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Image Reconstruction Methods

(Simplified View)

Analytical

(FBP)

(MR: iFFT)

Iterative

(OSEM?)

(MR: CG?)
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Image Reconstruction Methods / Algorithms

FBP
BPF

Gridding
...

ART
MART

SMART
...

Squares
Least

ISRA
...

CG
CD

Algebraic Statistical

ANALYTICAL ITERATIVE

OSEM

FSCD
PSCD

Int. Point
CG

(y = Ax)

EM (etc.)

SAGE

GCA

...

(Weighted) Likelihood
(e.g., Poisson)
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Outline :

Part 0: Introduction / Overview / Examples

Part 1: Problem Statements
◦ Continuous-discrete vs continuous-continuous vs discrete-discrete

Part 2: Four of Five Choices for Statistical Image Reconstruction
◦ Object parameterization
◦ System physical modeling
◦ Statistical modeling of measurements
◦ Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms
◦ Classical optimization methods
◦ Considerations: nonnegativity, convergence rate, ...
◦ Optimization transfer: EM etc.
◦ Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis
◦ Spatial resolution properties
◦ Noise properties
◦ Detection performance
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History

• Successive substitution method vs direct Fourier (Bracewell, 1956)

• Iterative method for emission tomography (Kuhl, 1963)

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Proposals to use Poisson likelihood for emission and transmission tomography
(Rockmore and Macovski, TNS, 1976, 1977)

• Expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)

Transmission: (Lange and Carson, JCAT, 1984)

• Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

• Ordered-subsets EM algorithm (Hudson and Larkin, TMI, 1994)

• Commercial introduction of OSEM for PET scanners circa 1997
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Why Statistical Methods?

• Object constraints (e.g., nonnegativity, object support)
• Accurate physical models (less bias =⇒ improved quantitative accuracy)

(e.g., nonuniform attenuation in SPECT)
improved spatial resolution?
• Appropriate statistical models (less variance =⇒ lower image noise)

(FBP treats all rays equally)
• Side information (e.g., MRI or CT boundaries)
• Nonstandard geometries (e.g., irregular sampling or “missing” data)

Disadvantages?
• Computation time
• Model complexity
• Software complexity

Analytical methods (a different short course!)
• Idealized mathematical model
◦ Usually geometry only, greatly over-simplified physics
◦ Continuum measurements (discretize/sample after solving)

• No statistical model
• Easier analysis of properties (due to linearity)

e.g., Huesman (1984) FBP ROI variance for kinetic fitting
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What about Moore’s Law?
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Benefit Example: Statistical Models
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FBP 22.7% 29.6%
PWLS 13.6% 16.2%
PL 11.8% 15.8%
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Benefit Example: Physical Models
a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

0.8 1  1.2

a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction

0.8 1  1.2
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Benefit Example: Nonstandard Geometries

D
et

ec
to

r 
B

in
s

P
ho

to
n 

S
ou

rc
e



0.10

Truncated F an-Beam SPECT Transmission Scan

Truncated Truncated Untruncated
FBP PWLS FBP
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One Final Advertisement: Iterative MR Reconstruction
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Part 1: Problem Statement(s)

Example:
in monoenergetic transmission tomography with photon counting detectors,
the goal is to reconstruct the attenuation map µ(~x)
from transmission measurements {yi}

nd
i=1,

given the system response si(~x), i = 1, . . . ,nd, for each detector element.
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Statistical model: yi ∼ Poisson{bi exp(−
R

µ(~x)si(~x)d~x)+ r i}
• bi: blank/air scan
• si(~x): line impulse associated with line integral for ith ray,

possibly including detector blur and finite source size (approximation)
• r i: background due to Compton scatter
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Continuous-Discrete Models

Emission tomography: yi ∼ Poisson{
R

λ(~x)si(~x)d~x+r i}

Transmission tomography (monoenergetic): yi ∼ Poisson
{

bi exp
(

−
R

L i
µ(~x)dℓ

)

+ r i

}

Transmission (polyenergetic): yi ∼ Poisson
{

R

Ii(E )exp
(

−
R

L i
µ(~x,E )dℓ

)

dE +r i

}

Magnetic resonance imaging: yi =
R

f (~x)si(~x)d~x+εi

Discrete measurements yyy = (y1, . . . ,ynd)
Continuous-space unknowns: λ(~x), µ(~x), f (~x)
Goal: estimate f (~x) given yyy

Solution options :

• Continuous-continuous formulations (“analytical,” cf. FBP for tomography)

• Continuous-discrete formulations
Usually f̂ (~x) = ∑nd

i=1ci si(~x)

• Discrete-discrete formulations f (~x)≈ ∑
np
j=1x j b j(~x)
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Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:

yi = s(ti)+noisei, i = 1, . . . ,nd

s(t) =
Z

f (~x)e−ı2π~κ(t) ·~x d~x = F(~κ(t)) .

~x: spatial coordinates
~κ(t): k-space trajectory of the MR pulse sequence
f (~x): object’s unknown transverse magnetization
F(~κ): Fourier transform of f (~x). We get noisy samples of this!
e−ı2π~κ(t) ·~x provides spatial information =⇒ Nobel Prize

Goal of image reconstruction: find f (~x) from measurements {yi}
nd
i=1.

The unknown object f (~x) is a continuous-space function,
but the recorded measurements yyy = (y1, . . . ,ynd) are finite.

Under-determined (ill posed) problem =⇒ no canonical solution.

All MR scans provide only “partial” k-space data.
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Image Reconstruction Strategies

• Continuous-continuous formulation

Pretend that a continuum of measurements are available:

F(~κ) =
Z

f (~x)e−ı2π~κ ·~x d~x .

The “solution” is an inverse Fourier transform:

f (~x) =
Z

F(~κ)eı2π~κ ·~x d~κ .

Now discretize the integral solution:

f̂ (~x) =
nd

∑
i=1

F(~κi)eı2π~κi ·~x wi ≈
nd

∑
i=1

yiwi e
ı2π~κi ·~x ,

where wi values are “sampling density compensation factors.”
Numerous methods for choosing wi values in the literature.

For Cartesian sampling, using wi = 1/N suffices,
and the summation is an inverse FFT.
For non-Cartesian sampling, replace summation with gridding.



1b.5

• Continuous-discrete formulation

Use many-to-one linear model:

yyy = A f +εεε, where A : L2(R
d̄)→ C

nd.

Minimum norm solution (cf. “natural pixels”):

min
f̂

∥
∥ f̂
∥
∥

2 subject to yyy=A f̂

f̂ = A ∗(A A ∗)−1yyy = ∑nd
i=1ci e−ı2π~κi ·~x , where A A ∗ccc = yyy.

• Discrete-discrete formulation

Assume parametric model for object:

f (~x) =
np

∑
j=1

x j b j(~x) .

Estimate parameter vector xxx = (x1, . . . ,xnp) from data vector yyy.
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Part 2: Five Categories of Choices

• Object parameterization: function f (~r) vs finite coefficient vector xxx

• System physical model: {si(~r)}

• Measurement statistical model yi ∼ ?

• Cost function: data-mismatch and regularization

• Algorithm / initialization

No perfect choices - one can critique all approaches!
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Choice 1. Object Parameterization

Finite measurements: {yi}
nd
i=1. Continuous object: f (~r). Hopeless?

“All models are wrong but some models are useful.”

