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These annotated slides were prepared by Jeff Fessler for attendees of the ISBI tutorial on statis-
tical image reconstruction methods.

The purpose of the annotation is to provide supplemental details, and particularly to provide ex-
tensive literature references for further study.

For a fascinating history of tomography, see [1]. For broad coverage of image science, see [2].

For further references on image reconstruction, see review papers and chapters, e.g., [3–9].
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Image Reconstruction Methods

(Simplified View)

Analytical

(FBP)

(MR: iFFT)

Iterative

(OSEM?)

(MR: CG?)
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Image Reconstruction Methods / Algorithms

FBP
BPF

Gridding
...

ART
MART

SMART
...

Squares
Least

ISRA
...

CG
CD

Algebraic Statistical

ANALYTICAL ITERATIVE

OSEM

FSCD
PSCD

Int. Point
CG

(y = Ax)

EM (etc.)

SAGE

GCA

...

(Weighted) Likelihood
(e.g., Poisson)
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Part of the goal is to bring order to this alphabet soup.
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Outline :

Part 0: Introduction / Overview / Examples

Part 1: Problem Statements
◦ Continuous-discrete vs continuous-continuous vs discrete-discrete

Part 2: Four of Five Choices for Statistical Image Reconstruction
◦ Object parameterization
◦ System physical modeling
◦ Statistical modeling of measurements
◦ Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms
◦ Classical optimization methods
◦ Considerations: nonnegativity, convergence rate, ...
◦ Optimization transfer: EM etc.
◦ Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis
◦ Spatial resolution properties
◦ Noise properties
◦ Detection performance
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Emphasis on general principles rather than specific empirical results.

The journals (and conferences like NSS/MIC!) are replete with empirical comparisons.

Although the focus of examples in this course are PET / SPECT / CT, most of the principles
apply equally well to other tomography problems like MR image reconstruction, optical / diffraction
tomography, etc.
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History

• Successive substitution method vs direct Fourier (Bracewell, 1956)

• Iterative method for emission tomography (Kuhl, 1963)

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Proposals to use Poisson likelihood for emission and transmission tomography
(Rockmore and Macovski, TNS, 1976, 1977)

• Expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)

Transmission: (Lange and Carson, JCAT, 1984)

• Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

• Ordered-subsets EM algorithm (Hudson and Larkin, TMI, 1994)

• Commercial introduction of OSEM for PET scanners circa 1997
0.4
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Bracewell’s classic paper on direct Fourier reconstruction also mentions a successive substitution
approach [10]
Kuhl and Edwards [11]
X-ray CT patent describing ART: [12]. Discussion of early EMI scanner iterative method: [13].
Early iterative methods for SPECT by Muehllehner [14] and Kuhl [15].
ART: [16–19]
Richardson/Lucy iteration for image restoration was not derived from ML considerations, but turns
out to be the familiar ML-EM iteration [20,21]
Emission: [22]
Transmission: [23]
General expectation-maximization (EM) algorithm (Dempster et al., 1977) [24]
Emission EM algorithm: [25]
Transmission EM algorithm: [26]
Bayesian method for Poisson emission problem: [27]
OSEM [28]

Prior to the proposals for Poisson likelihood models, the Lawrence Berkeley Laboratory had pro-
posed and investigated weighted least-squares (WLS) methods for SPECT (in 3D!) using iterative
algorithms; see (Goitein, 1972) [29] and (Budinger and Gullberg, 1974) [30]. These methods
became widely available in 1977 through the release of the Donner RECLBL package [31].

Of course there was lots of work ongoing based on “algebraic” reconstruction methods in the
1970s and before. But until WLS methods were proposed, this work was largely not “statistical.”
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Why Statistical Methods?

• Object constraints (e.g., nonnegativity, object support)
• Accurate physical models (less bias =⇒ improved quantitative accuracy)

(e.g., nonuniform attenuation in SPECT)
improved spatial resolution?
• Appropriate statistical models (less variance =⇒ lower image noise)

(FBP treats all rays equally)
• Side information (e.g., MRI or CT boundaries)
• Nonstandard geometries (e.g., irregular sampling or “missing” data)

Disadvantages?
• Computation time
• Model complexity
• Software complexity

Analytical methods (a different short course!)
• Idealized mathematical model
◦ Usually geometry only, greatly over-simplified physics
◦ Continuum measurements (discretize/sample after solving)

• No statistical model
• Easier analysis of properties (due to linearity)

e.g., Huesman (1984) FBP ROI variance for kinetic fitting
0.5
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There is a continuum of physical system models that tradeoff accuracy and compute time. The
“right” way to model the physics is usually too complicated, so one uses approximations. The
sensitivity of statistical methods to those approximations needs more investigation.

FBP has its faults, but its properties (good and bad) are very well understood and hence pre-
dictable, due to its linearity. Spatial resolution, variance, ROI covariance (Huesman [32]), and
autocorrelation have all been thoroughly analyzed (and empirical results agree with the analytical
predictions). Only recently have such analyses been provided for some nonlinear reconstruction
methods e.g., [33–44].
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What about Moore’s Law?
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In this graph complexity is the number of lines of response (number of rays) acquired. The ECAT
scanners can operate either in 2D mode (with septa in place) or 3D mode (with septa retracted)
so those scanners have two points each.

I got this graph from Richard Leahy; it was made by Evren Asma. Only CTI scanners and their
relatives are represented. Another such graph appeared in [45].

There is considerable ongoing effort to reduce or minimize the compute time by more efficient
algorithms.

Moore’s law for computing power increases will not alone solve all of the compute problems in
image reconstruction. The problems increase in difficulty at nearly the same rate as the increase
in compute power. (Consider the increased amount of data in 3D PET scanners relative to 2D.) (Or
even the increased number of slices in 2D mode.) Or spiral CT, or fast dynamic MRI,... Therefore
there is a need for further improvements in algorithms in addition to computer hardware advances.
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Benefit Example: Statistical Models
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FBP 22.7% 29.6%
PWLS 13.6% 16.2%
PL 11.8% 15.8%
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Conventional FBP reconstruction of dual-energy X-ray CT data does not account for the noise
properties of CT measurements and results in significant noise propagation into the soft tissue
and cortical bone component images. Statistical reconstruction methods greatly reduces this
noise, improving quantitative accuracy [46]. This is of potential importance for applications like
bone density measurements.
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Benefit Example: Physical Models
a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

0.8 1  1.2

a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction

0.8 1  1.2
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Conventional FBP ignores the polyenergetic X-ray source spectrum. Statistical/iterative recon-
struction methods can build that spectrum into the model and nearly eliminate beam-hardening
artifacts [47–49].
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Benefit Example: Nonstandard Geometries

D
et

ec
to

r 
B

in
s

P
ho

to
n 

S
ou

rc
e

0.9
c© J. Fessler, May 12, 2008 p0intro

A SPECT transmission scan with 65cm distance between line source and standard Anger camera
provides partially truncated sinogram views of most patients.
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Truncated F an-Beam SPECT Transmission Scan

Truncated Truncated Untruncated
FBP PWLS FBP
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The FBP reconstruction method is largely ruined by the sinogram truncation.

Despite the partial truncation, each pixel is partly sampled by “line integrals” at some range of
angles. With the benefit of spatial regularization, nonnegativity constraints, and statistical models,
a statistical reconstruction method (PWLS in this case) can recover an attenuation map that is
comparable to that obtained with an untruncated scan.

We have shown related benefits in PET with missing sinogram data due to detector gaps [50].
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One Final Advertisement: Iterative MR Reconstruction
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MR signal equation:

s(t) =
Z

f (~x)exp(−ıω(~x)t)exp
(

−ı2π~k(~x) ·~x
)

d~x

• Due to field inhomogeneity, signal is not Fourier transform of object.

• Measure off-resonance field-map ω (~x) using two displaced echos

• Penalized WLS cost function minimized by conjugate gradient

• System matrix AAA includes off-resonance effects

• Fast algorithm using NUFFT and time-segmentation

[51–53]

Hopefully that is enough motivation, so, on with the methodology!
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Part 1: Problem Statement(s)

Example:
in monoenergetic transmission tomography with photon counting detectors,
the goal is to reconstruct the attenuation map µ(~x)
from transmission measurements {yi}

nd
i=1,

given the system response si(~x), i = 1, . . . ,nd, for each detector element.
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Statistical model: yi ∼ Poisson{bi exp(−
R

µ(~x)si(~x)d~x)+ r i}
• bi: blank/air scan
• si(~x): line impulse associated with line integral for ith ray,

possibly including detector blur and finite source size (approximation)
• r i: background due to Compton scatter
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Continuous-Discrete Models

Emission tomography: yi ∼ Poisson{
R

λ(~x)si(~x)d~x+r i}

Transmission tomography (monoenergetic): yi ∼ Poisson
{

bi exp
(

−
R

L i
µ(~x)dℓ

)

+ r i

}

Transmission (polyenergetic): yi ∼ Poisson
{

R

Ii(E )exp
(

−
R

L i
µ(~x,E )dℓ

)

dE +r i

}

Magnetic resonance imaging: yi =
R

f (~x)si(~x)d~x+εi

Discrete measurements yyy = (y1, . . . ,ynd)
Continuous-space unknowns: λ(~x), µ(~x), f (~x)
Goal: estimate f (~x) given yyy

Solution options :

• Continuous-continuous formulations (“analytical,” cf. FBP for tomography)

• Continuous-discrete formulations
Usually f̂ (~x) = ∑nd

i=1ci si(~x)

• Discrete-discrete formulations f (~x)≈ ∑
np
j=1x j b j(~x)
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For a nice comparison of the options, see [9].
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Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:

yi = s(ti)+noisei, i = 1, . . . ,nd

s(t) =
Z

f (~x)e−ı2π~κ(t) ·~x d~x = F(~κ(t)) .

~x: spatial coordinates
~κ(t): k-space trajectory of the MR pulse sequence
f (~x): object’s unknown transverse magnetization
F(~κ): Fourier transform of f (~x). We get noisy samples of this!
e−ı2π~κ(t) ·~x provides spatial information =⇒ Nobel Prize

Goal of image reconstruction: find f (~x) from measurements {yi}
nd
i=1.

The unknown object f (~x) is a continuous-space function,
but the recorded measurements yyy = (y1, . . . ,ynd) are finite.

Under-determined (ill posed) problem =⇒ no canonical solution.

All MR scans provide only “partial” k-space data.
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1b.3

Image Reconstruction Strategies

• Continuous-continuous formulation

Pretend that a continuum of measurements are available:

F(~κ) =
Z

f (~x)e−ı2π~κ ·~x d~x .

The “solution” is an inverse Fourier transform:

f (~x) =
Z

F(~κ)eı2π~κ ·~x d~κ .

Now discretize the integral solution:

f̂ (~x) =
nd

∑
i=1

F(~κi)eı2π~κi ·~x wi ≈
nd

∑
i=1

yiwi e
ı2π~κi ·~x ,

where wi values are “sampling density compensation factors.”
Numerous methods for choosing wi values in the literature.

For Cartesian sampling, using wi = 1/N suffices,
and the summation is an inverse FFT.
For non-Cartesian sampling, replace summation with gridding.
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• Continuous-discrete formulation

Use many-to-one linear model:

yyy = A f +εεε, where A : L2(R
d̄)→ C

nd.

Minimum norm solution (cf. “natural pixels”):

min
f̂

∥
∥ f̂
∥
∥

2 subject to yyy=A f̂

f̂ = A ∗(A A ∗)−1yyy = ∑nd
i=1ci e−ı2π~κi ·~x , where A A ∗ccc = yyy.

• Discrete-discrete formulation

Assume parametric model for object:

f (~x) =
np

∑
j=1

x j b j(~x) .

Estimate parameter vector xxx = (x1, . . . ,xnp) from data vector yyy.
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Min-norm solution: [54].

1b.5

Part 2: Five Categories of Choices

• Object parameterization: function f (~r) vs finite coefficient vector xxx

• System physical model: {si(~r)}

• Measurement statistical model yi ∼ ?

• Cost function: data-mismatch and regularization

• Algorithm / initialization

No perfect choices - one can critique all approaches!

2.1
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Often these choices are made implicitly rather than explicitly. Leaving the choices implicit forti-
fies the common belief among non-experts that there are basically two kinds of reconstruction
algorithms, FBP and “iterative.”

In fact, the choices one makes in the above five categories can affect the results significantly.

