SNR compromise

e CG reduces NRMS error relative to CP, but 15x slower...
(More dramatic improvements seen in fMRI when correcting

for field inhomogeneity.)



Unregularized Example: Simulated Data

Phantom Object 4 x under—sampled radial: 6760

4x under-sampled radial k-space data
Analytical k-space data generation



Unregularized Example: Images

Unregularized CG, 1:4:60, SNR=40

Iterations 1:4:60 of unregularized CG reconstruction



Unregularized Example: Movie

(movie in pdf)



cg-unreg-4under-40db-60iter.avi
Media File (video/avi)


Unregularized Example: RMS Error

Unregularized CG

Zero image
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Complexity: when to stop? A solution: regularization.



Unregularized Eigenspectrum

Eigenvalues of A’A for 4x under—sampled radial, 32x32
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Regularized Example: Movie

(movie in pdf)



cg-hyp3-4under-40db-60iter.avi
Media File (video/avi)


Regularized Example: Image Comparison

True | Unregularized | Edge preserving regularization
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Regularized Least-Squares Estimation

Estimate object by minimizing a regularized cost function:

FoargminW(f),  W(f) =y Af|”+oR(f)
fecCN

o data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing term R(f) controls noise by penalizing roughness,

z/HDszdf’

O oa>0
controls tradeoff between spatial resolution and noise

» Equivalent to Bayesian MAP estimation with prior 0] e *R()

Complexities:
e choosing R(f)

e choosing
e computing minimizer rapidly.



Quadratic regularization

1D example: squared differences between neighboring pixel values:
\
1 2
NOED I E
JZZZ | |

In matrix-vector notation, R(f) = 3||Cf |* where

-1 10 0...0 b g,
o 0—11_.0.....0 soCf — |
0..0 0-11 RURIC

For 2D and hi_gher-order differences, modify differencing matrix C.

Leads to closed-form solution:

N

f = argmin|ly— Af||°+o|Cf]|?
f

= [KA+cCC] " Ay.

(a formula of limited practical use for computing f)



Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):
f = [KA+0CC] Ay
E| | = [KA+oCC] " AEly
| F| = [AA+ CC] "AAf
blur

AA and C'C are Toeplitz = blur is approximately shift-invariant.

Frequency response of blur:

o H(wx) = FFT(AAg) (lowpass)
e R(ux) =FFT(C'Cg) (highpass)

Adjust o to achieve desired spatial resolution.



Spatial Resolution Example

L=H/(H+R)

Radial k-space trajectory, FWHM of PSF is 1.2 pixels



Spatial Resolution Example: Profiles




Tabulating Spatial Resolution vs Regularization
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Trajectory specific, but easily computed using a few FFTs
Works only for quadratic regularization



Resolution/noise tradeoffs

Noise analysis:

Cov{} = [KA+CC] " ACov{y} A[AA+cCC] ™

Using circulant approximations to AA and C'C yields:

51 L 2 H (o)
Var{ f]} s 08 Z (H (OOk) _I_ R((Jt.)k))z
o H(wx) = FFT(AAg) (lowpass)
e R(wx) = FFT(C'Cg) (highpass)

—> Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust o to achieve desired spatial resolution / noise tradeoft.



Resolution/Noise Tradeoff Example

——Under—-sampled radial
o —x— Nyquist-sampled radial
1 XQ —&=— Cartesian

Relative standard deviation

1 1.2 1.4 1.6 1.8 2
PSF FWHM [pixels]

In short: one can choose o rapidly and predictably for quadratic regularization.



NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-Ml, 1991)

Recall signal model including field inhomogeneity:
/ f |w(T’ —12TTK(t) F’dr».

Temporal interpolation approximation (aka “time segmentation”):
|w(F’ ~ z al |(,o(F’)

for min-max optimized temporal interpolation functions {a/(-)}_,.

wlzlal(t)/{f( |oJ(?)T|} —I2TTK(t) ?dr

Linear combination of L NUFFT calls.



Field Corrected Reconstruction Example

Simulation using known field map w(T).

Simulation Object Slow Conjugate Phase Show Herative

Mo Correction Fast Conjugate Phase Fast lterative




Simulation Quantitative Comparison

e Computation time?

o NRMSE between f and fi"e?

Reconstruction Method | Time (s) NRMSE| NRMSE
complex | magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) | 128.16 @ 0.04 0.04




Human Data: Field Correction

Uncorrected Conjugate Phase Fast herative Field Map (Hz)
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Lincorrected Conjugate Phase Fast herative Field Map (Hz)
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Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:
aj = P(R’i)e w(Tj)t; e 12TIKj T
The Gram matrix T = AA is not Toeplitz:

A/ jk_ Zl“:) 2 —|2m<I (T F’k)e ( (F’j)—oo(?k))ti.
Approximation (“time segmentatlon”)

e (0 t'NZb"e —w(fg))T

D £ dlag{e () T'}
[Tl]jk_ZI 1’P(KI)‘ by e~ 2K (Fj=Tio)

L
T = A’A ~ D|/T| D|,
Each T, is Toeplitz— T f using L pairs of FFTs.

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)



Toeplitz Results

Uncorrected Con,. Phase, L=6

Fieldmap: Brain

CG-NUFFT CG-Toeplitz
L=6 L=8




Toeplitz Acceleration

Precomputation

NRMS % vs SNR

Method L|B,C ADy b=Ay| T, | 15 iter | Total Time o | 50 dB |40 dB |30 dB | 20 dE
Conj. Phase |6 0.4 | 0.2 0.6 30.7| 37.3| 46.5| 65.3| 99.¢
CG-NUFFT |6 0.4 5.0 5.4 5.6 16.7, 26.5| 43.0| 70.4
CG-Toeplitz |8 0.4 0.2 |06 1.3 2.5 55| 16.7| 26.4| 429 70.4

e Reduces CPU time by 2x on conventiona

e No SNR compromise
e Eliminates k-space interpolations = ideal for FFT hardware

workstation (Mac G5)



Summary

e |terative reconstruction: much potential in MRI
e Quadratic regularization parameter selection is tractable
e Computation: reduced by tools like NUFFT / Toeplitz

e But optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)



Some current challenges

e Nonguadratic regularization: analysis / design
Ahn and Leahy, IEEE T-MI, Mar. 2008

e Through-voxel field inhomogeneity gradients
e Motion / dynamics / partial k-space data
¢ Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