Linear series expansion approach. Replace f (~r) by xxx = (x1, . . . ,xnp) where

f (~r)≈ f̃ (~r) =
np

∑
j=1

x j b j(~r) ← “basis functions”

Forward projection:
Z

si(~r) f (~r)d~r =
Z

si(~r)

[
np

∑
j=1

x j b j(~r)

]

d~r =
np

∑
j=1

[
Z

si(~r)b j(~r)d~r

]

x j

=
np

∑
j=1

ai j x j = [AAAxxx]i, where ai j ,

Z

si(~r)b j(~r)d~r

• Projection integrals become finite summations.
• ai j is contribution of jth basis function (e.g., voxel) to ith measurement.
• The units of ai j and x j depend on the user-selected units of b j(~r).
• The nd×np matrix AAA = {ai j} is called the system matrix .
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(Linear) Basis Function Choices

• Fourier series (complex / not sparse)
• Circular harmonics (complex / not sparse)
• Wavelets (negative values / not sparse)
• Kaiser-Bessel window functions (blobs)
• Overlapping circles (disks) or spheres (balls)
• Polar grids, logarithmic polar grids
• “Natural pixels” {si(~r)}
• B-splines (pyramids)
• Rectangular pixels / voxels (rect functions)
• Point masses / bed-of-nails / lattice of points / “comb” function
• Organ-based voxels (e.g., from CT in PET/CT systems)
• ...
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Basis Function Considerations

Mathematical
• Represent f (~r) “well” with moderate np (approximation accuracy)
• e.g., represent a constant (uniform) function
• Orthogonality? (not essential)
• Linear independence (ensures uniqueness of expansion)
• Insensitivity to shift of basis-function grid (approximate shift invariance)
• Rotation invariance

Computational
• “Easy” to compute ai j values and/or AAAxxx
• If stored, the system matrix AAA should be sparse (mostly zeros).
• Easy to represent nonnegative functions e.g., if x j ≥ 0, then f (~r)≥ 0.

A sufficient condition is b j(~r)≥ 0.
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Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models
• Circles / spheres
• Ellipses / ellipsoids
• Superquadrics
• Polygons
• Bi-quadratic triangular Bezier patches, ...

Other models
• Generalized series f (~r) = ∑ j x j b j(~r,θθθ)
• Deformable templates f (~r) = b(Tθθθ(~r))
• ...

Considerations
• Can be considerably more parsimonious
• If correct, yield greatly reduced estimation error
• Particularly compelling in limited-data problems
• Often oversimplified (all models are wrong but...)
• Nonlinear dependence on location induces non-convex cost functions,

complicating optimization
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Example Basis Functions - 1D
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Pixel Basis Functions - 2D
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Blobs in SPECT: Qualitative

1 64

Post−filt. OSEM (3 pix. FWHM) blob−based α=10.4
1

64 0

1

2

3

4

1 64

Post−filt. OSEM (3 pix. FWHM) rotation−based
1

64 0

1

2

3

4

1 64

Post−filt. OSEM (3 pix. FWHM) blob−based α=0
1

64 0

1

2

3

4

50 100 150 200 250
0

1

2

3

4

mm

x

x̂Rx̂B0x̂B1

(2D SPECT thorax phantom simulations)



2.9

Blobs in SPECT: Quantitative
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Discrete-Discrete Emission Reconstruction Problem

Having chosen a basis and linearly parameterized the emission density...

Estimate the emission density coefficient vector xxx = (x1, . . . ,xnp)
(aka “image”) using (something like) this statistical model:

yi ∼ Poisson

{
np

∑
j=1

ai j x j + r i

}

, i = 1, . . . ,nd.

• {yi}
nd
i=1 : observed counts from each detector unit

• AAA = {ai j} : system matrix (determined by system models)

• r i values : background contributions (determined separately)

Many image reconstruction problems are “find xxx given yyy” where

yi = gi([AAAxxx]i)+ εi, i = 1, . . . ,nd.
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Choice 2. System Model, aka Physics

System matrix elements: ai j =
Z

si(~r)b j(~r)d~r

• scan geometry
• collimator/detector response
• attenuation
• scatter (object, collimator, scintillator)
• duty cycle (dwell time at each angle)
• detector efficiency / dead-time losses
• positron range, noncollinearity, crystal penetration, ...
• ...

Considerations
• Improving system model can improve
◦ Quantitative accuracy
◦ Spatial resolution
◦ Contrast, SNR, detectability

• Computation time (and storage vs compute-on-fly)
• Model uncertainties

(e.g., calculated scatter probabilities based on noisy attenuation map)
• Artifacts due to over-simplifications
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“Line Length” System Model for Tomography

x1 x2

ai j , length of intersection

ith ray
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“Strip Area” System Model for Tomography
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(Implicit) System Sensitivity Patterns

nd

∑
i=1

ai j ≈ s(~r j) =
nd

∑
i=1

si(~r j)

Line Length Strip Area
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Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):

ȳi =
Z

si(~r) f (~r)d~r =
np

∑
j=1

ai j x j = [AAAxxx]i , or ȳyy = AAAxxx

Backprojection (projection domain to image domain):

AAA′yyy =

{
nd

∑
i=1

ai j yi

}np

j=1

The term “forward/backprojection pair” often corresponds to an implicit choice for
the object basis and the system model.

Sometimes AAA′yyy is implemented as BBByyy for some “backprojector” BBB 6= AAA′

Least-squares solutions (for example):

x̂xx = [AAA′AAA]−1AAA′yyy 6= [BBBAAA]−1BBByyy
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Mismatched Backprojector BBB 6= AAA′

xxx x̂xx(PWLS−CG) x̂xx(PWLS−CG)

Matched Mismatched
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Horizontal Profiles
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SPECT System Modeling

Collimator / D
etector

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter
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Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model:”

yi ≈ gi([AAAxxx]i)

for some functions gi, e.g., gi(l) = l + r i for emission tomography.

Statistical modeling is concerned with the “ ≈ ” aspect.

Considerations
• More accurate models:
◦ can lead to lower variance images,
◦ may incur additional computation,
◦ may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)
• Statistical model errors (e.g., deadtime)
• Incorrect models (e.g., log-processed transmission data)
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Statistical Model Choices for Emission Tomography

• “None.” Assume yyy− rrr = AAAxxx. “Solve algebraically” to find xxx.

•White Gaussian noise. Ordinary least squares: minimize ‖yyy−AAAxxx‖2

(This is the appropriate statistical model for MR.)

• Non-white Gaussian noise. Weighted least squares: minimize

‖yyy−AAAxxx‖2
WWW =

nd

∑
i=1

wi (yi− [AAAxxx]i)
2, where [AAAxxx]i ,

np

∑
j=1

ai j x j

(e.g., for Fourier rebinned (FORE) PET data)

• Ordinary Poisson model (ignoring or precorrecting for background)

yi ∼ Poisson{[AAAxxx]i}

• Poisson model
yi ∼ Poisson{[AAAxxx]i + r i}

• Shifted Poisson model (for randoms precorrected PET)

yi = yprompt
i −ydelay

i ∼ Poisson{[AAAxxx]i +2r i}−2r i
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Shifted-Poisson Model for X-ray CT

A model that includes both photon variability and electronic readout noise:

yi ∼ Poisson{ȳi(µµµ)}+N
(
0,σ2

)

Shifted Poisson approximation (matches first two moments):
[
yi +σ2

]

+
∼ Poisson

{
ȳi(µµµ)+σ2

}

or just use WLS...

Complications:
• Intractability of likelihood for Poisson+Gaussian
• Compound Poisson distribution due to photon-energy-dependent detector sig-

nal.

X-ray statistical modeling is a current research area in several groups!
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Choice 4. Cost Functions

Components:
• Data-mismatch term
• Regularization term (and regularization parameter β)
• Constraints (e.g., nonnegativity)

Cost function:

Ψ(xxx) = DataMismatch(yyy,AAAxxx)+βRoughness(xxx)

Reconstruct image x̂xx by minimization:

x̂xx , argmin
xxx≥000

Ψ(xxx)

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “yyy = AAAxxx.”
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Why Cost Functions?

(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on minimizing a cost function: the negative log-likelihood
• ML is asymptotically consistent
• ML is asymptotically unbiased
• ML is asymptotically efficient (under true statistical model...)
• Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
• Detection: Qi and Huesman showed analytically that MAP reconstruction out-

performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons
• Stability of estimates (if Ψ and algorithm chosen properly)
• Predictability of properties (despite nonlinearities)
• Empirical evidence (?)
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Bayesian Framework

Given a prior distribution p(xxx) for image vectors xxx, by Bayes’ rule:

posterior: p(xxx|yyy) = p(yyy|xxx)p(xxx)/p(yyy)

so
logp(xxx|yyy) = logp(yyy|xxx)+ logp(xxx)− logp(yyy)

• − logp(yyy|xxx) corresponds to data mismatch term (negative log-likelihood)
• − logp(xxx) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator :

x̂xx = argmax
xxx

logp(xxx|yyy) = argmax
xxx

logp(yyy|xxx)+ logp(xxx)

• Has certain optimality properties (provided p(yyy|xxx) and p(xxx) are correct).
• Same form as Ψ
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Choice 4.1: Data-Mismatch Term

Options (for emission tomography):
• Negative log-likelihood of statistical model. Poisson emission case:

−L(xxx;yyy) =− logp(yyy|xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i)+ logyi!