In my opinion, every paper describing iterative image reconstruction methods (or results thereof)
should make as explicit as possible what choices were made in each of the above categories.
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Choice 1. Object Parameterization

Finite measurements: {yi}
nd
i=1. Continuous object: f (~r). Hopeless?

“All models are wrong but some models are useful.”

Linear series expansion approach. Replace f (~r) by xxx = (x1, . . . ,xnp) where

f (~r)≈ f̃ (~r) =
np

∑
j=1

x j b j(~r) ← “basis functions”

Forward projection:
Z

si(~r) f (~r)d~r =
Z

si(~r)

[
np

∑
j=1

x j b j(~r)

]

d~r =
np

∑
j=1

[
Z

si(~r)b j(~r)d~r

]

x j

=
np

∑
j=1

ai j x j = [AAAxxx]i , where ai j ,

Z

si(~r)b j(~r)d~r

• Projection integrals become finite summations.
• ai j is contribution of jth basis function (e.g., voxel) to ith measurement.
• The units of ai j and x j depend on the user-selected units of b j(~r).
• The nd×np matrix AAA = {ai j} is called the system matrix.

2.2
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In principle it is not entirely hopeless to reconstruction a continuous f (~r) from a finite set of mea-
surements. This is done routinely in the field of nonparametric regression [55] (the generalization
of linear regression that allows for fitting smooth functions rather than just lines). But it is compli-
cated in tomography...

Van De Walle, Barrett, et al. [54] have proposed pseudoinverse calculation method for MRI recon-
struction from a continuous-object / discrete-data formulation, based on the general principles of
Bertero et al. [56]. If the pseudo-inverse could truly be computed once-and-for-all then such an
approach could be practically appealing. However, in practice there are object-dependent effects,
such as nonuniform attenuation in SPECT and magnetic field inhomogeneity in MRI, and these
preclude precomputation of the required SVDs. So pseudo-inverse approaches are impractical
for typical realistic physical models.

2.2

(Linear) Basis Function Choices

• Fourier series (complex / not sparse)
• Circular harmonics (complex / not sparse)
• Wavelets (negative values / not sparse)
• Kaiser-Bessel window functions (blobs)
• Overlapping circles (disks) or spheres (balls)
• Polar grids, logarithmic polar grids
• “Natural pixels” {si(~r)}
• B-splines (pyramids)
• Rectangular pixels / voxels (rect functions)
• Point masses / bed-of-nails / lattice of points / “comb” function
• Organ-based voxels (e.g., from CT in PET/CT systems)
• ...
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See [57] for an early discussion.

Many published “projector / backprojector pairs” are not based explicitly on any particular choice
of basis.

Some pixel-driven backprojectors could be interpreted implicitly as point-mass object models.
This model works fine for FBP, but causes artifacts for iterative methods.

Mazur et al. [58] approximate the shadow of each pixel by a rect function, instead of by a trapezoid.
“As the shapes of pixels are artifacts of our digitisation of continuous real-world images, consid-
eration of alternative orientation or shapes for them seems reasonable.” However, they observe
slightly worse results that worsen with iteration!

Classic series-expansion reference [59]

Organ-based voxel references include [60–65]
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Basis Function Considerations

Mathematical
• Represent f (~r) “well” with moderate np (approximation accuracy)
• e.g., represent a constant (uniform) function
• Orthogonality? (not essential)
• Linear independence (ensures uniqueness of expansion)
• Insensitivity to shift of basis-function grid (approximate shift invariance)
• Rotation invariance

Computational
• “Easy” to compute ai j values and/or AAAxxx
• If stored, the system matrix AAA should be sparse (mostly zeros).
• Easy to represent nonnegative functions e.g., if x j ≥ 0, then f (~r)≥ 0.

A sufficient condition is b j(~r)≥ 0.

2.4
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“Well” ≡ approximation error less than estimation error

Many bases have the desirable approximation property that one can form arbitrarily accurate
approximations to f (~r) by taking np sufficiently large. (This is related to completeness.) Exceptions
include “natural pixels” (a finite set) and the point-lattice “basis” (usually).

2.4

Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models
• Circles / spheres
• Ellipses / ellipsoids
• Superquadrics
• Polygons
• Bi-quadratic triangular Bezier patches, ...

Other models
• Generalized series f (~r) = ∑ j x j b j(~r,θθθ)
• Deformable templates f (~r) = b(Tθθθ(~r))
• ...

Considerations
• Can be considerably more parsimonious
• If correct, yield greatly reduced estimation error
• Particularly compelling in limited-data problems
• Often oversimplified (all models are wrong but...)
• Nonlinear dependence on location induces non-convex cost functions,

complicating optimization
2.5
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Disks [66,67]

Polygons [68]

Generalized series [69]

Bi-quadratic triangular Bezier patches [70]
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Example Basis Functions - 1D
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In the above example, neither the pixels nor the blobs are ideal, though both could reduce the
average approximation error as low as needed by taking np sufficiently large.

2.6

Pixel Basis Functions - 2D
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My tentative recommendation: use pixel / voxel basis.
• Simple
• Perfectly matched to digital displays
• Maximally sparse system matrix

Or use blobs (rotationally symmetric Kaiser-Bessel windows)
• Easy to compute projections “on the fly” due to rotational symmetry.
• Differentiable, nonnegative.
• Parsimony advantage using body-centered cubic packing
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Blobs in SPECT: Qualitative
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A slice and profiles through over-iterated and post-smoothed OSEM-reconstructed images of a
single realization of noisy simulated phantom data. Superimposed on the profile of the true high-
resolution phantom (x) are those of the images reconstructed with the rotation-based model (x̂R,
NMSE = 4.12%), the blob-based model with α = 0 (x̂B0, NMSE = 2.99%), and the blob-based
model with α = 10.4 (x̂B1, NMSE = 3.60%).

Figure taken from [71].

Blob expositions [72,73].
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Blobs in SPECT: Quantitative
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Bottom line: in our experience in SPECT simulations comparing bias and variance of a small
ROI, iterative reconstruction improved significantly over FBP, but blobs offered only a modest
improvement over a rotation-based projector/backprojector that uses square pixels implicitly. And
in some cases, a “blob” with shape parameter = 0, which is a (non-smooth) circ function performed
best.
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Discrete-Discrete Emission Reconstruction Problem

Having chosen a basis and linearly parameterized the emission density...

Estimate the emission density coefficient vector xxx = (x1, . . . ,xnp)
(aka “image”) using (something like) this statistical model:

yi ∼ Poisson

{
np

∑
j=1

ai j x j + r i

}

, i = 1, . . . ,nd.

• {yi}
nd
i=1 : observed counts from each detector unit

• AAA = {ai j} : system matrix (determined by system models)

• r i values : background contributions (determined separately)

Many image reconstruction problems are “find xxx given yyy” where

yi = gi([AAAxxx]i)+ εi, i = 1, . . . ,nd.

2.10
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Called the “discrete-discrete” estimation problem since both the measurement vector and the
image vector are “discretized” (finite dimensional).

In contrast, FBP is derived from the “continuous-continuous” Radon transform model.

2.10

Choice 2. System Model, aka Physics

System matrix elements: ai j =
Z

si(~r)b j(~r)d~r

• scan geometry
• collimator/detector response
• attenuation
• scatter (object, collimator, scintillator)
• duty cycle (dwell time at each angle)
• detector efficiency / dead-time losses
• positron range, noncollinearity, crystal penetration, ...
• ...

Considerations
• Improving system model can improve
◦ Quantitative accuracy
◦ Spatial resolution
◦ Contrast, SNR, detectability

• Computation time (and storage vs compute-on-fly)
• Model uncertainties

(e.g., calculated scatter probabilities based on noisy attenuation map)
• Artifacts due to over-simplifications

2.11
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For the pixel basis, ai j is the probability that a decay in the jth pixel is recorded by the ith detector
unit, or is proportional to that probability.

Attenuation enters into ai j differently in PET and SPECT.
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“Line Length” System Model for Tomography

x1 x2

ai j , length of intersection

ith ray
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Mathematically, the corresponding detector unit sensitivity pattern is

si(~r) = δ
(

~ki ·~r− τi

)

,

where δ denotes the Dirac impulse function.

This model is usually applied with the pixel basis, but can be applied to any basis.

Does not exactly preserve counts, i.e., in general
Z

f (~r)d~r 6=
nd

∑
i=1

np

∑
j=1

ai j x j

Leads to artifacts.

Units are wrong too. (Reconstructed xxx will have units inverse length.)

Perhaps reasonable for X-ray CT, but unnatural for emission tomography. (Line segment length is
a probability?)

In short: I recommend using almost anything else!

2.12

“Strip Area” System Model for Tomography

x1

x j−1

ai j , area

ith ray
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Accounts for finite detector width.

Mathematically, the corresponding detector unit sensitivity pattern is

si(~r) = rect

(
~ki ·~r− τi

w

)

,

where w is the detector width.

Can exactly preserve counts, since all areas are preserved, provided that the width w is an integer
multiple of the center-to-center ray spacing.

Most easily applied to the pixel basis, but in principle applies to any choice.

A little more work to compute than line-lengths, but worth the extra effort (particularly when pre-
computed).
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(Implicit) System Sensitivity Patterns

nd

∑
i=1

ai j ≈ s(~r j) =
nd

∑
i=1

si(~r j)

Line Length Strip Area
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Backprojection of a uniform sinogram.

Explicitly:

nd

∑
i=1

ai j =
nd

∑
i=1

Z

si(~r)b j(~r)d~r =
Z

[
nd

∑
i=1

si(~r)

]

b j(~r)d~r =
Z

s(~r)b j(~r)d~r ≈ s(~r j)

where~r j is center of jth basis function.

Shows probability for each pixel that an emission from that pixel will be detected somewhere.

These nonuniformities propagate into the reconstructed images, except when sinograms are sim-
ulated from the same model of course.

2.14

Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):

ȳi =
Z

si(~r) f (~r)d~r =
np

∑
j=1

ai j x j = [AAAxxx]i , or ȳyy = AAAxxx

Backprojection (projection domain to image domain):

AAA′yyy =

{
nd

∑
i=1

ai j yi

}np

j=1

The term “forward/backprojection pair” often corresponds to an implicit choice for
the object basis and the system model.

Sometimes AAA′yyy is implemented as BBByyy for some “backprojector” BBB 6= AAA′

Least-squares solutions (for example):

x̂xx = [AAA′AAA]−1AAA′yyy 6= [BBBAAA]−1BBByyy

2.15
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Algorithms are generally derived using a single AAA matrix, and usually the quantity AAA′yyy appears
somewhere in the derivation.

If the product AAA′yyy is implemented by some BBByyy for BBB 6= AAA′, then all convergence properties, statistical
properties, etc. of the theoretical algorithm may be lost by the implemented algorithm.
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Mismatched Backprojector BBB 6= AAA′

xxx x̂xx(PWLS−CG) x̂xx(PWLS−CG)

Matched Mismatched
2.16
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Note: when converting from .ps to .pdf, I get JPEG image compression artifacts that may corrupt
these images. If I disable compression, then the files are 8x larger...

Noiseless 3D PET data, images are nx×ny×nz = 64×64×4, with nu×nv×nφ×nθ = 62×10×60×3
projections. 15 iterations of PWLS-CG, initialized with the true image. True object values range
from 0 to 2. Display windowed to [0.7, 1.3] to highlight artifacts.

In this case mismatch arises from a ray-driven forward projector but a pixel-driven back projector.

Another case where mismatch can arise is in “rotate and sum” projection / backprojection meth-
ods, if implemented carelessly.

The problem with mismatched backprojectors arises in iterative reconstruction because multiple
iterations are generally needed, so discrepancies between BBB and AAA′ can accumulate.

Such discrepancies may matter more for regularized methods where convergence is desired,
then for unregularized methods where one stops well before convergence [74], but this is merely
speculation.

The deliberate use of mismatched projectors/backprojectors has been called the “dual matrix”
approach [75,76].

The importance of matching also arises in solving differential equations [77].

2.16

Horizontal Profiles
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This was from noiseless simulated data!
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SPECT System Modeling

Collimator / D
etector

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter
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Numerous papers in the literature address aspects of the system model in the context of SPECT
imaging. Substantial improvements in image quality and quantitative accuracy have been demon-
strated by using appropriate system models.

2.18

Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model:”

yi ≈ gi([AAAxxx]i)

for some functions gi, e.g., gi(l) = l + r i for emission tomography.

Statistical modeling is concerned with the “ ≈ ” aspect.