• Ordinary (unweighted) least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2

• Data-weighted least squares: ∑nd
i=1

1
2(yi− r̂ i− [AAAxxx]i)

2/σ̂2
i , σ̂2

i = max
(
yi + r̂ i,σ2

min

)
,

(causes bias due to data-weighting).
• Reweighted least-squares: σ̂2

i = [AAAx̂xx]i + r̂ i

• Model-weighted least-squares (nonquadratic, but convex!)
nd

∑
i=1

1
2
(yi− r̂ i− [AAAxxx]i)

2/([AAAxxx]i + r̂ i)

• Nonquadratic cost-functions that are robust to outliers
• ...

Considerations
• Faithfulness to statistical model vs computation
• Ease of optimization (convex?, quadratic?)
• Effect of statistical modeling errors
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Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
Ill-conditioned problems: small data noise causes large image noise

Solutions :
• Noise-reduction methods
• True regularization methods

Noise-reduction methods
• Modify the data
◦ Prefilter or “denoise” the sinogram measurements
◦ Extrapolate missing (e.g., truncated) data

• Modify an algorithm derived for an ill-conditioned problem
◦ Stop algorithm before convergence
◦ Run to convergence, post-filter
◦ Toss in a filtering step every iteration or couple iterations
◦ Modify update to “dampen” high-spatial frequencies
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Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
• Simplicity (?)
• Familiarity
• Appear less subjective than using penalty functions or priors
• Only fiddle factors are # of iterations, or amount of smoothing
• Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)
• Changing post-smoothing does not require re-iterating

Advantages of true regularization methods
• Stability (unique minimizer & convergence =⇒ initialization independence)
• Faster convergence
• Predictability
• Resolution can be made object independent
• Controlled resolution (e.g., spatially uniform, edge preserving)
• Start with reasonable image (e.g., FBP) =⇒ reach solution faster.
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True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

Options

• Use bigger pixels (fewer basis functions)
◦ Visually unappealing
◦ Can only preserve edges coincident with pixel edges
◦ Results become even less invariant to translations

• Method of sieves (constrain image roughness)
◦ Condition number for “pre-emission space” can be even worse
◦ Lots of iterations
◦ Commutability condition rarely holds exactly in practice
◦ Degenerates to post-filtering in some cases

• Change cost function by adding a roughness penalty / prior

x̂xx = argmin
xxx

Ψ(xxx), Ψ(xxx) = Ł(xxx)+βR(xxx)

◦ Disadvantage: apparently subjective choice of penalty
◦ Apparent difficulty in choosing penalty parameter(s), e.g., β

(cf. apodizing filter / cutoff frequency in FBP)
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Penalty Function Considerations

• Computation
• Algorithm complexity
• Uniqueness of minimizer of Ψ(xxx)
• Resolution properties (edge preserving?)
• # of adjustable parameters
• Predictability of properties (resolution and noise)

Choices
• separable vs non-separable
• quadratic vs non-quadratic
• convex vs non-convex
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Penalty Functions: Separable vs Non-separable

Separable

• Identity norm: R(xxx) = 1
2xxx′IIIxxx = ∑

np
j=1x2

j/2
penalizes large values of xxx, but causes “squashing bias”

• Entropy: R(xxx) = ∑
np
j=1x j logx j

• Gaussian prior with mean µj, variance σ2
j : R(xxx) = ∑

np
j=1

(x j−µj)
2

2σ2
j

• Gamma prior R(xxx) = ∑
np
j=1p(x j,µj,σ j) where p(x,µ,σ) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means µj.

General separable form: R(xxx) =
np

∑
j=1

f j(x j)

Slightly simpler for minimization, but these do not explicitly enforce smoothness.
The simplicity advantage has been overcome in newer algorithms.
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Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

x1 x2 x3

x4 x5

Example

R(xxx) = (x2−x1)
2+(x3−x2)

2+(x5−x4)
2

+(x4−x1)
2+(x5−x2)

2

2 2 2

2 1

3 3 1

2 2

1 3 1

2 2

R(xxx) = 1 R(xxx) = 6 R(xxx) = 10

Rougher images =⇒ larger R(xxx) values
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Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

ψ(x j−xk)

N j , neighborhood of jth pixel (e.g., left, right, up, down)
ψ called the potential function

Finite-difference approximation to continuous roughness measure:

R( f (·)) =
Z

‖∇ f (~r)‖2d~r =
Z

∣
∣
∣
∣

∂
∂x

f (~r)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂
∂y

f (~r)

∣
∣
∣
∣

2

+

∣
∣
∣
∣

∂
∂z

f (~r)

∣
∣
∣
∣

2

d~r .

Second derivatives also useful:
(More choices!)

∂2

∂x2
f (~r)

∣
∣
∣
∣
~r=~r j

≈ f (~r j+1)−2 f (~r j)+ f (~r j−1)

R(xxx) =
np

∑
j=1

ψ(x j+1−2x j +x j−1)+ · · ·
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Penalty Functions: General Form

R(xxx) = ∑
k

ψk([CCCxxx]k) where [CCCxxx]k =
np

∑
j=1

ck jx j

Example : x1 x2 x3

x4 x5

CCCxxx =









−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1

















x1

x2

x3

x4

x5









=









x2−x1

x3−x2

x5−x4

x4−x1

x5−x2









R(xxx) =
5

∑
k=1

ψk([CCCxxx]k)

= ψ1(x2−x1)+ψ2(x3−x2)+ψ3(x5−x4)+ψ4(x4−x1)+ψ5(x5−x2)
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Penalty Functions: Quadratic vs Nonquadratic

R(xxx) = ∑
k

ψk([CCCxxx]k)

Quadratic ψk

If ψk(t) = t2/2, then R(xxx) = 1
2xxx′CCC′CCCxxx, a quadratic form.

• Simpler optimization
• Global smoothing

Nonquadratic ψk

• Edge preserving
• More complicated optimization. (This is essentially solved in convex case.)
• Unusual noise properties
• Analysis/prediction of resolution and noise properties is difficult
• More adjustable parameters (e.g., δ)

Example: Huber function. ψ(t) ,

{
t2/2, |t| ≤ δ
δ|t|−δ2/2, |t|> δ

Example: Hyperbola function. ψ(t) , δ2
(√

1+(t/δ)2−1
)
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Lower cost for large differences =⇒ edge preservation
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Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty
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More “Edge Preserving” Regularization

Chlewicki et al., PMB, Oct. 2004: “Noise reduction and convergence of Bayesian
algorithms with blobs based on the Huber function and median root prior”
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Piecewise Constant “Cartoon” Objects
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Total Variation Regularization

Non-quadratic roughness penalty:
Z

‖∇ f (~r)‖d~r ≈∑
k

|[CCCxxx]k|

Uses magnitude instead of squared magnitude of gradient.

Problem: |·| is not differentiable.

Practical solution: |t| ≈ δ
(√

1+(t/δ)2−1
)

(hyperbola!)

−5 0 5
0

1

2

3

4

5
Potential functions

Total Variation
Hyperbola, δ=0.2
Hyperbola, δ=1

t

ψ
(t

)
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Total Variation Example

MRI with under-sampled radial acquisition

True Quadratic

NRMS = 12.6%

Edge−preserving

NRMS = 11.0%
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Compressed Sensing

aka compressive sampling or sparsity regularization

Idea: find a basis BBB for representing xxx in terms of coefficients θθθ:
xxx = BBBθθθ, where only a “small number” of θ j values are nonzero.

Previous cost function: Ψ(xxx) = DataMismatch(yyy,AAAxxx)+βRoughness(xxx)

New cost function with sparsity regularization:

Ψ(θθθ) = DataMismatch(yyy,AAABBBθθθ)+β‖θθθ‖0

Recall:
‖θθθ‖p ,

(

∑ j |θ j|
p)1/p

‖θθθ‖∞ , limp→∞‖θθθ‖p = maxj |θ j|

‖θθθ‖0 , limp→0‖θθθ‖p
p = ∑ j 1{θ j 6=0} (not a norm in the Banach sense)

Because ‖θθθ‖0 is nonconvex, it usually is replaced with ‖θθθ‖1.
Because ‖θθθ‖1 is nondifferentiable, the corner is often rounded (hyperbola).
If BBB is the Harr wavelet basis, then ‖θθθ‖1 =

∥
∥BBB−1xxx

∥
∥

1 is similar to TV regularization.

For certain types of under-sampled measurements AAA, “good” reconstructions are
possible! Example: radial k-space sampling for Shepp-Logan.
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Penalty Functions: Convex vs Nonconvex

Convex
• Easier to optimize
• Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex
• Greater degree of edge preservation
• Nice images for piecewise-constant phantoms!
• Even more unusual noise properties
• Multiple extrema
• More complicated optimization (simulated / deterministic annealing)
• Estimator x̂xx becomes a discontinuous function of data YYY

Nonconvex examples
• “broken parabola”

ψ(t) = min(t2, t2
max)

• true median root prior:

R(xxx) =
np

∑
j=1

(x j−medianj(xxx))2

medianj(xxx)
where medianj(xxx) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!
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Local Extrema and Discontinuous Estimators

x̂xx

Ψ(xxx)

xxx

Small change in data =⇒ large change in minimizer x̂xx.
Using convex penalty functions obviates this problem.
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Nonconvex Edge-Preserving Regularization

Raj et al., MRM, Jan. 2007

Applied to MR parallel imaging (multiple receive coils)
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Augmented Regularization Functions

Replace roughness penalty R(xxx) with R(xxx|bbb)+αR(bbb),
where the elements of bbb (often binary) indicate boundary locations.
• Line-site methods
• Level-set methods

Joint estimation problem:

(x̂xx, b̂bb) = argmin
xxx,bbb

Ψ(xxx,bbb), Ψ(xxx,bbb) = Ł(xxx;yyy)+βR(xxx|bbb)+αR(bbb).

Example: b jk indicates the presence of edge between pixels j and k:

R(xxx|bbb) =
np

∑
j=1

∑
k∈N j

(1−b jk)
1
2
(x j−xk)

2

Penalty to discourage too many edges (e.g.):

R(bbb) = ∑
jk

b jk.

• Can encourage local edge continuity
• May require annealing methods for minimization
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Modified Penalty Functions

R(xxx) =
np

∑
j=1

1
2 ∑

k∈N j

w jk ψ(x j−xk)

Adjust weights {w jk} to
• Control resolution properties
• Incorporate anatomical side information (MR/CT)

(avoid smoothing across anatomical boundaries)

Recommendations
• Emission tomography:
◦ Begin with quadratic (nonseparable) penalty functions
◦ Consider modified penalty for resolution control and choice of β
◦ Use modest regularization and post-filter more if desired

• Transmission tomography (attenuation maps), X-ray CT
◦ consider convex nonquadratic (e.g., Huber) penalty functions
◦ choose δ based on attenuation map units (water, bone, etc.)
◦ choice of regularization parameter β remains nontrivial,

learn appropriate values by experience for given study type
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Choice 4.3: Constraints

• Nonnegativity
• Known support
• Count preserving
• Upper bounds on values

e.g., maximum µ of attenuation map in transmission case

Considerations
• Algorithm complexity
• Computation
• Convergence rate
• Bias (in low-count regions)
• . . .
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Open Problems
• Performance prediction for nonquadratic regularization
• Effect of nonquadratic regularization on detection tasks
• Choice of regularization parameters for nonquadratic regularization
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Summary

• 1. Object parameterization: function f (~r) vs vector xxx

• 2. System physical model: si(~r)

• 3. Measurement statistical model Yi ∼ ?

• 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method , Cost Function + Algorithm

Naming convention: “criterion”-“algorithm”:
• ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .
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Part 3. Algorithms

Method = Cost Function + Algorithm

Outline
• Ideal algorithm
• Classical general-purpose algorithms
• Considerations:
◦ nonnegativity
◦ parallelization
◦ convergence rate
◦ monotonicity

• Algorithms tailored to cost functions for imaging
◦ Optimization transfer
◦ EM-type methods
◦ Poisson emission problem
◦ Poisson transmission problem

• Ordered-subsets / block-iterative algorithms
◦ Recent convergent versions (relaxation, incrementalism)
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Why iterative algorithms?

• For nonquadratic Ψ, no closed-form solution for minimizer.

• For quadratic Ψ with nonnegativity constraints, no closed-form solution.

• For quadratic Ψ without constraints, closed-form solutions:

PWLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2

WWW1/2 +xxx′RRRxxx = [AAA′WWWAAA+RRR]−1AAA′WWWyyy

OLS: x̂xx = argmin
xxx
‖yyy−AAAxxx‖2 = [AAA′AAA]−1AAA′yyy

Impractical (memory and computation) for realistic problem sizes.
AAA is sparse, but AAA′AAA is not.

All algorithms are imperfect. No single best solution.
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General Iteration

Model
System

Iteration

Parameters

Measurements
Projection

Calibration ...

Ψ
xxx(n) xxx(n+1)

Deterministic iterative mapping: xxx(n+1) =M (xxx(n))
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Ideal Algorithm

xxx⋆ , argmin
xxx≥000

Ψ(xxx) (global minimizer)

Properties
stable and convergent {xxx(n)} converges to xxx⋆ if run indefinitely
converges quickly {xxx(n)} gets “close” to xxx⋆ in just a few iterations
globally convergent limnxxx(n) independent of starting image xxx(0)

fast requires minimal computation per iteration
robust insensitive to finite numerical precision
user friendly nothing to adjust (e.g., acceleration factors)

parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model
(matrix stored by row or column, or factored, or projector/backprojector)

Choices: forgo one or more of the above
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Classic Algorithms

Non-gradient based
• Exhaustive search
• Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
• Gradient descent

xxx(n+1) , xxx(n)−α∇Ψ
(
xxx(n)
)

Choosing α to ensure convergence is nontrivial.
• Steepest descent

xxx(n+1) , xxx(n)−αn∇Ψ
(
xxx(n)
)

where αn , argmin
α

Ψ
(
xxx(n)−α∇Ψ

(
xxx(n)
))

Computing stepsize αn can be expensive or inconvenient.

Limitations
• Converge slowly.
• Do not easily accommodate nonnegativity constraint.
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Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization of differentiable cost functions:

∇Ψ(xxx) = 000 when xxx = xxx⋆

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for zero of gradient.

Nonnegativity-constrained minimization :

Karush-Kuhn-Tucker conditions
∂

∂x j
Ψ(xxx)

∣
∣
∣
∣
xxx=xxx⋆

is
{

= 0, x⋆
j > 0

≥ 0, x⋆
j = 0

• A necessary condition always.
• A sufficient condition for strictly convex cost functions.
• Iterations search for ???
• 0 = x⋆

j
∂

∂x j
Ψ(xxx⋆) is a necessary condition, but never sufficient condition.
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Karush-Kuhn-Tucker Illustrated
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Why Not Clip Negatives?

Nonnegative
Orthant

WLS with Clipped Newton−Raphson
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Newton-Raphson with negatives set to zero each iteration.
Fixed-point of iteration is not the constrained minimizer!
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Newton-Raphson Algorithm

xxx(n+1) = xxx(n)− [∇2Ψ
(
xxx(n)
)
]−1∇Ψ

(
xxx(n)
)

Advantage :
• Super-linear convergence rate (if convergent)

Disadvantages :
• Requires twice-differentiable Ψ
• Not guaranteed to converge
• Not guaranteed to monotonically decrease Ψ
• Does not enforce nonnegativity constraint
• Computing Hessian ∇2Ψ often expensive
• Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms
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Newton’s Quadratic Approximation

2nd-order Taylor series:

Ψ(xxx)≈ φ(xxx;xxx(n)) , Ψ
(
xxx(n)
)
+∇Ψ

(
xxx(n)
)
(xxx−xxx(n))+

1
2
(xxx−xxx(n))T ∇2Ψ

(
xxx(n)
)
(xxx−xxx(n))

Set xxx(n+1) to the (“easily” found) minimizer of this quadratic approximation:

xxx(n+1) , argmin
xxx

φ(xxx;xxx(n))

= xxx(n)− [∇2Ψ
(
xxx(n)
)
]−1∇Ψ

(
xxx(n)
)

Can be nonmonotone for Poisson emission tomography log-likelihood,
even for a single pixel and single ray:

Ψ(x) = (x+ r)−ylog(x+ r) .
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Nonmonotonicity of Newton-Raphson
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Consideration: Monotonicity

An algorithm is monotonic if

Ψ
(
xxx(n+1)

)
≤Ψ

(
xxx(n)
)
, ∀xxx(n).