Considerations
• More accurate models:
◦ can lead to lower variance images,
◦ may incur additional computation,
◦ may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)
• Statistical model errors (e.g., deadtime)
• Incorrect models (e.g., log-processed transmission data)
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“Complexity” can just mean “inconvenience.” It would certainly be more convenient to precor-
rect the sinogram data for effects such as randoms, attenuation, scatter, detector efficiency, etc.,
since that would save having to store those factors for repeated use during the iterations. But
such precorrections destroy the Poisson statistics and lead to suboptimal performance (higher
variance).

More accurate statistical models may also yield lower bias, but bias is often dominated by ap-
proximations in the system model (neglected scatter, etc.) and by resolution effects induced by
regularization.
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Statistical Model Choices for Emission Tomography

• “None.” Assume yyy− rrr = AAAxxx. “Solve algebraically” to find xxx.

•White Gaussian noise. Ordinary least squares: minimize ‖yyy−AAAxxx‖2

(This is the appropriate statistical model for MR.)

• Non-white Gaussian noise. Weighted least squares: minimize

‖yyy−AAAxxx‖2
WWW =

nd

∑
i=1

wi (yi− [AAAxxx]i)
2, where [AAAxxx]i ,

np

∑
j=1

ai j x j

(e.g., for Fourier rebinned (FORE) PET data)

• Ordinary Poisson model (ignoring or precorrecting for background)

yi ∼ Poisson{[AAAxxx]i}

• Poisson model
yi ∼ Poisson{[AAAxxx]i + r i}

• Shifted Poisson model (for randoms precorrected PET)

yi = yprompt
i −ydelay

i ∼ Poisson{[AAAxxx]i +2r i}−2r i

2.20
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These are all for the emission case.

GE uses WLS for FORE data [78].

The shifted-Poisson model for randoms-precorrected PET is described in [79–82].

Snyder et al. used similar models for CCD imaging [83,84].

Missing from the above list: deadtime model [85].

My recommendations.
• If the data is uncorrected, then use Poisson model above.
• If the data was corrected for random coincidences, use shifted Poisson model.
• If the data has been corrected for other stuff, consider using WLS, e.g. [86,87].
• Try not to correct the data so that the first choice can be used!

Classic reason for WLS over Poisson was compute time. This has been obviated by recent
algorithm advances. Now the choice should be made statistically.

Preprocessing: randoms subtraction, Fourier or multislice rebinning (3d to 2d), attenuation, scat-
ter, detector efficiency, etc.

2.20

Shifted-Poisson Model for X-ray CT

A model that includes both photon variability and electronic readout noise:

yi ∼ Poisson{ȳi(µµµ)}+N
(
0,σ2

)

Shifted Poisson approximation (matches first two moments):
[
yi +σ2

]

+
∼ Poisson

{
ȳi(µµµ)+σ2

}

or just use WLS...

Complications:
• Intractability of likelihood for Poisson+Gaussian
• Compound Poisson distribution due to photon-energy-dependent detector sig-

nal.

X-ray statistical modeling is a current research area in several groups!
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For Poisson+Gaussian, see [83,84].

For compound Poisson distribution, see [88–90].
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Choice 4. Cost Functions

Components:
• Data-mismatch term
• Regularization term (and regularization parameter β)
• Constraints (e.g., nonnegativity)

Cost function:

Ψ(xxx) = DataMismatch(yyy,AAAxxx)+βRoughness(xxx)

Reconstruct image x̂xx by minimization:

x̂xx , argmin
xxx≥000

Ψ(xxx)

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “yyy = AAAxxx.”

2.22
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β sometimes called hyperparameter

2.22

Why Cost Functions?

(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on minimizing a cost function: the negative log-likelihood
• ML is asymptotically consistent
• ML is asymptotically unbiased
• ML is asymptotically efficient (under true statistical model...)
• Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
• Detection: Qi and Huesman showed analytically that MAP reconstruction out-

performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons
• Stability of estimates (if Ψ and algorithm chosen properly)
• Predictability of properties (despite nonlinearities)
• Empirical evidence (?)

2.23
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Stability means that running “too many iterations” will not compromise image quality.

Asymptotically efficient means that the variance of ML estimator approaches that given by the
Cramer-Rao lower bound, which is a bound on the variance of unbiased estimators.

But nuclear imaging is not asymptotic (too few counts), and system models are always approxi-
mate, and we regularize which introduces bias anyway.

Uniform CR bound generalizes CR bound to biased case [91,92]

Bottom line: have not found anything better, seen plenty that are worse (LS vs ML in low count)

OSEM vs MAP [93,94]

Qi and Huesman [44]

“Iterative FBP” methods are examples of methods that are not based on any cost function, and
have not shared the popularity of ML and MAP approaches e.g., [95–98].
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Bayesian Framework

Given a prior distribution p(xxx) for image vectors xxx, by Bayes’ rule:

posterior: p(xxx|yyy) = p(yyy|xxx)p(xxx)/p(yyy)

so
logp(xxx|yyy) = logp(yyy|xxx)+ logp(xxx)− logp(yyy)

• − logp(yyy|xxx) corresponds to data mismatch term (negative log-likelihood)
• − logp(xxx) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator :

x̂xx = argmax
xxx

logp(xxx|yyy) = argmax
xxx

logp(yyy|xxx)+ logp(xxx)

• Has certain optimality properties (provided p(yyy|xxx) and p(xxx) are correct).
• Same form as Ψ

2.24
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I avoid the Bayesian terminology because
• Images drawn from the “prior” distributions almost never look like real objects
• The risk function associated with MAP estimation seems less natural to me than a quadratic

risk function. The quadratic choice corresponds to conditional mean estimation x̂xx= E[xxx|yyy] which
is used very rarely by those who describe Bayesian methods for image formation.
• I often use penalty functions R(xxx) that depend on the data yyy, which can hardly be called “priors,”

e.g., [38].

2.24

Choice 4.1: Data-Mismatch Term

Options (for emission tomography):
• Negative log-likelihood of statistical model. Poisson emission case:

−L(xxx;yyy) =− logp(yyy|xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i)+ logyi!

• Ordinary (unweighted) least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2

• Data-weighted least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2/σ̂2
i , σ̂2

i = max
(
yi + r̂ i,σ2

min

)
,

(causes bias due to data-weighting).
• Reweighted least-squares: σ̂2

i = [AAAx̂xx]i + r̂ i

• Model-weighted least-squares (nonquadratic, but convex!)
nd

∑
i=1

1
2
(yi− r̂ i− [AAAxxx]i)

2/([AAAxxx]i + r̂ i)

• Nonquadratic cost-functions that are robust to outliers
• ...

Considerations
• Faithfulness to statistical model vs computation
• Ease of optimization (convex?, quadratic?)
• Effect of statistical modeling errors
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Poisson probability mass function (PMF):
p(yyy|xxx) = ∏nd

i=1e− ȳi ȳyi
i /yi! where ȳyy , AAAxxx+ rrr

Reweighted least-squares [99]

Model-weighted least-squares [100,101]

f (l) =
1
2
(y− r− l)2/(l + r) f̈ (l) = y2/(l + r)3 > 0

Robust norms [102,103]

Generally the data-mismatch term and the statistical model go hand-in-hand.
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Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
Ill-conditioned problems: small data noise causes large image noise

Solutions :
• Noise-reduction methods
• True regularization methods

Noise-reduction methods
• Modify the data
◦ Prefilter or “denoise” the sinogram measurements
◦ Extrapolate missing (e.g., truncated) data

• Modify an algorithm derived for an ill-conditioned problem
◦ Stop algorithm before convergence
◦ Run to convergence, post-filter
◦ Toss in a filtering step every iteration or couple iterations
◦ Modify update to “dampen” high-spatial frequencies

2.26
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Dampen high-frequencies in EM [104]

FBP with an apodized ramp filter belongs in the “modify the algorithm” category. The FBP method
is derived based on a highly idealized system model. The solution so derived includes a ramp
filter, which causes noise amplification if used unmodified. Throwing in apodization of the ramp
filter attempts to “fix” this problem with the FBP “algorithm.”

The fault is not with the algorithm but with the problem definition and cost function. Thus the fix
should be to the latter, not to the algorithm.

The estimate-maximize smooth (EMS) method [105] uses filtering every iteration.

The continuous image f (~r)- discrete data problem is ill-posed.

If the discrete-discrete problem has a full column rank system matrix AAA, then that problem is well-
posed, but still probably ill-conditioned.

2.26

Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
• Simplicity (?)
• Familiarity
• Appear less subjective than using penalty functions or priors
• Only fiddle factors are # of iterations, or amount of smoothing
• Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)
• Changing post-smoothing does not require re-iterating

Advantages of true regularization methods
• Stability (unique minimizer & convergence =⇒ initialization independence)
• Faster convergence
• Predictability
• Resolution can be made object independent
• Controlled resolution (e.g., spatially uniform, edge preserving)
• Start with reasonable image (e.g., FBP) =⇒ reach solution faster.
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Running many iterations followed by post-filtering seems preferable to aborting early by stopping
rules [106,107].

Lalush et al. reported small differences between post-filtering and MAP reconstructions with an
entropy prior [108].

Slijpen and Beekman conclude that post-filtering slightly more accurate than “oracle” filtering be-
tween iterations for SPECT reconstruction [109].
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True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

Options

• Use bigger pixels (fewer basis functions)
◦ Visually unappealing
◦ Can only preserve edges coincident with pixel edges
◦ Results become even less invariant to translations

• Method of sieves (constrain image roughness)
◦ Condition number for “pre-emission space” can be even worse
◦ Lots of iterations
◦ Commutability condition rarely holds exactly in practice
◦ Degenerates to post-filtering in some cases

• Change cost function by adding a roughness penalty / prior

x̂xx = argmin
xxx

Ψ(xxx), Ψ(xxx) = Ł(xxx)+βR(xxx)

◦ Disadvantage: apparently subjective choice of penalty
◦ Apparent difficulty in choosing penalty parameter(s), e.g., β

(cf. apodizing filter / cutoff frequency in FBP)
2.28
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Big pixels [110]

Sieves [111,112]

Lots of iterations for convergence [106,113]

2.28

Penalty Function Considerations

• Computation
• Algorithm complexity
• Uniqueness of minimizer of Ψ(xxx)
• Resolution properties (edge preserving?)
• # of adjustable parameters
• Predictability of properties (resolution and noise)

Choices
• separable vs nonseparable
• quadratic vs nonquadratic
• convex vs nonconvex
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There is a huge literature on different regularization methods. Of the many proposed methods,
and many anecdotal results illustrating properties of such methods, only the “lowly” quadratic
regularization method has been shown analytically to yield detection results that are superior to
FBP [44].
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Penalty Functions: Separable vs Nonseparable

Separable

• Identity norm: R(xxx) = 1
2xxx′IIIxxx = ∑

np
j=1x2

j/2
penalizes large values of xxx, but causes “squashing bias”

• Entropy: R(xxx) = ∑
np
j=1x j logx j

• Gaussian prior with mean µj, variance σ2
j : R(xxx) = ∑

np
j=1

(x j−µj)
2

2σ2
j

• Gamma prior R(xxx) = ∑
np
j=1p(x j,µj,σ j) where p(x,µ,σ) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means µj.

General separable form: R(xxx) =
np

∑
j=1

f j(x j)

Slightly simpler for minimization, but these do not explicitly enforce smoothness.
The simplicity advantage has been overcome in newer algorithms.

2.30
c© J. Fessler, May 12, 2008 p2reg

The identity norm penalty is a form of Tikhonov-Miller regularization [114].

The Gaussian and Gamma bias the results towards the prior image. This can be good or bad
depending on whether the prior image is correct or not! If the prior image comes from a normal
database, but the patient is abnormal, such biases would be undesirable.

For arguments favoring maximum entropy, see [115]. For critiques of maximum entropy regular-
ization, see [116–118].

A key development in overcoming the “difficulty” with nonseparable regularization was a 1995
paper by De Pierro: [119].

2.30

Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

x1 x2 x3

x4 x5

Example

R(xxx) = (x2−x1)
2+(x3−x2)

2+(x5−x4)
2

+(x4−x1)
2+(x5−x2)

2

2 2 2

2 1

3 3 1

2 2

1 3 1

2 2

R(xxx) = 1 R(xxx) = 6 R(xxx) = 10

Rougher images =⇒ larger R(xxx) values
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If diagonal neighbors were included there would be 3 more terms in this example.
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Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

ψ(x j−xk)

N j , neighborhood of jth pixel (e.g., left, right, up, down)
ψ called the potential function

Finite-difference approximation to continuous roughness measure:

R( f (·)) =
Z

‖∇ f (~r)‖2d~r =
Z

∣
∣
∣
∣

∂
∂x

f (~r)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂
∂y

f (~r)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂
∂z

f (~r)

∣
∣
∣
∣

2

d~r .