Three categories of algorithms:
• Nonmonotonic (or unknown)
• Forced monotonic (e.g., by line search)
• Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

xxxtemp,M (xxx(n)), ddd = xxxtemp−xxx(n)

xxx(n+1) , xxx(n)−αnddd
(n) where αn , argmin

α
Ψ
(
xxx(n)−αddd(n)

)

Inconvenient, sometimes expensive, nonnegativity problematic.
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Conjugate Gradient (CG) Algorithm

Advantages :
• Fast converging (if suitably preconditioned) (in unconstrained case)
• Monotonic (forced by line search in nonquadratic case)
• Global convergence (unconstrained case)
• Flexible use of system matrix AAA and tricks
• Easy to implement in unconstrained quadratic case
• Highly parallelizable

Disadvantages :
• Nonnegativity constraint awkward (slows convergence?)
• Line-search somewhat awkward in nonquadratic cases
• Possible need to “restart” after many iterations

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.
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Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBBI, ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)
update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE
(Perhaps the most nontrivial to implement)

Sequential (column action)
update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE
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Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)

Update one pixel at a time, holding others fixed to their most recent values:

xnew
j = argmin

x j≥0
Ψ
(

xnew
1 , . . . ,xnew

j−1,x j,x
old
j+1, . . . ,x

old
np

)

, j = 1, . . . ,np

Advantages :
• Intrinsically monotonic
• Fast converging (from good initial image)
• Global convergence
• Nonnegativity constraint trivial

Disadvantages :
• Requires column access of system matrix AAA
• Cannot exploit some “tricks” for AAA, e.g., factorizations
• Expensive “arg min” for nonquadratic problems
• Poorly parallelizable
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Constrained Coordinate Descent Illustrated
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Coordinate Descent - Unconstrained
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Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:
• quadratic or nearly-quadratic convex cost function
• nonnegativity constraint desired
• precomputed and stored system matrix AAA with column access
• parallelization not needed (standard workstation)

Cautions:
• Good initialization (e.g., properly scaled FBP) essential.

(Uniform image or zero image cause slow initial convergence.)
• Must be programmed carefully to be efficient.

(Standard Gauss-Siedel implementation is suboptimal.)
• Updates high-frequencies fastest =⇒ poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation
Under investigation for 3D helical CT reconstruction by Thibault et al.
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Summary of General-Purpose Algorithms

Gradient-based
• Fully parallelizable
• Inconvenient line-searches for nonquadratic cost functions
• Fast converging in unconstrained case
• Nonnegativity constraint inconvenient

Coordinate-descent
• Very fast converging
• Nonnegativity constraint trivial
• Poorly parallelizable
• Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but challenging for large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

... need special-purpose algorithms for image reconstruction!
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Data-Mismatch Functions Revisited

For fast converging, intrinsically monotone algorithms, consider the form of Ψ.

WLS:

Ł(xxx) =
nd

∑
i=1

1
2

wi (yi− [AAAxxx]i)
2 =

nd

∑
i=1

hi([AAAxxx]i), where hi(l) ,
1
2

wi (yi− l)2.

Emission Poisson (negative) log-likelihood :

Ł(xxx) =
nd

∑
i=1

([AAAxxx]i + r i)−yi log([AAAxxx]i + r i) =
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (l + r i)−yi log(l + r i) .

Transmission Poisson log-likelihood :

Ł(xxx) =
nd

∑
i=1

(

bi e
−[AAAxxx]i + r i

)

−yi log
(

bi e
−[AAAxxx]i + r i

)

=
nd

∑
i=1

hi([AAAxxx]i)

where hi(l) , (bie
−l + r i)−yi log

(
bie
−l + r i

)
.

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same partially separable form.
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General Imaging Cost Function

General form for data-mismatch function:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i)

General form for regularizing penalty function:

R(xxx) = ∑
k

ψk([CCCxxx]k)

General form for cost function:

Ψ(xxx) = Ł(xxx)+βR(xxx) =
nd

∑
i=1

hi([AAAxxx]i)+β∑
k

ψk([CCCxxx]k)

Properties of Ψ we can exploit:
• summation form (due to independence of measurements)
• convexity of hi functions (usually)
• summation argument (inner product of xxx with ith row of AAA)

Most methods that use these properties are forms of optimization transfer .
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Optimization Transfer Illustrated

Surrogate function
Cost function

xxx(n) xxx(n+1)

Ψ
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)
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φ(n

) (
xx x)
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Optimization Transfer

General iteration:
xxx(n+1) = argmin

xxx≥000
φ
(
xxx;xxx(n)

)

Monotonicity conditions (cost function Ψ decreases provided these hold):

• φ(xxx(n);xxx(n)) = Ψ(xxx(n)) (matched current value)

• ∇xxxφ(xxx;xxx(n))
∣
∣
∣
xxx=xxx(n)

= ∇Ψ(xxx)
∣
∣
∣
xxx=xxx(n)

(matched gradient)

• φ(xxx;xxx(n))≥Ψ(xxx) ∀xxx≥ 000 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and its relatives like SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.
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Optimization Transfer in 2d
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Optimization Transfer cf EM Algorithm

E-step: choose surrogate function φ(xxx;xxx(n))

M-step: minimize surrogate function

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)

Designing surrogate functions
• Easy to “compute”
• Easy to minimize
• Fast convergence rate

Often mutually incompatible goals ... compromises
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Convergence Rate: Slow

High Curvature

Old

Small Steps
Slow Convergence

x
New

φ
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Convergence Rate: Fast

Fast Convergence

Old

Large Steps
Low Curvature

x
New

φ

Φ
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Tool: Convexity Inequality

g(x)

x

αx1+(1−α)x2x1 x2

g convex =⇒ g(αx1+(1−α)x2)≤ αg(x1)+(1−α)g(x2) for α ∈ [0,1]

More generally: αk≥ 0 and ∑kαk = 1 =⇒ g(∑kαkxk) ≤ ∑kαkg(xk). Sum outside!
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Example 1: Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i), hi(l) = (l + r i)−yi log(l + r i) .

Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let ȳ(n)

i = [AAAxxx(n)]i + r i):

[AAAxxx]i =
np

∑
j=1

ai j x j =
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

](

x j

x(n)

j

ȳ(n)

i

)

.

Since the hi’s are convex in Poisson emission model:

hi([AAAxxx]i) = hi

(
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

](

x j

x(n)

j

ȳ(n)

i

))

≤
np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) ≤ φ
(
xxx;xxx(n)

)
,

nd

∑
i=1

np

∑
j=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

Replace convex cost function Ψ(xxx) with separable surrogate function φ(xxx;xxx(n)).
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“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
, where φ j

(
x j;xxx

(n)
)

,

nd

∑
i=1

[

ai j x
(n)

j

ȳ(n)

i

]

hi

(

x j

x(n)

j

ȳ(n)

i

)

.

M-step separates:

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
=⇒ x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
, j = 1, . . . ,np

Minimizing:

∂
∂x j

φ j

(
x j;xxx

(n)
)

=
nd

∑
i=1

ai j ḣi

(

ȳ(n)

i x j/x(n)

j

)

=
nd

∑
i=1

ai j

[

1−
yi

ȳ(n)

i x j/x(n)

j

]∣
∣
∣
∣
∣
x j=x

(n+1)
j

= 0.