Second derivatives also useful:
(More choices!)

∂2

∂x2
f (~r)

∣
∣
∣
∣
~r=~r j

≈ f (~r j+1)−2 f (~r j)+ f (~r j−1)

R(xxx) =
np

∑
j=1

ψ(x j+1−2x j +x j−1)+ · · ·
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For differentiable basis functions (e.g., B-splines), one can find
R

‖∇ f (~r)‖2d~r exactly in terms of
coefficients, e.g., [120].

See Gindi et al. [121,122] for comparisons of first and second order penalties.

2.32

Penalty Functions: General Form

R(xxx) = ∑
k

ψk([CCCxxx]k) where [CCCxxx]k =
np

∑
j=1

ck jx j

Example : x1 x2 x3

x4 x5

CCCxxx =









−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1

















x1

x2

x3

x4

x5









=









x2−x1

x3−x2

x5−x4

x4−x1

x5−x2









R(xxx) =
5

∑
k=1

ψk([CCCxxx]k)

= ψ1(x2−x1)+ψ2(x3−x2)+ψ3(x5−x4)+ψ4(x4−x1)+ψ5(x5−x2)
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This form is general enough to cover nearly all the penalty functions that have been used in
tomography. Exceptions include priors based on nonseparable line-site models [123–126], and
the median root “prior” [127,128], both of which are nonconvex.

It is just coincidence that CCC is square in this example. In general, for a nx×ny image, there are
nx(ny−1) horizontal pairs and ny(nx−1) vertical pairs, so CCC will be a (2nxny−nx−ny)× (nxnx) very
sparse matrix (for a first-order neighborhood consisting of horizontal and vertical cliques).

Concretely, for a nx×ny image ordered lexicographically, for a first-order neighborhood we use

CCC =

[
IIIny⊗DDDnx

DDDny⊗ IIInx

]

where ⊗ denotes the Kronecker product and DDDn denotes the following (n−1)×n matrix:

DDDn ,







−1 1 0 0 0
0 −1 1 0 0
0 0 . . . . . . 0
0 0 0 −1 1







.
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Penalty Functions: Quadratic vs Nonquadratic

R(xxx) = ∑
k

ψk([CCCxxx]k)

Quadratic ψk

If ψk(t) = t2/2, then R(xxx) = 1
2xxx′CCC′CCCxxx, a quadratic form.

• Simpler optimization
• Global smoothing

Nonquadratic ψk

• Edge preserving
• More complicated optimization. (This is essentially solved in convex case.)
• Unusual noise properties
• Analysis/prediction of resolution and noise properties is difficult
• More adjustable parameters (e.g., δ)

Example: Huber function. ψ(t) ,

{
t2/2, |t| ≤ δ
δ|t|−δ2/2, |t|> δ

Example: Hyperbola function. ψ(t) , δ2
(√

1+(t/δ)2−1
)
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2.34
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Quadratic vs Non−quadratic Potential Functions

Parabola (quadratic)
Huber, δ=1
Hyperbola, δ=1

t

ψ
(t

)

Lower cost for large differences =⇒ edge preservation
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Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty
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In terms of ROI quantification, a nonquadratic penalty may outperform quadratic penalties for
certain types of objects (especially phantom-like piecewise smooth objects). But the benefits of
nonquadratic penalties for visual tasks is largely unknown.

The smaller δ is in the Huber penalty, the stronger the degree of edge preservation, and the more
unusual the noise effects. In this case I used δ = 0.4, for a phantom that is 0 in background, 1 in
white matter, 4 in graymatter. Thus δ is one tenth the maximum value, as has been recommended
by some authors.

2.36

More “Edge Preserving” Regularization

Chlewicki et al., PMB, Oct. 2004: “Noise reduction and convergence of Bayesian
algorithms with blobs based on the Huber function and median root prior”
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Figure taken from [129].
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Piecewise Constant “Cartoon” Objects
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2.38

Total Variation Regularization

Non-quadratic roughness penalty:
Z

‖∇ f (~r)‖d~r ≈∑
k

|[CCCxxx]k|

Uses magnitude instead of squared magnitude of gradient.

Problem: |·| is not differentiable.

Practical solution: |t| ≈ δ
(√

1+(t/δ)2−1
)

(hyperbola!)

−5 0 5
0

1

2

3

4

5
Potential functions

Total Variation
Hyperbola, δ=0.2
Hyperbola, δ=1

t

ψ
(t

)
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To be more precise, in 2D: ‖∇ f (x,y)‖=

√
∣
∣ ∂

∂x f
∣
∣
2
+
∣
∣
∣

∂
∂y f
∣
∣
∣

2
so the total variation is

ZZ

‖∇ f (x,y)‖dxdy≈∑
n

∑
m

√

| f (n,m)− f (n−1,m)|2+ | f (n,m)− f (n,m−1)|2

Total variation in image reconstruction [130–132]. A critique [133].
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Total Variation Example

todo: example showing blocky reconstruction with TV

2.40
c© J. Fessler, May 12, 2008 p2reg

2.40

Compressed Sensing

aka compressive sampling or sparsity regularization

Idea: find a basis BBB for representing xxx in terms of coefficients θθθ:
xxx = BBBθθθ, where only a “small number” of θ j values are nonzero.

Previous cost function: Ψ(xxx) = DataMismatch(yyy,AAAxxx)+βRoughness(xxx)

New cost function with sparsity regularization:

Ψ(θθθ) = DataMismatch(yyy,AAABBBθθθ)+β‖θθθ‖0

Recall:
‖θθθ‖p ,

(

∑ j |θ j|
p)1/p

‖θθθ‖∞ , limp→∞‖θθθ‖p = maxj |θ j|

‖θθθ‖0 , limp→0‖θθθ‖p
p = ∑ j 1{θ j 6=0} (not a norm in the Banach sense)

Because ‖θθθ‖0 is nonconvex, it usually is replaced with ‖θθθ‖1.
Because ‖θθθ‖1 is nondifferentiable, the corner is often rounded (hyperbola).
If BBB is the Harr wavelet basis, then ‖θθθ‖1 =

∥
∥BBB−1xxx

∥
∥

1 is similar to TV regularization.

For certain types of under-sampled measurements AAA, “good” reconstructions are
possible! Example: radial k-space sampling for Shepp-Logan.

2.41
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See [134–143].
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Penalty Functions: Convex vs Nonconvex

Convex
• Easier to optimize
• Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex
• Greater degree of edge preservation
• Nice images for piecewise-constant phantoms!
• Even more unusual noise properties
• Multiple extrema
• More complicated optimization (simulated / deterministic annealing)
• Estimator x̂xx becomes a discontinuous function of data YYY

Nonconvex examples
• “broken parabola”

ψ(t) = min(t2, t2
max)

• true median root prior:

R(xxx) =
np

∑
j=1

(x j−medianj(xxx))2

medianj(xxx)
where medianj(xxx) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!
2.42
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The above form is not exactly what has been called the median root prior by Alenius et al. [128].
They have used medianj(xxx(n)) which is not a true prior since it depends on the previous iteration.
Hsiao, Rangarajan, and Ginda have developed a very interesting prior that is similar to the “medial
root prior” but is convex [144].

For nice analysis of nonconvex problems, see the papers by Mila Nikolova [145].

For orthonormal wavelet denoising, the cost functions [146] usually have the form

Ψ(xxx) = ‖yyy−AAAxxx‖2+
np

∑
j=1

ψ(x j)

where AAA is an orthonormal. When AAA is orthonormal we can write: ‖yyy−AAAxxx‖2 =
∥
∥AAA′yyy−xxx

∥
∥2

, so

Ψ(xxx) =
np

∑
j=1

(x j− [AAA′yyy] j)
2+ψ(x j)

which separates completely into np 1-D minimization problems, each of which has a unique mini-
mizer for all useful potential functions.

2.42
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Local Extrema and Discontinuous Estimators

x̂xx

Ψ(xxx)

xxx

Small change in data =⇒ large change in minimizer x̂xx.
Using convex penalty functions obviates this problem.

2.44
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[103] discuss discontinuity

2.44

Augmented Regularization Functions

Replace roughness penalty R(xxx) with R(xxx|bbb)+αR(bbb),
where the elements of bbb (often binary) indicate boundary locations.
• Line-site methods
• Level-set methods

Joint estimation problem:

(x̂xx, b̂bb) = argmin
xxx,bbb

Ψ(xxx,bbb), Ψ(xxx,bbb) = Ł(xxx;yyy)+βR(xxx|bbb)+αR(bbb).

Example: b jk indicates the presence of edge between pixels j and k:

R(xxx|bbb) =
np

∑
j=1

∑
k∈N j

(1−b jk)
1
2
(x j−xk)

2

Penalty to discourage too many edges (e.g.):

R(bbb) = ∑
jk

b jk.

• Can encourage local edge continuity
• May require annealing methods for minimization

2.45
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Line-site methods: [123–126].
Level-set methods: [147–149].

For the simple non-interacting line-site penalty function R(bbb) given above, one can perform the
minimization over bbb analytically, yielding an equivalent regularization method of the form R(xxx) with
a broken parabola potential function [150].

More sophisticated line-site methods use neighborhoods of line-site variables to encourage local
boundary continuity [123–126].

The convex median prior of Hsiao et al. uses augmented regularization but does not require
annealing [144].
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Modified Penalty Functions

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

w jk ψ(x j−xk)

Adjust weights {w jk} to
• Control resolution properties
• Incorporate anatomical side information (MR/CT)

(avoid smoothing across anatomical boundaries)

Recommendations
• Emission tomography:
◦ Begin with quadratic (nonseparable) penalty functions
◦ Consider modified penalty for resolution control and choice of β
◦ Use modest regularization and post-filter more if desired

• Transmission tomography (attenuation maps), X-ray CT
◦ consider convex nonquadratic (e.g., Huber) penalty functions
◦ choose δ based on attenuation map units (water, bone, etc.)
◦ choice of regularization parameter β remains nontrivial,

learn appropriate values by experience for given study type

2.46
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Resolution properties [38,151–153].

Side information (a very incomplete list) [154–165].

2.46

Choice 4.3: Constraints

• Nonnegativity
• Known support
• Count preserving
• Upper bounds on values

e.g., maximum µ of attenuation map in transmission case

Considerations
• Algorithm complexity
• Computation
• Convergence rate
• Bias (in low-count regions)
• . . .
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Sometimes it is stated that the ML-EM algorithm “preserves counts.” This only holds when r i = 0
in the statistical model. The count-preserving property originates from the likelihood, not the
algorithm. The ML estimate, under the Poisson model, happens to preserve counts. It is fine that
ML-EM does so every iteration, but that does not mean that it is superior to other algorithms that
get to the optimum x̂xx faster without necessarily preserving counts along the way.

I do not recommend artificially renormalizing each iteration to try to “preserve counts.”
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Open Problems
• Performance prediction for nonquadratic regularization
• Effect of nonquadratic regularization on detection tasks
• Choice of regularization parameters for nonquadratic regularization

2.48
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Deadtime statistics are analyzed in [166, 167]. Bottom line: in most SPECT and PET systems
with paralyzable deadtime, the measurements are non-Poisson, but the mean and variance are
nearly identical. So presumably the Poisson statistical model is adequate, provided the deadtime
losses are included in the system matrix AAA.

Some of these types of questions are being addressed, e.g., effects of sensitivity map errors (a
type of system model mismatch) in list-mode reconstruction [168]. Qi’s bound on system model
error relative to data error: [169].

2.48

Summary

• 1. Object parameterization: function f (~r) vs vector xxx

• 2. System physical model: si(~r)

• 3. Measurement statistical model Yi ∼ ?

• 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method , Cost Function + Algorithm

Naming convention: “criterion”-“algorithm”:
• ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .

2.49
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Part 3. Algorithms

Method = Cost Function + Algorithm

Outline
• Ideal algorithm
• Classical general-purpose algorithms
• Considerations:
◦ nonnegativity
◦ parallelization
◦ convergence rate
◦ monotonicity

• Algorithms tailored to cost functions for imaging
◦ Optimization transfer
◦ EM-type methods
◦ Poisson emission problem
◦ Poisson transmission problem

• Ordered-subsets / block-iterative algorithms
◦ Recent convergent versions (relaxation, incrementalism)
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Choosing a cost function is an important part of imaging science.