Solving (in case r i = 0):

x(n+1)

j = x(n)

j

[
nd

∑
i=1

ai j
yi

[AAAxxx(n)]i

]

/

(
nd

∑
i=1

ai j

)

, j = 1, . . . ,np

• Derived without any statistical considerations, unlike classical EM formulation.
• Uses only convexity and algebra.
• Guaranteed monotonic: surrogate function φ satisfies the 3 required proper-

ties.
• M-step trivial due to separable surrogate.
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ML-EM is Scaled Gradient Descent

x(n+1)

j = x(n)

j

[
nd

∑
i=1

ai j
yi

ȳ(n)

i

]

/

(
nd

∑
i=1

ai j

)

= x(n)

j +x(n)

j

[
nd

∑
i=1

ai j

(

yi

ȳ(n)

i

−1

)]

/

(
nd

∑
i=1

ai j

)

= x(n)

j −

(

x(n)

j

∑nd
i=1ai j

)

∂
∂x j

Ψ
(
xxx(n)
)
, j = 1, . . . ,np

xxx(n+1) = xxx(n) +DDD(xxx(n))∇Ψ
(
xxx(n)
)

This particular diagonal scaling matrix remarkably
• ensures monotonicity,
• ensures nonnegativity.
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Consideration: Separable vs Nonseparable
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Contour plots: loci of equal function values.

Uncoupled vs coupled minimization.
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Separable Surrogate Functions (Easy M-step)

The preceding EM derivation structure applies to any cost function of the form

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i) .

cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction

Derivation yields a separable surrogate function

Ψ(xxx)≤ φ
(
xxx;xxx(n)

)
, where φ

(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)

M-step separates into 1D minimization problems (fully parallelizable):

xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
=⇒ x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
, j = 1, . . . ,np

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?
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Separable vs Nonseparable

Separable Nonseparable

ΨΨ

φ

φ

Separable surrogates (e.g., EM) have high curvature ... slow convergence.
Nonseparable surrogates can have lower curvature ... faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).
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High Curvature of EM Surrogate
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1D Parabola Surrogate Function

Find parabola q(n)

i (l) of the form:

q(n)

i (l) = hi

(

ℓ(n)

i

)

+ ḣi

(

ℓ(n)

i

)

(l − ℓ(n)

i )+c(n)

i
1
2
(l − ℓ(n)

i )2, where ℓ(n)

i , [AAAxxx(n)]i

Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

c(n)

i , min
{

c≥ 0 : q(n)

i (l)≥ hi(l), ∀l ≥ 0
}

.

−1 0 1 2 3 4 5 6 7 8
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l l →ℓ(n)

i

Lower
curvature!
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Paraboloidal Surrogate

Combining 1D parabola surrogates yields paraboloidal surrogate:

Ψ(xxx) =
nd

∑
i=1

hi([AAAxxx]i)≤ φ
(
xxx;xxx(n)

)
=

nd

∑
i=1

q(n)

i ([AAAxxx]i)

Rewriting: φ
(
δδδ+xxx(n);xxx(n)

)
= Ψ

(
xxx(n)
)
+∇Ψ

(
xxx(n)
)

δδδ+
1
2

δδδ′AAA′diag
{

c(n)

i

}

AAAδδδ

Advantages
• Surrogate φ(xxx;xxx(n)) is quadratic, unlike Poisson log-likelihood

=⇒ easier to minimize
• Not separable (unlike EM surrogate)
• Not self-similar (unlike EM surrogate)
• Small curvatures =⇒ fast convergence
• Intrinsically monotone global convergence
• Fairly simple to derive / implement

Quadratic minimization
• Coordinate descent

+ fast converging
+ Nonnegativity easy
- precomputed column-stored system matrix

• Gradient-based quadratic minimization methods
- Nonnegativity inconvenient
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Example: PSCD for PET Transmission Scans

• square-pixel basis
• strip-integral system model
• shifted-Poisson statistical model
• edge-preserving convex regularization (Huber)
• nonnegativity constraint
• inscribed circle support constraint
• paraboloidal surrogate coordinate descent (PSCD) algorithm
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Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:

[AAAxxx]i =
np

∑
j=1

πi j

[
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

]

, ℓ(n)

i = [AAAxxx(n)]i.

Provided πi j ≥ 0 and ∑
np
j=1πi j = 1, since parabola qi is convex:

q(n)

i ([AAAxxx]i) = q(n)

i

(
np

∑
j=1

πi j

[
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

])

≤
np

∑
j=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

... φ
(
xxx;xxx(n)

)
=

nd

∑
i=1

q(n)

i ([AAAxxx]i) ≤ φ̃
(
xxx;xxx(n)

)
,

nd

∑
i=1

np

∑
j=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

Separable Paraboloidal Surrogate:

φ̃
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
, φ j

(
x j;xxx

(n)
)

,

nd

∑
i=1

πi j q
(n)

i

(
ai j

πi j
(x j−x(n)

j )+ ℓ(n)

i

)

Parallelizable M-step (cf gradient descent!):

x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)

=

[

x(n)

j −
1

d j
(n)

∂
∂x j

Ψ
(
xxx(n)
)
]

+

, d j
(n) =

nd

∑
i=1

a2
i j

πi j
c(n)

i

Natural choice is πi j = |ai j |/|a|i, |a|i = ∑
np
j=1 |ai j |
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Example: Poisson ML Transmission Problem

Transmission negative log-likelihood (for ith ray):

hi(l) = (bie
−l + r i)−yi log

(
bie
−l + r i

)
.

Optimal (smallest) parabola surrogate curvature (Erdoğan, T-MI, Sep. 1999):

c(n)

i = c(ℓ(n)

i ,hi), c(l ,h) =







[

2
h(0)−h(l)+ ḣ(l)l

l2

]

+

, l > 0
[
ḧ(l)

]

+
, l = 0.

Separable Paraboloidal Surrogate (SPS) Algorithm :

Precompute |a|i = ∑
np
j=1ai j , i = 1, . . . ,nd

ℓ(n)

i = [AAAxxx(n)]i, (forward projection)

ȳ(n)

i = bi e−ℓ
(n)
i + r i (predicted means)

ḣi
(n)

= 1−yi/ ȳ(n)

i (slopes)
c(n)

i = c(ℓ(n)

i ,hi) (curvatures)

x(n+1)

j =

[

x(n)

j −
1

d j
(n)

∂
∂x j

Ψ
(
xxx(n)
)
]

+

=

[

x(n)

j −
∑nd

i=1ai j ḣi
(n)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Monotonically decreases cost function each iteration. No logarithm!
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The MAP-EM M-step “Problem”

Add a penalty function to our surrogate for the negative log-likelihood:

Ψ(xxx) = Ł(xxx)+βR(xxx)

φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+βR(xxx)

M-step: xxx(n+1) = argmin
xxx≥000

φ
(
xxx;xxx(n)

)
= argmin

xxx≥000

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+βR(xxx) = ?

For nonseparable penalty functions, the M-step is coupled ... difficult.

Suboptimal solutions
• Generalized EM (GEM) algorithm (coordinate descent on φ)

Monotonic, but inherits slow convergence of EM.
• One-step late (OSL) algorithm (use outdated gradients) (Green, T-MI, 1990)

∂
∂x j

φ(xxx;xxx(n)) = ∂
∂x j

φ j(x j;xxx(n))+β ∂
∂x j

R(xxx)
?
≈ ∂

∂x j
φ j(x j;xxx(n))+β ∂

∂x j
R(xxx(n))

Nonmonotonic. Known to diverge, depending on β.
Temptingly simple, but avoid!

Contemporary solution
• Use separable surrogate for penalty function too (De Pierro, T-MI, Dec. 1995)

Ensures monotonicity. Obviates all reasons for using OSL!
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De Pierro’s MAP-EM Algorithm

Apply separable paraboloidal surrogates to penalty function:

R(xxx)≤ RSPS(xxx;xxx(n)) =
np

∑
j=1

Rj(x j;xxx
(n))

Overall separable surrogate: φ
(
xxx;xxx(n)

)
=

np

∑
j=1

φ j

(
x j;xxx

(n)
)
+β

np

∑
j=1

Rj(x j;xxx
(n))

The M-step becomes fully parallelizable:

x(n+1)

j = argmin
x j≥0

φ j

(
x j;xxx

(n)
)
−βRj(x j;xxx

(n)), j = 1, . . . ,np.

Consider quadratic penalty R(xxx) = ∑kψ([CCCxxx]k), where ψ(t) = t2/2.
If γk j ≥ 0 and ∑

np
j=1γk j = 1 then

[CCCxxx]k =
np

∑
j=1

γk j

[
ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

]

.