Choosing an algorithm should be mostly a matter of computer science (numerical methods).

Nevertheless, it gets a lot of attention by imaging scientists since our cost functions have forms
that can be exploited to get faster convergence than general-purpose methods.

3.1

Why iterative algorithms?

• For nonquadratic Ψ, no closed-form solution for minimizer.

• For quadratic Ψ with nonnegativity constraints, no closed-form solution.

• For quadratic Ψ without constraints, closed-form solutions:

PWLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2

WWW1/2 +xxx′RRRxxx = [AAA′WWWAAA+RRR]−1AAA′WWWyyy

OLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2 = [AAA′AAA]−1AAA′yyy

Impractical (memory and computation) for realistic problem sizes.
AAA is sparse, but AAA′AAA is not.

All algorithms are imperfect. No single best solution.
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Singular value decomposition (SVD) techniques have been proposed for the OLS cost function
as a method for reducing the computation problem, e.g., [170–179].

The idea is that one could precompute the pseudo-inverse of AAA “once and for all.” However AAA
includes physical effects like attenuation, which change for every patient. And for data-weighted
least squares, WWW changes for each scan too.

Image reconstruction never requires the matrix inverse [AAA′AAA]−1; all that is required is a solution to
the normal equations [AAA′AAA] x̂xx = AAA′yyy which is easier, but still nontrivial.
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General Iteration

Model
System

Iteration

Parameters

Measurements
Projection

Calibration ...

Ψ
xxx(n) xxx(n+1)

Deterministic iterative mapping: xxx(n+1) =M (xxx(n))
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There are also stochastic iterative algorithms, such as simulated annealing [123] and the stochas-
tic EM algorithm [180].

3.3

Ideal Algorithm

xxx⋆ , argmin
xxx≥000

Ψ(xxx) (global minimizer)

Properties
stable and convergent {xxx(n)} converges to xxx⋆ if run indefinitely
converges quickly {xxx(n)} gets “close” to xxx⋆ in just a few iterations
globally convergent limnxxx(n) independent of starting image xxx(0)

fast requires minimal computation per iteration
robust insensitive to finite numerical precision
user friendly nothing to adjust (e.g., acceleration factors)

parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model
(matrix stored by row or column, or factored, or projector/backprojector)

Choices: forgo one or more of the above

3.4
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One might argue that the “ideal algorithm” would be the algorithm that produces xxxtrue. In the
framework presented here, it is the job of the cost function to try to make xxx⋆ ≈ xxxtrue, and the job of
the algorithm to find xxx⋆ by minimizing Ψ.

In fact, nothing in the above list really has to do with image quality. In the statistical framework,
image quality is determined by Ψ, not by the algorithm.

Note on terminology: “algorithms” do not really converge, it is the sequence of estimates {xxx(n)}
that converges, but everyone abuses this all the time, so I will too.
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Classic Algorithms

Non-gradient based
• Exhaustive search
• Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
• Gradient descent

xxx(n+1) , xxx(n)−α∇Ψ
(
xxx(n)
)

Choosing α to ensure convergence is nontrivial.
• Steepest descent

xxx(n+1) , xxx(n)−αn∇Ψ
(
xxx(n)
)

where αn , argmin
α

Ψ
(
xxx(n)−α∇Ψ

(
xxx(n)
))

Computing stepsize αn can be expensive or inconvenient.

Limitations
• Converge slowly.
• Do not easily accommodate nonnegativity constraint.

3.5
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Nice discussion of optimization algorithms in [181].

Row and column gradients:

∇Ψ(xxx) =

[
∂

∂x1
Ψ,

∂
∂x2

Ψ, . . . ,
∂

∂xnp

Ψ
]

, ∇ = ∇′

Using gradients excludes nondifferentiable penalty functions such as the Laplacian prior which
involves |x j−xk|. See [182–184] for solutions to this problem.

3.5

Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization of differentiable cost functions:

∇Ψ(xxx) = 000 when xxx = xxx⋆

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for zero of gradient.

Nonnegativity-constrained minimization :

Karush-Kuhn-Tucker conditions
∂

∂x j
Ψ(xxx)

∣
∣
∣
∣
xxx=xxx⋆

is
{

= 0, x⋆
j > 0

≥ 0, x⋆
j = 0

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for ???
• 0 = x⋆

j
∂

∂x j
Ψ(xxx⋆) is a necessary condition, but never sufficient condition.
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Karush-Kuhn-Tucker Illustrated
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The usual condition ∂
∂x j

Ψ(xxx) = 0 only applies for pixels where the nonnegativity constraint is inac-
tive.

3.7

Why Not Clip Negatives?

Nonnegative
Orthant

WLS with Clipped Newton−Raphson
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Newton-Raphson with negatives set to zero each iteration.
Fixed-point of iteration is not the constrained minimizer!
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By clipped negatives, I mean you start with some nominal algorithm M 0(xxx) and modify it to be:
xxx(n+1) = M (xxx(n)) where M (xxx) = [M 0(xxx)]+ and the jth element of [xxx]+ is x j if x j > 0 or 0 if x j ≤ 0.
Basically, you run your favorite iteration and then set any negatives to zero before proceeding to
the next iteration.

Simple 2D quadratic problem. Curves show contours of equal value of the cost function Ψ.

Same problem arises with upper bounds too.

The above problem applies to many simultaneous update iterative methods. For sequential up-
date methods, such as coordinate descent, clipping works fine.

There are some simultaneous update iterative methods where it will work though; projected gra-
dient descent with a positive-definite diagonal preconditioner, for example.
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Newton-Raphson Algorithm

xxx(n+1) = xxx(n)− [∇2Ψ
(
xxx(n)
)
]−1∇Ψ

(
xxx(n)
)

Advantage :
• Super-linear convergence rate (if convergent)

Disadvantages :
• Requires twice-differentiable Ψ
• Not guaranteed to converge
• Not guaranteed to monotonically decrease Ψ
• Does not enforce nonnegativity constraint
• Computing Hessian ∇2Ψ often expensive
• Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms

3.9
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∇2Ψ(xxx) is called the Hessian matrix. It is a np×np matrix (where np is the dimension of xxx). The
j,kth element of it is ∂2

∂x j∂xk
Ψ(xxx) .

A “matrix inverse” actually is not necessary. One can rewrite the above iteration as xxx(n+1) = xxx(n)−
ddd(n) where ddd(n) is the solution to the system of equations: ∇2Ψ(xxx(n))ddd(n) = ∇Ψ(xxx(n)) . Unfortunately,
this is a non-sparse np×np system of equations, requiring O(n3

p) flops to solve, which is expensive.
Instead of solving the system exactly one could use approximate iterative techniques, but then it
should probably be considered a preconditioned gradient method rather than Newton-Raphson.

Quasi-Newton algorithms [185–188] [189, p. 136] [190, p. 77] [191, p. 63].

bound-constrained Quasi-Newton algorithms (LBFGS) [187,192–195].

3.9

Newton’s Quadratic Approximation

2nd-order Taylor series:

Ψ(xxx)≈ φ(xxx;xxx(n)) , Ψ
(
xxx(n)
)
+∇Ψ

(
xxx(n)
)
(xxx−xxx(n))+

1
2
(xxx−xxx(n))T ∇2Ψ

(
xxx(n)
)
(xxx−xxx(n))

Set xxx(n+1) to the (“easily” found) minimizer of this quadratic approximation:

xxx(n+1) , argmin
xxx

φ(xxx;xxx(n))

= xxx(n)− [∇2Ψ
(
xxx(n)
)
]−1∇Ψ

(
xxx(n)
)

Can be nonmonotone for Poisson emission tomography log-likelihood,
even for a single pixel and single ray:

Ψ(x) = (x+ r)−ylog(x+ r) .

3.10
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Nonmonotonicity of Newton-Raphson
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3.11

Consideration: Monotonicity

An algorithm is monotonic if

Ψ
(
xxx(n+1)

)
≤Ψ

(
xxx(n)
)
, ∀xxx(n).

Three categories of algorithms:
• Nonmonotonic (or unknown)
• Forced monotonic (e.g., by line search)
• Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

xxxtemp,M (xxx(n)), ddd = xxxtemp−xxx(n)

xxx(n+1) , xxx(n)−αnddd
(n) where αn , argmin

α
Ψ
(
xxx(n)−αddd(n)

)

Inconvenient, sometimes expensive, nonnegativity problematic.
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Although monotonicity is not a necessary condition for an algorithm to converge globally to xxx⋆, it
is often the case that global convergence and monotonicity go hand in hand. In fact, for strictly
convex Ψ, algorithms that monotonically decrease Ψ each iteration are guaranteed to converge
under reasonable regularity conditions [196].

Any algorithm containing a line search step will have difficulties with nonnegativity. In principle
one can address these problems using a “bent-line” search [197], but this can add considerable
computation per iteration.
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Conjugate Gradient (CG) Algorithm

Advantages :
• Fast converging (if suitably preconditioned) (in unconstrained case)
• Monotonic (forced by line search in nonquadratic case)
• Global convergence (unconstrained case)
• Flexible use of system matrix AAA and tricks
• Easy to implement in unconstrained quadratic case
• Highly parallelizable

Disadvantages :
• Nonnegativity constraint awkward (slows convergence?)
• Line-search somewhat awkward in nonquadratic cases
• Possible need to “restart” after many iterations

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.

3.13
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CG is like steepest descent, but the search direction is modified each iteration to be conjugate to
the previous search direction.

Preconditioners [198,199]

Poisson case [93,200,201].

Efficient line-search for (nonquadratic) edge-preserving regularization described in [199].

3.13

Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBBI, ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)
update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE
(Perhaps the most nontrivial to implement)

Sequential (column action)
update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE

3.14
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Sequential algorithms are the least parallelizable since one cannot update the second pixel until
the first pixel has been updated (to preserve monotonicity and convergence properties).

SAGE [202,203]
Grouped coordinate descent [204]
Multi-pixel SAGE [205]
RAMLA [206]
OSEM [28]
RBBI [207–209]
ISRA [210–212]
OSL [213,214]
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Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)

Update one pixel at a time, holding others fixed to their most recent values:

xnew
j = argmin

x j≥0
Ψ
(

xnew
1 , . . . ,xnew

j−1,x j,x
old
j+1, . . . ,x

old
np

)

, j = 1, . . . ,np

Advantages :
• Intrinsically monotonic
• Fast converging (from good initial image)
• Global convergence
• Nonnegativity constraint trivial

Disadvantages :
• Requires column access of system matrix AAA
• Cannot exploit some “tricks” for AAA, e.g., factorizations
• Expensive “arg min” for nonquadratic problems
• Poorly parallelizable
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Fast convergence shown by Sauer and Bouman with clever frequency-domain analysis [215].

Any ordering can be used. Convergence rate may vary with ordering.

Global convergence even with negatives clipped [216].

One can replace the “arg min” with a one-dimensional Newton-Raphson step [204, 217–219].
However, this change then loses the guarantee of monotonicity for nonquadratic Ψ. Also, evalu-
ating the second partial derivatives of Ψ with respect to x j is expensive (costs an extra modified
backprojection per iteration) [204].

The paraboloidal surrogates coordinate descent (PSCD) algorithm circumvents these problems
[220].

3.15

Constrained Coordinate Descent Illustrated
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In this particular case, the nonnegativity constraint led to exact convergence in 1.5 iterations.
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Coordinate Descent - Unconstrained
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In general coordinate descent converges at a linear rate [86,215].

Interestingly, for this particular problem the nonnegativity constraint accelerated convergence.

3.17

Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:
• quadratic or nearly-quadratic convex cost function
• nonnegativity constraint desired
• precomputed and stored system matrix AAA with column access
• parallelization not needed (standard workstation)

Cautions:
• Good initialization (e.g., properly scaled FBP) essential.

(Uniform image or zero image cause slow initial convergence.)
• Must be programmed carefully to be efficient.

(Standard Gauss-Siedel implementation is suboptimal.)
• Updates high-frequencies fastest =⇒ poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation
Under investigation for 3D helical CT reconstruction by Thibault et al.
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In saying “not good for the unregularized case” I am assuming one does not really wish to find the
minimizer of Ψ in that case. If you really want the minimizer of Ψ in the unregularized case, then
coordinate descent may still be useful.

CD in practice: [221–223].
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Summary of General-Purpose Algorithms

Gradient-based
• Fully parallelizable
• Inconvenient line-searches for nonquadratic cost functions
• Fast converging in unconstrained case
• Nonnegativity constraint inconvenient

Coordinate-descent
• Very fast converging
• Nonnegativity constraint trivial
• Poorly parallelizable
• Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but challenging for large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

... need special-purpose algorithms for image reconstruction!
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Interior-point methods for general-purpose constrained optimization have recently been applied
to image reconstruction [224] and deserve further examination.

3.19

Data-Mismatch Functions Revisited

For fast converging, intrinsically monotone algorithms, consider the form of Ψ.

WLS:

Ł(xxx) =
nd

∑
i=1

1
2

wi (yi− [AAAxxx]i)
2 =

nd

∑
i=1

hi([AAAxxx]i), where hi(l) ,
1
2

wi (yi− l)2.

Emission Poisson (negative) log-likelihood :

Ł(xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i) =
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (l + r i)−yi log(l + r i) .

Transmission Poisson log-likelihood :

Ł(xxx) =
nd

∑
i=1

(

bi e
−[AAAxxx]i + r i

)

−yi log
(

bi e
−[AAAxxx]i + r i

)

=
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (bie
−l + r i)−yi log

(
bie
−l + r i

)
.

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same partially separable form.
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All the algorithms discussed this far are generic; they can be applied to any differentiable Ψ.
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General Imaging Cost Function

General form for data-mismatch function:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i)

General form for regularizing penalty function:

R(xxx) = ∑
k

ψk([CCCxxx]k)

General form for cost function:

Ψ(xxx) = Ł(xxx)+βR(xxx) =
nd

∑
i=1

hi([AAAxxx]i)+β∑
k

ψk([CCCxxx]k)

Properties of Ψ we can exploit:
• summation form (due to independence of measurements)
• convexity of hi functions (usually)
• summation argument (inner product of xxx with ith row of AAA)

Most methods that use these properties are forms of optimization transfer.
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3.21

Optimization Transfer Illustrated

Surrogate function
Cost function

xxx(n) xxx(n+1)

Ψ
(xx x

)
an

d
φ(n

) (
xx x)

3.22
c© J. Fessler, May 12, 2008 p3x

This figure does not do justice to the problem. A one-dimensional Ψ is usually easy to minimize.
The problem is in multiple dimensions.

3.22



Optimization Transfer

General iteration:
xxx(n+1) = argmin

xxx≥000
φ
(
xxx;xxx(n)

)

Monotonicity conditions (cost function Ψ decreases provided these hold):

• φ(xxx(n);xxx(n)) = Ψ(xxx(n)) (matched current value)

• ∇xxxφ(xxx;xxx(n))
∣
∣
∣
xxx=xxx(n)

= ∇Ψ(xxx)
∣
∣
∣
xxx=xxx(n)

(matched gradient)

• φ(xxx;xxx(n))≥Ψ(xxx) ∀xxx≥ 000 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and its relatives like SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.
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3.23

Optimization Transfer in 2d

3.24
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Optimization Transfer cf EM Algorithm

E-step: choose surrogate function φ(xxx;xxx(n))

M-step: minimize surrogate function

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)

Designing surrogate functions
• Easy to “compute”
• Easy to minimize
• Fast convergence rate

Often mutually incompatible goals ... compromises
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From the point of view of “per iteration convergence rate,” the optimal “surrogate function” would
be just Ψ itself. However, then the M-step is very difficult (in fact it is the original optimization
problem). Such an “algorithm” would converge in one very expensive “iteration.”

3.25

Convergence Rate: Slow

High Curvature

Old

Small Steps
Slow Convergence

x
New

φ

Φ
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Convergence Rate: Fast

Fast Convergence

Old

Large Steps
Low Curvature

x
New

φ

Φ

3.27
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Tradeoff between curvature and ease of M-step... Can we beat this tradeoff?

3.27

Tool: Convexity Inequality

g(x)

x

αx1+(1−α)x2x1 x2

g convex =⇒ g(αx1+(1−α)x2)≤ αg(x1)+(1−α)g(x2) for α ∈ [0,1]

More generally: αk≥ 0 and ∑kαk = 1 =⇒ g(∑kαkxk) ≤ ∑kαkg(xk). Sum outside!
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The emission Poisson ray log-likelihood hi is strictly convex on (−r i,∞). This turns out to be
adequate for the derivation.
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Example 1: Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i), hi(l) = (l + r i)−yi log(l + r i) .

Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let ȳ(n)

i = [AAAxxx(n)]i + r i):

[AAAxxx]i =
np

∑
j=1

ai j x j =
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

](

x j

x(n)

j

ȳ(n)

i

)

.

Since the hi’s are convex in Poisson emission model:

hi([AAAxxx]i) = hi

(
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

](

x j

x(n)

j

ȳ(n)

i

))

≤
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) ≤ φ
(
xxx;xxx(n)

)
,

nd

∑
i=1

np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

Replace convex cost function Ψ(xxx) with separable surrogate function φ(xxx;xxx(n)).
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The clever (multiplicative) trick in the first equation is due to Alvaro De Pierro [212].

Note that the bracketed terms sum over j to unity.

I believe that this is the shortest and simplest possible derivation of the ML-EM algorithm, out of
five distinct derivations I have seen.

This derivation is complete only for the case r i = 0. It is easily generalized to r i 6= 0.

3.29

“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
, where φ j

(
x j;xxx

(n)
)

,

nd

∑
i=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

.

M-step separates:

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
=⇒ x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
, j = 1, . . . ,np

Minimizing:

∂
∂x j

φ j

(
x j;xxx

(n)
)

=
nd

∑
i=1

ai j ḣi

(

ȳ(n)

i x j/x(n)

j

)

=
nd

∑
i=1

ai j

[

1−
yi

ȳ(n)

i x j/x(n)

j

]∣
∣
∣
∣
∣
x j=x

(n+1)
j

= 0.

Solving (in case r i = 0):

x(n+1)

j = x(n)

j

[
nd

∑
i=1

ai j
yi

[AAAxxx(n)]i

]

/

(
nd

∑
i=1

ai j

)

, j = 1, . . . ,np

• Derived without any statistical considerations, unlike classical EM formulation.
• Uses only convexity and algebra.
• Guaranteed monotonic: surrogate function φ satisfies the 3 required proper-

ties.
• M-step trivial due to separable surrogate.
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When r i = 0, ḣi(l) , d
dl hi(l) = 1−yi/l .

Case where r i 6= 0 can also be handled with more algebra. Just replace final [AAAxxx(n)]i with ȳ(n)

i =
[AAAxxx(n)]i + r i.

To be rigorous, we should check that the Karush-Kuhn-Tucker condition holds for our minimizer of
φ j(·;xxx(n)). It does, provided xxx(n) ≥ 000.

I prefer this derivation over the statistical EM derivation, even though we are doing statistical
image reconstruction. Statistics greatly affect the design of Ψ, but minimizing Ψ is really just a
numerical problem, and statistics need not have any role in that.
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ML-EM is Scaled Gradient Descent

x(n+1)

j = x(n)

j

[
nd

∑
i=1

ai j
yi

ȳ(n)

i

]

/

(
nd

∑
i=1

ai j

)

= x(n)

j +x(n)

j

[
nd

∑
i=1

ai j

(

yi

ȳ(n)

i

−1

)]

/

(
nd

∑
i=1

ai j

)

= x(n)

j −

(

x(n)

j

∑nd
i=1ai j

)

∂
∂x j

Ψ
(
xxx(n)
)
, j = 1, . . . ,np

xxx(n+1) = xxx(n) +DDD(xxx(n))∇Ψ
(
xxx(n)
)

This particular diagonal scaling matrix remarkably
• ensures monotonicity,
• ensures nonnegativity.
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3.31

Consideration: Separable vs Nonseparable

−2 0 2
−2

−1

0

1

2
Separable

−2 0 2
−2

−1

0

1

2
Nonseparable

x1x1

x 2x 2

Contour plots: loci of equal function values.

Uncoupled vs coupled minimization.
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To find the minimizer of a separable function, one can minimize separately with respect to each
argument. To find the minimizer of a nonseparable function, one must consider the variables
together. In this sense the minimization problem “couples” together the unknown parameters.
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Separable Surrogate Functions (Easy M-step)

The preceding EM derivation structure applies to any cost function of the form

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) .

cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction

Derivation yields a separable surrogate function

Ψ(xxx)≤ φ
(
xxx;xxx(n)

)
, where φ

(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)

M-step separates into 1D minimization problems (fully parallelizable):

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
=⇒ x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
, j = 1, . . . ,np

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?
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Unfortunately, choosing additively separable surrogate functions generally leads to very high cur-
vature surrogates, which gives very slow convergence rates. EM is the classic example.

The classic EM algorithm is simple to implement precisely because it uses separable surrogate
functions.

The derivation of the “convex algorithm” for the Poisson transmission problem [225] and the con-
vergence proof of the ISRA algorithm [212] use a very similar derivation.

Clarify: the self-similar surrogate function is easy to minimize because it is separable. So even
though L and Q are composed of the same ray-log likelihood functions, the latter is easier to
minimize because it is separable.

3.33

Separable vs Nonseparable

Separable Nonseparable

ΨΨ

φ

φ

Separable surrogates (e.g., EM) have high curvature ... slow convergence.
Nonseparable surrogates can have lower curvature ... faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).
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High Curvature of EM Surrogate
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an

d
Q
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Sublinear convergence rate of EM shown in [226].

3.35

1D Parabola Surrogate Function

Find parabola q(n)

i (l) of the form:

q(n)

i (l) = hi

(

ℓ(n)

i

)

+ ḣi

(

ℓ(n)

i

)

(l − ℓ(n)

i )+c(n)

i
1
2
(l − ℓ(n)

i )2, where ℓ(n)

i , [AAAxxx(n)]i

Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

c(n)

i , min
{

c≥ 0 : q(n)

i (l)≥ hi(l), ∀l ≥ 0
}

.
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Surrogate Functions for Emission Poisson

Negative log−likelihood
Parabola surrogate function
EM surrogate function

l l →ℓ(n)

i

Lower
curvature!
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Paraboloidal Surrogate

Combining 1D parabola surrogates yields paraboloidal surrogate:

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i)≤ φ
(
xxx;xxx(n)

)
=

nd

∑
i=1

q(n)

i ([AAAxxx]i)

Rewriting: φ
(
δδδ+xxx(n);xxx(n)

)
= Ψ

(
xxx(n)
)
+∇Ψ

(
xxx(n)
)

δδδ+
1
2

δδδ′AAA′diag
{

c(n)

i

}

AAAδδδ

Advantages
• Surrogate φ(xxx;xxx(n)) is quadratic, unlike Poisson log-likelihood

=⇒ easier to minimize
• Not separable (unlike EM surrogate)
• Not self-similar (unlike EM surrogate)
• Small curvatures =⇒ fast convergence
• Intrinsically monotone global convergence
• Fairly simple to derive / implement

Quadratic minimization
• Coordinate descent

+ fast converging
+ Nonnegativity easy
- precomputed column-stored system matrix

• Gradient-based quadratic minimization methods
- Nonnegativity inconvenient
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Instead of coordinate descent, one could also apply nonnegativity-constrained conjugate gradient.

PSCD recommended for 2D emission Poisson likelihood when system matrix precomputed and
stored by columns.

3.37

Example: PSCD for PET Transmission Scans

• square-pixel basis
• strip-integral system model
• shifted-Poisson statistical model
• edge-preserving convex regularization (Huber)
• nonnegativity constraint
• inscribed circle support constraint
• paraboloidal surrogate coordinate descent (PSCD) algorithm

3.38
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Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:

[AAAxxx]i =
np

∑
j=1

πi j

[
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

]

, ℓ(n)

i = [AAAxxx(n)]i.

Provided πi j ≥ 0 and ∑
np
j=1πi j = 1, since parabola qi is convex:

q(n)

i ([AAAxxx]i) = q(n)

i

(
np

∑
j=1

πi j

[
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

])

≤
np

∑
j=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

... φ
(
xxx;xxx(n)

)
=

nd

∑
i=1

q(n)

i ([AAAxxx]i) ≤ φ̃
(
xxx;xxx(n)

)
,

nd

∑
i=1

np

∑
j=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

Separable Paraboloidal Surrogate:

φ̃
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
, φ j

(
x j;xxx

(n)
)

,

nd

∑
i=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

Parallelizable M-step (cf gradient descent!):

x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)

=

[

x(n)

j −
1

d j
(n)

∂
∂x j

Ψ
(
xxx(n)
)
]

+

, d j
(n) =

nd

∑
i=1

a2
i j

πi j
c(n)

i

Natural choice is πi j = |ai j |/|a|i, |a|i = ∑
np
j=1 |ai j |
3.39
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De Pierro’s “additive trick” in [119].