Since ψ is convex:

ψ([CCCxxx]k) = ψ

(
np

∑
j=1

γk j

[
ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

])

≤
np

∑
j=1

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)
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De Pierro’s Algorithm Continued

So R(xxx)≤ R(xxx;xxx(n)) , ∑
np
j=1Rj(x j;xxx(n)) where

Rj(x j;xxx
(n)) , ∑

k

γk j ψ
(

ck j

γk j
(x j−x(n)

j )+ [CCCxxx(n)]k

)

M-step: Minimizing φ j(x j;xxx(n))+βRj(x j;xxx(n)) yields the iteration:

x(n+1)

j =
x(n)

j ∑nd
i=1ai j yi/ ȳ(n)

i

B j +

√

B2
j +
(

x(n)

j ∑nd
i=1ai j yi/ ȳ(n)

i

)(

β∑kc2
k j/γk j

)

where B j ,
1
2

[
nd

∑
i=1

ai j +β∑
k

(

ck j[CCCxxx(n)]k−
c2

k j

γk j
x(n)

j

)]

, j = 1, . . . ,np

and ȳ(n)

i = [AAAxxx(n)]i + r i.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate
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Ordered Subsets Algorithms

aka block iterative or incremental gradient algorithms

The gradient appears in essentially every algorithm:

Ł(xxx) =
nd

∑
i=1

hi([AAAxxx]i) =⇒
∂

∂x j
Ł(xxx) =

nd

∑
i=1

ai j ḣi([AAAxxx]i) .

This is a backprojection of a sinogram of the derivatives
{
ḣi([AAAxxx]i)

}
.

Intuition: with half the angular sampling, this backprojection would be fairly similar

1
nd

nd

∑
i=1

ai j ḣi(·)≈
1
|S |∑i∈S

ai j ḣi(·),

where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.

Recall typical iteration:

xxx(n+1) = xxx(n)−DDD(xxx(n))∇Ψ
(
xxx(n)
)
.
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Geometric View of Ordered Subsets
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Two subset case: Ψ(xxx) = f1(xxx)+ f2(xxx) (e.g., odd and even projection views).

For xxx(n) far from xxx⋆, even partial gradients should point roughly towards xxx⋆.
For xxx(n) near xxx⋆, however, ∇Ψ(xxx)≈ 000, so ∇ f1(xxx)≈−∇ f2(xxx) =⇒ cycles!
Issues. “Subset gradient balance”: ∇Ψ(xxx)≈M∇ fk(xxx). Choice of ordering.
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Incremental Gradients (WLS, 2 Subsets)
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Subset Gradient Imbalance
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Problems with OS-EM

• Non-monotone

• Does not converge (may cycle)

• Byrne’s “rescaled block iterative” (RBI) approach converges only for consistent
(noiseless) data

• ... unpredictable
• What resolution after n iterations?

Object-dependent, spatially nonuniform
• What variance after n iterations?
• ROI variance? (e.g., for Huesman’s WLS kinetics)
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OSEM vs Penalized Likelihood

• 64×62 image
• 66×60 sinogram
• 106 counts
• 15% randoms/scatter
• uniform attenuation
• contrast in cold region
• within-region σ opposite side
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Contrast-Noise Results
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Making OS Methods Converge

• Relaxation
• Incrementalism

Relaxed block-iterative methods

Ψ(xxx) =
M

∑
m=1

Ψm(xxx)

xxx(n+(m+1)/M) = xxx(n+m/M)−αnD(xxx(n+m/M))∇Ψm

(

xxx(n+m/M)
)

, m= 0, . . . ,M−1

Relaxation of step sizes:

αn→ 0 as n→ ∞, ∑
n

αn = ∞, ∑
n

α2
n < ∞

• ART
• RAMLA, BSREM (De Pierro, T-MI, 1997, 2001)
• Ahn and Fessler, NSS/MIC 2001, T-MI 2003

Considerations
• Proper relaxation can induce convergence, but still lacks monotonicity.
• Choice of relaxation schedule requires experimentation.
• Ψm(xxx) = Łm(xxx)+ 1

M R(xxx), so each Ψm includes part of the likelihood yet all of R
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Relaxed OS-SPS
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Incremental Methods

Incremental EM applied to emission tomography by Hsiao et al. as C-OSEM

Incremental optimization transfer (Ahn & Fessler, MIC 2004)

Find majorizing surrogate for each sub-objective function:

φm(xxx;xxx) = Ψm(xxx), ∀xxx
φm(xxx; x̄xx) ≥ Ψm(xxx), ∀xxx, x̄xx

Define the following augmented cost function: F(xxx; x̄xx1, . . . , x̄xxM) = ∑M
m=1φm(xxx; x̄xxm) .

Fact: by construction x̂xx = argminxxxΨ(xxx) = argminxxxminx̄xx1,...,x̄xxM F(xxx; x̄xx1, . . . , x̄xxM).

Alternating minimization: for m= 1, . . . ,M:

xxxnew = argmin
xxx

F
(

xxx; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xx(n)
m , x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

x̄xx(n+1)
m = argmin

x̄xxm

F
(

xxxnew; x̄xx(n+1)

1 , . . . , x̄xx(n+1)

m−1 , x̄xxm, x̄xx(n)

m+1, . . . x̄xx
(n)

M

)

= xxxnew.

• Use all current information, but increment the surrogate for only one subset.
• Monotone in F , converges under reasonable assumptions on Ψ
• In constrast, OS-EM uses the information from only one subset at a time
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TRIOT Example: Convergence Rate

Transmission incremental optimization transfer (TRIOT)

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

iteration

no
rm

al
iz

ed
 Φ

 d
iff

er
en

ce

2 iterations of OS−SPS included

64 subsets, initialized with uniform image

SPS−MC
SPS−PC
TRIOT−MC
TRIOT−PC
OS−SPS



3.56

TRIOT Example: Attenuation Map Images

FBP PL optimal image

OS-SPS TRIOT-PC

OS-SPS: 64 subsets, 20 iterations, one point of the limit cycle
TRIOT-PC: 64 subsets, 20 iterations, after 2 iterations of OS-SPS)
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OSTR aka Transmission OS-SPS

Ordered subsets version of separable paraboloidal surrogates
for PET transmission problem with nonquadratic convex regularization

Matlab m-file http://www.eecs.umich.edu/∼fessler
/irt/irt/transmission/tpl_os_sps.m
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Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm :

x(n+1)

j =

[

x(n)

j −
∑nd

i=1ai j ḣi([AAAxxx(n)]i)

∑nd
i=1ai j |a|ic

(n)

i

]

+

, j = 1, . . . ,np

Ordered-subsets abandons monotonicity, so why use optimal curvatures c(n)

i ?

Precomputed curvature:

ci = ḧi

(
l̂ i
)
, l̂ i = argmin

l
hi(l)

Precomputed denominator (saves one backprojection each iteration!):

d j =
nd

∑
i=1

ai j |a|ici, j = 1, . . . ,np.

OS-SPS algorithm with M subsets:

x(n+1)

j =

[

x(n)

j −
∑i∈S (n) ai j ḣi([AAAxxx(n)]i)

d j /M

]

+

, j = 1, . . . ,np
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Summary of Algorithms

• General-purpose optimization algorithms
• Optimization transfer for image reconstruction algorithms
• Separable surrogates =⇒ high curvatures =⇒ slow convergence
• Ordered subsets accelerate initial convergence

require relaxation or incrementalism for true convergence
• Principles apply to emission and transmission reconstruction
• Still work to be done...

Matlab/Freemat “image reconstruction toolbox” online:
http://www.eecs.umich.edu/∼fessler /code

An Open Problem

Still no algorithm with all of the following properties:
• Nonnegativity easy
• Fast converging
• Intrinsically monotone global convergence
• Accepts any type of system matrix
• Parallelizable
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Part 4. Performance Characteristics

Easy case: MRI with quadratic regularization

• Spatial resolution properties

• Noise properties

General case

• Spatial resolution properties

• Noise properties

• Detection properties
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Regularized Least-Squares Estimation

Estimate object by minimizing a regularized cost function:

x̂xx = argmin
xxx∈C

np
Ψ(xxx), Ψ(xxx) = ‖yyy−AAAxxx‖2+αR(xxx)

• data fit term ‖yyy−AAAxxx‖2

corresponds to negative log-likelihood of Gaussian distribution
• regularizing term R(xxx) controls noise by penalizing roughness,

e.g. : R(xxx)≈
Z

‖∇ f‖2d~r

• regularization parameter α > 0
controls tradeoff between spatial resolution and noise
• Equivalent to Bayesian MAP estimation with prior ∝ e−αR(xxx)

Complexities:
• choosing R( f )
• choosing α
• computing minimizer rapidly.
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Quadratic regularization

1D example: squared differences between neighboring pixel values:

R( f ) =
np

∑
j=2

1
2
| f j− f j−1|

2 .