For the natural choice πi j = |ai j |/|a|i, we have

d j
(n) =

nd

∑
i=1

|ai j | |a|i c
(n)

i

3.39

Example: Poisson ML Transmission Problem

Transmission negative log-likelihood (for ith ray):

hi(l) = (bie
−l + r i)−yi log

(
bie
−l + r i

)
.

Optimal (smallest) parabola surrogate curvature (Erdoğan, T-MI, Sep. 1999):

c(n)

i = c(ℓ(n)

i ,hi), c(l ,h) =







[

2
h(0)−h(l)+ ḣ(l)l

l2

]

+

, l > 0
[
ḧ(l)

]

+
, l = 0.

Separable Paraboloidal Surrogate (SPS) Algorithm :

Precompute |a|i = ∑
np
j=1ai j , i = 1, . . . ,nd

ℓ(n)

i = [AAAxxx(n)]i, (forward projection)

ȳ(n)

i = bi e−ℓ
(n)
i + r i (predicted means)

ḣi
(n)

= 1−yi/ ȳ(n)

i (slopes)
c(n)

i = c(ℓ(n)

i ,hi) (curvatures)

x(n+1)

j =

[

x(n)

j −
1

d j
(n)

∂
∂x j

Ψ
(
xxx(n)
)
]

+

=

[

x(n)

j −
∑nd

i=1ai j ḣi
(n)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Monotonically decreases cost function each iteration. No logarithm!
3.40
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Note that this algorithm never takes the logarithm of the transmission data, since it is based
directly on a statistical model for the raw measurements. This is a significant part of the reason
why it works well for low-count measurements.

Optimal parabola surrogate curvature for transmission problem [220]. Emission problem [227].

A Matlab m-file for this algorithm is available from
http://www.eecs.umich.edu/∼fessler /code
as transmission/tml_sps.m

Related m-files also of interest include transmission/tpl_osps.m
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The MAP-EM M-step “Problem”

Add a penalty function to our surrogate for the negative log-likelihood:

Ψ(xxx) = Ł(xxx)+βR(xxx)

φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+βR(xxx)

M-step: xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
= argmin

xxx≥000

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+βR(xxx) = ?

For nonseparable penalty functions, the M-step is coupled ... difficult.

Suboptimal solutions
• Generalized EM (GEM) algorithm (coordinate descent on φ)

Monotonic, but inherits slow convergence of EM.
• One-step late (OSL) algorithm (use outdated gradients) (Green, T-MI, 1990)

∂
∂x j

φ(xxx;xxx(n)) = ∂
∂x j

φ j(x j;xxx(n))+β ∂
∂x j

R(xxx)
?
≈ ∂

∂x j
φ j(x j;xxx(n))+β ∂

∂x j
R(xxx(n))

Nonmonotonic. Known to diverge, depending on β.
Temptingly simple, but avoid!

Contemporary solution
• Use separable surrogate for penalty function too (De Pierro, T-MI, Dec. 1995)

Ensures monotonicity. Obviates all reasons for using OSL!
3.41
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OSL [213,214]
GEM [228–230]

De Pierro’s separable penalty derived in [119].

3.41

De Pierro’s MAP-EM Algorithm

Apply separable paraboloidal surrogates to penalty function:

R(xxx)≤ RSPS(xxx;xxx(n)) =
np

∑
j=1

Rj(x j;xxx
(n))

Overall separable surrogate: φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+β

np

∑
j=1

Rj(x j;xxx
(n))

The M-step becomes fully parallelizable:

x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
−βRj(x j;xxx

(n)), j = 1, . . . ,np.

Consider quadratic penalty R(xxx) = ∑kψ([CCCxxx]k), where ψ(t) = t2/2.
If γk j ≥ 0 and ∑

np
j=1γk j = 1 then

[CCCxxx]k =
np

∑
j=1

γk j

[
ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

]

.

Since ψ is convex:

ψ([CCCxxx]k) = ψ

(
np

∑
j=1

γk j

[
ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

])

≤
np

∑
j=1

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)
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Often we just choose

γk j =

{
1

number of nonzero ck j’s in kth row of CCC, ck j 6= 0

0, otherwise,

which satisfies the two conditions γk j ≥ 0 and ∑
np
j=1γk j = 1, e.g.

CCC =









−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1









, {γk j}=









1
2

1
2 0 0 0

0 1
2

1
2 0 0

0 0 0 1
2

1
2

1
2 0 0 1

2 0
0 1

2 0 0 1
2









.

Alternatively we use the choice

γk j =
|ck j|

∑
np
j ′=1

∣
∣ck j′

∣
∣
,

which happens to yield the same result when the elements of CCC are just ±1 as in the above
example. For non-unity ck j’s, the latter ratio seems to be preferable in terms of convergence rate.
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De Pierro’s Algorithm Continued

So R(xxx)≤ R(xxx;xxx(n)) , ∑
np
j=1Rj(x j;xxx(n)) where

Rj(x j;xxx
(n)) , ∑

k

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)

M-step: Minimizing φ j(x j;xxx(n))+βRj(x j;xxx(n)) yields the iteration:

x(n+1)

j =
x(n)

j ∑nd
i=1ai j yi/ ȳ(n)

i

B j +

√

B2
j +
(

x(n)

j ∑nd
i=1ai j yi/ ȳ(n)

i

)(

β∑kc2
k j/γk j

)

where B j ,
1
2

[
nd

∑
i=1

ai j +β∑
k

(

ck j[CCCxxx(n)]k−
c2

k j

γk j
x(n)

j

)]

, j = 1, . . . ,np

and ȳ(n)

i = [AAAxxx(n)]i + r i.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate
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As a concrete example, consider R(xxx) = ∑
np
j=1

1
2 ∑k∈N j

1
2(x j − xk)

2 with N j corresponding to the |N j |

nearest neighbors to the jth pixel. For this penalty with the choice γk j = |ck j|/ck where ck =

∑
np
j=1 |ck j|= |N j |, the separable surrogate is [119]:

Rj(x j ;xxx
(n)) = ∑

k∈N j

1
2

1
|N j |

(

|N j |(x j−x(n)

j )+x(n)

j −x(k)

j

)2
.

Matlab m-file available from http://www.eecs.umich.edu/∼fessler /code
as emission/eql emdp.m

Caution: use stable quadratic roots [181] (slightly more complicated than above).

One can make an ordered-subsets version of De Pierro’s MAP-EM easily. Such an approach is
preferable to the OSL version of OS-EM mentioned by Hudson and Larkin [28].

One can do multiple M-step subiterations for minimal additional computation with some improve-
ment in convergence rate.

For a tomography problem with a 64×64 image, 64×80 sinogram, and strip-area system matrix,
De Pierro’s MAP-EM algorithm requires 4% more flops per iteration than classic ML-EM.

3.43

Ordered Subsets Algorithms

aka block iterative or incremental gradient algorithms

The gradient appears in essentially every algorithm:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i) =⇒
∂

∂x j
Ł(xxx) =

nd

∑
i=1

ai j ḣi([AAAxxx]i) .

This is a backprojection of a sinogram of the derivatives
{
ḣi([AAAxxx]i)

}
.

Intuition: with half the angular sampling, this backprojection would be fairly similar

1
nd

nd

∑
i=1

ai j ḣi(·)≈
1
|S |∑i∈S

ai j ḣi(·),

where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.

Recall typical iteration:

xxx(n+1) = xxx(n)−DDD(xxx(n))∇Ψ
(
xxx(n)
)
.
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The dramatic improvements in apparent “convergence rate” of OSEM over classic ML-EM are due
largely to the fact that the latter converges so slowly.

Modern, faster converging algorithms may benefit much less from OS modifications.

Richard Larkin (personal communication) has described the development of OSEM as something
of a fortuitous programming “accident.” In the course of developing software to implement the
E-ML-EM algorithm, he first implemented a version that updated the image immediately after the
reprojection of each view. Later he implemented the classical E-ML-EM algorithm but found it
to give worse images (in the early iterations). (Due of course to its slow convergence.) The
“immediate update” version turns out to be OSEM with 1 view per subset.

Several publications hinted at the use of subsets of projection views for acceleration, e.g., [231–
234], and D. Politte’s 1983 dissertation. But it was the paper by Larking and Hudson that incited
widespread use of OSEM [28].

In the general optimization literature, such algorithms are called incremental gradient methods
[235–239], and they date back to the 1970’s [240].
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Geometric View of Ordered Subsets

)( n
xΦ ∇ 

)(1
nf x∇ 

)(2
nf x∇ 

)( k
xΦ ∇ 

)(1
kf x∇ 

)(2
kf x∇ 

k
x

n
x

*
x

)(maxarg 1 xf

)(maxarg 2 xf

Two subset case: Ψ(xxx) = f1(xxx)+ f2(xxx) (e.g., odd and even projection views).

For xxx(n) far from xxx⋆, even partial gradients should point roughly towards xxx⋆.
For xxx(n) near xxx⋆, however, ∇Ψ(xxx)≈ 000, so ∇ f1(xxx)≈−∇ f2(xxx) =⇒ cycles!
Issues. “Subset gradient balance”: ∇Ψ(xxx)≈M∇ fk(xxx). Choice of ordering.
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3.45

Incremental Gradients (WLS, 2 Subsets)
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Here the initial image xxx(0) is far from the solution so the incremental gradients, i.e., the gradients
computed from just the even or odd angles, agree well with the full gradient.
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Subset Gradient Imbalance
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Here the first subset was angles 0-90◦, and the second subset was angles 90-180◦, roughly
speaking. Now the incremental gradients do not agree as well with the full gradient. (Of course
the sum of the two incremental gradients would still equal the full gradient.) This imbalance is
expected to slow “convergence.”

3.47

Problems with OS-EM

• Non-monotone

• Does not converge (may cycle)

• Byrne’s “rescaled block iterative” (RBI) approach converges only for consistent
(noiseless) data

• ... unpredictable
• What resolution after n iterations?

Object-dependent, spatially nonuniform
• What variance after n iterations?
• ROI variance? (e.g., for Huesman’s WLS kinetics)
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RBI (rescaled block iterative) [209].

Soares and Glick et al. [43] [42] have extended the work of Barrett et al. [35] to the OSEM case.

Wang et al. have extended it to the penalized case, for the OSL algorithm [41].
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OSEM vs Penalized Likelihood

• 64×62 image
• 66×60 sinogram
• 106 counts
• 15% randoms/scatter
• uniform attenuation
• contrast in cold region
• within-region σ opposite side
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3.49

Contrast-Noise Results
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3.51

Making OS Methods Converge

• Relaxation
• Incrementalism

Relaxed block-iterative methods

Ψ(xxx) =
M

∑
m=1

Ψm(xxx)

xxx(n+(m+1)/M) = xxx(n+m/M)−αnD(xxx(n+m/M))∇Ψm

(

xxx(n+m/M)
)

, m= 0, . . . ,M−1

Relaxation of step sizes:

αn→ 0 as n→ ∞, ∑
n

αn = ∞, ∑
n

α2
n < ∞

• ART
• RAMLA, BSREM (De Pierro, T-MI, 1997, 2001)
• Ahn and Fessler, NSS/MIC 2001, T-MI 2003

Considerations
• Proper relaxation can induce convergence, but still lacks monotonicity.
• Choice of relaxation schedule requires experimentation.
• Ψm(xxx) = Łm(xxx)+ 1

M R(xxx), so each Ψm includes part of the likelihood yet all of R
3.52
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RAMLA [206] (for ML only)

Kudo [241] does not give convergence proof in English...

BSREM [242] convergence proof requires some “a posteriori” assumptions. These have been
eliminated in [243].
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Relaxed OS-SPS
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[244]

3.53

Incremental Methods

Incremental EM applied to emission tomography by Hsiao et al. as C-OSEM

Incremental optimization transfer (Ahn & Fessler, MIC 2004)

Find majorizing surrogate for each sub-objective function:

φm(xxx;xxx) = Ψm(xxx), ∀xxx
φm(xxx; x̄xx) ≥ Ψm(xxx), ∀xxx, x̄xx

Define the following augmented cost function: F(xxx; x̄xx1, . . . , x̄xxM) = ∑M
m=1φm(xxx; x̄xxm) .

Fact: by construction x̂xx = argminxxxΨ(xxx) = argminxxxminx̄xx1,...,x̄xxM F(xxx; x̄xx1, . . . , x̄xxM).

Alternating minimization: for m= 1, . . . ,M:

xxxnew = argmin
xxx

F
(

xxx; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xx(n)
m , x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

x̄xx(n+1)
m = argmin

x̄xxm

F
(

xxxnew; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xxm, x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

= xxxnew.

• Use all current information, but increment the surrogate for only one subset.
• Monotone in F , converges under reasonable assumptions on Ψ
• In constrast, OS-EM uses the information from only one subset at a time
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C-OSEM [245]

Incremental optimization transfer [246,247]
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TRIOT Example: Convergence Rate

Transmission incremental optimization transfer (TRIOT)
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3.55

TRIOT Example: Attenuation Map Images

FBP PL optimal image

OS-SPS TRIOT-PC

OS-SPS: 64 subsets, 20 iterations, one point of the limit cycle
TRIOT-PC: 64 subsets, 20 iterations, after 2 iterations of OS-SPS)
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OSTR aka Transmission OS-SPS

Ordered subsets version of separable paraboloidal surrogates
for PET transmission problem with nonquadratic convex regularization

Matlab m-file http://www.eecs.umich.edu/∼fessler
/irt/irt/transmission/tpl_os_sps.m
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Ordered subsets for PET/SPECT transmission scans [248], and for X-ray CT [48].

3.57

Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm :

x(n+1)

j =

[

x(n)

j −
∑nd

i=1ai j ḣi([AAAxxx(n)]i)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Ordered-subsets abandons monotonicity, so why use optimal curvatures c(n)

i ?

Precomputed curvature:

ci = ḧi

(
l̂ i
)
, l̂ i = argmin

l
hi(l)

Precomputed denominator (saves one backprojection each iteration!):

d j =
nd

∑
i=1

ai j |a|ici, j = 1, . . . ,np.

OS-SPS algorithm with M subsets:

x(n+1)

j =

[

x(n)

j −
∑i∈S (n) ai j ḣi([AAAxxx(n)]i)

d j /M

]

+

, j = 1, . . . ,np
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Precomputed parabola surrogate curvature for transmission problem and ordered subsets [220,
248].

For emission problem, ci ≈ 1/yi.

For transmission problem, ci ≈ yi.

Precomputed curvatures combined with suitable relaxation yields guaranteed convergence for
convex problems [243].
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Summary of Algorithms

• General-purpose optimization algorithms
• Optimization transfer for image reconstruction algorithms
• Separable surrogates =⇒ high curvatures =⇒ slow convergence
• Ordered subsets accelerate initial convergence

require relaxation or incrementalism for true convergence
• Principles apply to emission and transmission reconstruction
• Still work to be done...

Matlab/Freemat “image reconstruction toolbox” online:
http://www.eecs.umich.edu/∼fessler /code

An Open Problem

Still no algorithm with all of the following properties:
• Nonnegativity easy
• Fast converging
• Intrinsically monotone global convergence
• Accepts any type of system matrix
• Parallelizable

3.59
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Until an “ideal” algorithm is developed, OSEM will probably remain very popular...

3.59

Part 4. Performance Characteristics

Easy case: MRI with quadratic regularization

• Spatial resolution properties

• Noise properties

General case

• Spatial resolution properties

• Noise properties

• Detection properties

4a.1
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Regularized Least-Squares Estimation

Estimate object by minimizing a regularized cost function:

x̂xx = argmin
xxx∈C

np
Ψ(xxx), Ψ(xxx) = ‖yyy−AAAxxx‖2+αR(xxx)

• data fit term ‖yyy−AAAxxx‖2

corresponds to negative log-likelihood of Gaussian distribution
• regularizing term R(xxx) controls noise by penalizing roughness,

e.g. : R(xxx)≈
Z

‖∇ f‖2d~r

• regularization parameter α > 0
controls tradeoff between spatial resolution and noise
• Equivalent to Bayesian MAP estimation with prior ∝ e−αR(xxx)

Complexities:
• choosing R( f )
• choosing α
• computing minimizer rapidly.

4a.2
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4a.2

Quadratic regularization

1D example: squared differences between neighboring pixel values:

R( f ) =
np

∑
j=2

1
2
| f j− f j−1|

2 .

In matrix-vector notation, R(xxx) = 1
2‖CCCxxx‖2 where

CCC =







−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

. . . . . .
0 . . . 0 0 −1 1







, so CCCxxx =





x2−x1
...

xN−xN−1



 .

For 2D and higher-order differences, modify differencing matrix CCC.

Leads to closed-form solution:

x̂xx = argmin
xxx
‖yyy−AAAxxx‖2+α‖CCCxxx‖2

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy.

(a formula of limited practical use for computing x̂xx)

4a.3
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Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

x̂xx =
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy

E[x̂xx] =
[
AAA′AAA+αCCC′CCC

]−1
AAA′E[yyy]

E[x̂xx] =
[
AAA′AAA+αCCC′CCC

]−1
AAA′AAA

︸ ︷︷ ︸

blur

xxx

AAA′AAA and CCC′CCC are Toeplitz =⇒ blur is approximately shift-invariant.

Frequency response of blur:

L(ω) =
H(ω)

H(ω)+αR(ω)

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

Adjust α to achieve desired spatial resolution.
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4a.4

Spatial Resolution Example
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Spatial Resolution Example: Profiles
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4a.6

Tabulating Spatial Resolution vs Regularization
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Trajectory specific, but easily computed using a few FFTs
Works only for quadratic regularization

4a.7
c© J. Fessler, May 12, 2008 p4mri

4a.7



Resolution/noise tradeoffs

Noise analysis:

Cov{x̂xx}=
[
AAA′AAA+αCCC′CCC

]−1
AAA′Cov{yyy}AAA

[
AAA′AAA+αCCC′CCC

]−1

Using circulant approximations to AAA′AAA and CCC′CCC yields:

Var{x̂ j} ≈ σ2
ε ∑

k

H(ωk)

(H(ωk)+αR(ωk))2

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

=⇒ Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust α to achieve desired spatial resolution / noise tradeoff.
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4a.8

Resolution/Noise Tradeoff Example
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In short: one can choose α rapidly and predictably for quadratic regularization.
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Part 4. Performance Characteristics

(General case)

• Spatial resolution properties

• Noise properties

• Detection properties

4b.1
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4b.1

Spatial Resolution Properties

Choosing β can be painful, so ...

For true minimization methods:

x̂xx = argmin
xxx

Ψ(xxx)

the local impulse response is approximately (Fessler and Rogers, T-MI, 1996):

lll j(xxx) = lim
δ→0

E[x̂xx|xxx+δeeej]−E[x̂xx|xxx]
δ

≈
[
−∇20Ψ

]−1∇11Ψ
∂

∂x j
ȳyy(xxx).

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm (if iterated “to convergence”).

• Enables prediction of resolution properties
(provided Ψ is minimized)

• Useful for designing regularization penalty functions
with desired resolution properties. For penalized likelihood:

lll j(xxx)≈ [AAA′WWWAAA+βRRR]−1AAA′WWWAAAxxxtrue.

• Helps choose β for desired spatial resolution

4b.2
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[38,151,249]

A commonly cited disadvantage of regularized methods is the need to select the regularization
parameter β. One must also select the cutoff frequency for FBP, but at least that value is intu-
itive and works the same (resolution-wise) for all patients. Not so for stopping rules. The analysis
in [38,151,249] brings some of the consistency of FBP-like resolution selection to statistical meth-
ods.
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Modified Penalty Example, PET

a) b) c)

d) e)

a) filtered backprojection
b) Penalized unweighted least-squares
c) PWLS with conventional regularization
d) PWLS with certainty-based penalty (Fessler & Rogers, 1996, T-MI)
e) PWLS with modified penalty (Stayman & Fessler, 2000, T-MI)

4b.3
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Figure from [151]. Certainty-based in [38].

4b.3

Modified Penalty Example, SPECT - Noiseless

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
4b.4
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Figure from [152].
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Modified Penalty Example, SPECT - Noisy

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization
4b.5
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Figure from [152].

These were preliminary results, and they initially casted doubt on the claim sometimes made that
post-filtered EM (or OSEM) is equivalent to truly regularized image reconstruction.

However, it turns out we had not matched spatial resolution as carefully as needed...

See [153,250].

4b.5

Regularized vs Post-filtered, with Matched PSF
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Figure from [153].
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Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit :

x̂xx = x̂xx(yyy) = argmin
xxx

Ψ(xxx,yyy) .

What is Cov{x̂xx}? New simpler derivation.

Denote the column gradient by g(xxx,yyy) , ∇xxxΨ(xxx,yyy) .
Ignoring constraints, the gradient is zero at the minimizer: g(x̂xx(yyy),yyy) = 000.
First-order Taylor series expansion:

g(x̂xx,yyy) ≈ g(xxxtrue,yyy)+∇xxxg(xxxtrue,yyy)(x̂xx−xxxtrue)

= g(xxxtrue,yyy)+∇2
xxxΨ
(
xxxtrue,yyy

)
(x̂xx−xxxtrue).

Equating to zero:

x̂xx≈ xxxtrue−
[
∇2

xxxΨ
(
xxxtrue,yyy

)]−1∇xxxΨ
(
xxxtrue,yyy

)
.

If the Hessian ∇2Ψ is weakly dependent on yyy, then

Cov{x̂xx} ≈
[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
Cov
{

∇xxxΨ
(
xxxtrue,yyy

)}[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
.

If we further linearize w.r.t. the data: g(xxx,yyy)≈ g(xxx, ȳyy)+∇yyyg(xxx, ȳyy)(yyy− ȳyy), then

Cov{x̂xx} ≈
[
∇2

xxxΨ
]−1

(∇xxx∇yyyΨ) Cov{yyy} (∇xxx∇yyyΨ)′
[
∇2

xxxΨ
]−1

.
4b.7
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The latter approximation was derived in [37].

4b.7

Covariance Continued

Covariance approximation:

Cov{x̂xx} ≈
[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
Cov
{

∇xxxΨ
(
xxxtrue,yyy

)}[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

• Enables prediction of noise properties

• Can make variance images

• Useful for computing ROI variance (e.g., for weighted kinetic fitting)

• Good variance prediction for quadratic regularization in nonzero regions

• Inaccurate for nonquadratic penalties, or in nearly-zero regions

4b.8
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Qi has developed an approximation that may help with the nonnegativity constraint [251].
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Detection Analysis

Qi and Huesman (IEEE T-MI, Aug. 2001) showed analytically:
SNR of MAP reconstruction > SNR of FBP reconstruction

quadratic regularization
SKE/BKE task
prewhitened observer
non-prewhitened observer

Open issues

Choice of regularizer to optimize detectability?
Active work in several groups.

4b.9
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Qi’s theoretical predictions are consistent with some empirical results, e.g., [252].

See recent detection analyses papers, e.g., [44,253–258].

4b.9

Choosing β: Unknown location

AUC for signal
detection with unknown
location task.
Yendiki & Fessler, JOSA-A
24(12):B199, Dec. 2007
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[258].
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Summary of Performance Analysis

Spatial resolution / noise variance and covariance / AUC for signal detection:
all (somewhat) predictable based on properties of cost function Ψ.
(Provided an iterative algorithm is run “to convergence” to find minimizer of Ψ.)

This predictability also motivates regularized cost functions.
(cf. unregularized cost function with a stopping rule.)

4b.11
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4b.11

Part: Application examples

• X-ray CT
• MRI

5.1
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Example: X-ray Helical CT

Left: FBP Right: PWLS-ICD, edge-preserving

Thibault et al., Med Phys. 34(11):4526, Nov. 2007
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[223]

5.2

Example: fMRI with Joint Estimation of Fieldmap

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.

PWLS-CG with quadratic regularization. β chosen by PSF analysis.
Sutton et al., MRM 51(6):1194, Jun. 2004
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[53]
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Tracking Respiration-Induced Field Changes

5.4
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5.4

Other Topics

• Dynamic image sequence reconstruction / 4D regularization

• Motion and/or dynamic contrast changes

5.5
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Dynamic reconstruction
• nonlinear models [62,65,68,259–271]
• linear models [272–281]
• KL-based approaches [282–288]
• Motion/gating [289]
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Summary

• Iterative reconstruction has had clinical impact in PET and SPECT
• MRI and X-ray CT may be next?
• todo: Still work to be done...
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