In matrix-vector notation, R(xxx) = 1
2‖CCCxxx‖2 where

CCC =







−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

. . . . . .
0 . . . 0 0 −1 1







, so CCCxxx =





x2−x1
...

xN−xN−1



 .

For 2D and higher-order differences, modify differencing matrix CCC.

Leads to closed-form solution:

x̂xx = argmin
xxx
‖yyy−AAAxxx‖2+α‖CCCxxx‖2

=
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy.

(a formula of limited practical use for computing x̂xx)
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Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996):

x̂xx =
[
AAA′AAA+αCCC′CCC

]−1
AAA′yyy

E[x̂xx] =
[
AAA′AAA+αCCC′CCC

]−1
AAA′E[yyy]

E[x̂xx] =
[
AAA′AAA+αCCC′CCC

]−1
AAA′AAA

︸ ︷︷ ︸

blur

xxx

AAA′AAA and CCC′CCC are Toeplitz =⇒ blur is approximately shift-invariant.

Frequency response of blur:

L(ω) =
H(ω)

H(ω)+αR(ω)

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

Adjust α to achieve desired spatial resolution.



4a.5

Spatial Resolution Example
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Radial k-space trajectory, FWHM of PSF is 1.2 pixels



4a.6

Spatial Resolution Example: Profiles

0
0

5

10
x 10

5

H
(ω

)

0
0

200

400

600

800

R
(ω

)

−π  0  π

0.6

0.8

1

L(
ω

)

ω



4a.7

Tabulating Spatial Resolution vs Regularization
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Trajectory specific, but easily computed using a few FFTs
Works only for quadratic regularization



4a.8

Resolution/noise tradeoffs

Noise analysis:

Cov{x̂xx}=
[
AAA′AAA+αCCC′CCC

]−1
AAA′Cov{yyy}AAA

[
AAA′AAA+αCCC′CCC

]−1

Using circulant approximations to AAA′AAA and CCC′CCC yields:

Var{x̂ j} ≈ σ2
ε ∑

k

H(ωk)

(H(ωk)+αR(ωk))2

• H(ωk) = FFT(AAA′AAAej) (lowpass)
• R(ωk) = FFT(CCC′CCCej) (highpass)

=⇒ Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust α to achieve desired spatial resolution / noise tradeoff.



4a.9

Resolution/Noise Tradeoff Example
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In short: one can choose α rapidly and predictably for quadratic regularization.



4b.1

Part 4. Performance Characteristics

(General case)

• Spatial resolution properties

• Noise properties

• Detection properties



4b.2

Spatial Resolution Properties

Choosing β can be painful, so ...

For true minimization methods:

x̂xx = argmin
xxx

Ψ(xxx)

the local impulse response is approximately (Fessler and Rogers, T-MI, 1996):

lll j(xxx) = lim
δ→0

E[x̂xx|xxx+δeeej]−E[x̂xx|xxx]
δ

≈
[
−∇20Ψ

]−1∇11Ψ
∂

∂x j
ȳyy(xxx).

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm (if iterated “to convergence”).

• Enables prediction of resolution properties
(provided Ψ is minimized)

• Useful for designing regularization penalty functions
with desired resolution properties. For penalized likelihood:

lll j(xxx)≈ [AAA′WWWAAA+βRRR]−1AAA′WWWAAAxxxtrue.

• Helps choose β for desired spatial resolution



4b.3

Modified Penalty Example, PET

a) b) c)

d) e)

a) filtered backprojection
b) Penalized unweighted least-squares
c) PWLS with conventional regularization
d) PWLS with certainty-based penalty (Fessler & Rogers, 1996, T-MI)
e) PWLS with modified penalty (Stayman & Fessler, 2000, T-MI)



4b.4

Modified Penalty Example, SPECT - Noiseless

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization



4b.5

Modified Penalty Example, SPECT - Noisy

Target filtered object FBP Conventional PWLS

Truncated EM Post-filtered EM Modified Regularization



4b.6

Regularized vs Post-filtered, with Matched PSF
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4b.7

Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit :

x̂xx = x̂xx(yyy) = argmin
xxx

Ψ(xxx,yyy) .

What is Cov{x̂xx}? New simpler derivation.

Denote the column gradient by g(xxx,yyy) , ∇xxxΨ(xxx,yyy) .
Ignoring constraints, the gradient is zero at the minimizer: g(x̂xx(yyy),yyy) = 000.
First-order Taylor series expansion:

g(x̂xx,yyy) ≈ g(xxxtrue,yyy)+∇xxxg(xxxtrue,yyy)(x̂xx−xxxtrue)

= g(xxxtrue,yyy)+∇2
xxxΨ
(
xxxtrue,yyy

)
(x̂xx−xxxtrue).

Equating to zero:

x̂xx≈ xxxtrue−
[
∇2

xxxΨ
(
xxxtrue,yyy

)]−1∇xxxΨ
(
xxxtrue,yyy

)
.

If the Hessian ∇2Ψ is weakly dependent on yyy, then

Cov{x̂xx} ≈
[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
Cov
{

∇xxxΨ
(
xxxtrue,yyy

)}[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
.

If we further linearize w.r.t. the data: g(xxx,yyy)≈ g(xxx, ȳyy)+∇yyyg(xxx, ȳyy)(yyy− ȳyy), then

Cov{x̂xx} ≈
[
∇2

xxxΨ
]−1

(∇xxx∇yyyΨ) Cov{yyy} (∇xxx∇yyyΨ)′
[
∇2

xxxΨ
]−1

.



4b.8

Covariance Continued

Covariance approximation:

Cov{x̂xx} ≈
[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1
Cov
{

∇xxxΨ
(
xxxtrue,yyy

)}[
∇2

xxxΨ
(
xxxtrue, ȳyy

)]−1

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

• Enables prediction of noise properties

• Can make variance images

• Useful for computing ROI variance (e.g., for weighted kinetic fitting)

• Good variance prediction for quadratic regularization in nonzero regions

• Inaccurate for nonquadratic penalties, or in nearly-zero regions



4b.9

Detection Analysis

Qi and Huesman (IEEE T-MI, Aug. 2001) showed analytically:
SNR of MAP reconstruction > SNR of FBP reconstruction

quadratic regularization
SKE/BKE task
prewhitened observer
non-prewhitened observer

Open issues

Choice of regularizer to optimize detectability?
Active work in several groups.



4b.10

Choosing β: Unknown location

AUC for signal
detection with unknown
location task.
Yendiki & Fessler, JOSA-A
24(12):B199, Dec. 2007



4b.11

Summary of Performance Analysis

Spatial resolution / noise variance and covariance / AUC for signal detection:
all (somewhat) predictable based on properties of cost function Ψ.
(Provided an iterative algorithm is run “to convergence” to find minimizer of Ψ.)

This predictability also motivates regularized cost functions.
(cf. unregularized cost function with a stopping rule.)



5.1

Part: Application examples

• X-ray CT
• MRI



5.2

Example: X-ray Helical CT

Left: FBP Right: PWLS-ICD, edge-preserving

Thibault et al., Med Phys. 34(11):4526, Nov. 2007



5.3

Example: fMRI with Joint Estimation of Fieldmap

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.

PWLS-CG with quadratic regularization. β chosen by PSF analysis.
Sutton et al., MRM 51(6):1194, Jun. 2004



5.4

Tracking Respiration-Induced Field Changes



5.5

Other Topics

• Dynamic image sequence reconstruction / 4D regularization

• Motion and/or dynamic contrast changes



5.6

Summary

• Iterative reconstruction has had clinical impact in PET and SPECT
• MRI and X-ray CT may be next?
• todo: Still work to be done...
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