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Outline

e MR image reconstruction problem description
e Overview of image reconstruction methods

e Model-based image reconstruction

e |lterations and computation (NUFFT etc.)

e Regularization

e Myths about iterative reconstruction

¢ Field inhomogeneity correction

e Parallel (sensitivity encoded) imaging

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



Why lterative Image Reconstruction?

e Statistical modeling may reduce noise

¢ Incorporate prior information, e.g.:
e support constraints

e (piecewise) smoothness
e phase constraints

e NO density compensation needed

¢ “Non-Fourier” physical effects such as field inhomogeneity
e Incorporation of coll sensitivity maps

e Improved results for under-sampled trajectories (?)

(“Avoiding k-space interpolation” is not a compelling reason!)



Primary drawbacks of Iterative Methods

e Choosing reqgularization parameter(s)
e Algorithm speed



Example: Iterative Reconstruction under  ABg
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Introduction to Reconstruction



Standard MR Image Reconstruction

MR k—space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (2562) per second.



Non-Cartesian MR Image Reconstruction

“k-space” data Image
y=(Y---,¥m) £(r)
ky

K-space trajectory: spatial coordinates:
K(t) = (ke(t), k(1)) FeR



Textbook MRI Measurement Model
Ignoring lots of things, the standard measurement model is:
yi = S(t;) + noise, 1=1,....M
s(t) = / f(F)e 28O gF — F(R(t)).

r. spatial coordinates

K(t): k-space trajectory of the MR pulse sequence

f(T): object’s unknown transverse magnetization

F(K): Fourier transform of f (). We get noisy samples of this!
e 2T provides spatial information = Nobel Prize

Goal of image reconstruction: find f (F) from measurements {y;}\,.

The unknown object f(T) is a continuous-space function,
but the recorded measurements y = (yi,...,ym) are finite.

Under-determined (ill posed) problem — no canonical solution.

All MR scans provide only “partial” k-space data.



Image Reconstruction Strategies

e Continuous-continuous formulation
Pretend that a continuum of measurements are available:

F(R) = / f(F)e 2R gp
The “solution” Is an inverse Fourier transform:
f(r):/F(R)e'Z’WdR.

Now discretize the integral solution:
A M — M —
f(r) =3 F&) e T ~ R g,
= =

where w; values are “sampling density compensation factors.”
Numerous methods for choosing w; values in the literature.

For Cartesian sampling, using w; = 1/N suffices,
and the summation is an inverse FFT.

For non-Cartesian sampling, replace summation with gridding.



e Continuous-discrete formulation
Use many-to-one linear model:

y=A4f+¢e, where 4: £,(RY) — CM.
Minimum norm solution (cf. “natural pixels”):

min|| f|| subjecttoy=4f
f

f=a2aa)y=3sM,ce'?™ 7 where 44'c=Yy.

e Discrete-discrete formulation
Assume parametric model for object:

f(F) = > fipi(r).
=1

Estimate parameter vector f = (fy,..., fy) from data vector y.



Model-Based Image Reconstruction: Overview



Model-Based Image Reconstruction

MR signal equation with more complete physics:
/ f(F) 00 (F) @Mt g RANt g 127K(0) 7 g
S(t

S(tj) + noise, 1=1,....M

o °(T) Receive-coil sensitivity pattern(s) (for SENSE)

e w(r) Off-resonance frequency map
(due to field iInhomogeneity / magnetic susceptibility)

e R;(T) Relaxation map

Other physical factors (?)

o Eddy current effects; in K(t)
e Concomitant gradient terms
e Chemical shift

e Motion

Goal?
(it depends)



Field Inhomogeneity-Corrected Reconstruction

S(t) _ / f (r) Scoil(r») e—l(,o(?)t e R(T)t e—IZTIR(t) T dr

Goal: reconstruct f (1) given field map w(r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)



Sensitivity-Encoded (SENSE) Reconstruction

/f r» c0|I |w(?) R(T)t e 12TTK(t) rdr»

Goal: reconstruct f(F) given sensitivity maps s°°'(T).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily”

(Sutton et al., ISMRM 2001, Olafsson et al., ISBI 2006)



Joint Estimation of Image and Field-Map

S(t) = / f () 00 () @00t g RANt g 12TK(Y) ¥ g

Goal: estimate both the image f(r) and the field map w(T)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; I1SBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)



The Kitchen Sink

s(t) = / £ (P) 01 () @0t @ RANt g 127K() 7 e

Goal: estimate image f(T), field map w(r), and relaxation map R5(T)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)



Estimation of Dynamic Maps

s(t) = / f () 00 () @0t @RIt g 12TK(Y) ¥ g

Goal: estimate dynamic field map w(T) and “BOLD effect” R;(T)
given baseline image f () in fMRI.

Motion...



Model-Based Image Reconstruction: Detalls



Basic Signal Model
yi=s(t)+&,  Ely]=st)= / f(F)e "™ "dr

Goal: reconstruct () fromy = (y1,...,Ym).
Series expansion of unknown object:

N
F) ~ Z f; p(r—T;) <« usually 2D rect functions.
=1

Substituting into signal model yields

Elyi] = / Jifj p(r —Fj)| e =T %[ / p(F —Fj)e 2 Tdr|

N
= Sajfi,  aj=P{)e "N, p(r) <5 PE)
=1

Discrete-discrete measurement model with system matrix A= {a;; }:
y=Af+e&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.




Small Pixel Size Need Not Matter
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Regularized Least-Squares Estimation

Estimate object by minimizing a cost function:

f —argmin®(f),  W(f)=|y—Af|°+aR(f)
feCN

o data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing term R(f) controls noise by penalizing roughness,

e.q.: R(f)z/\Dszdf’

O oa>0
controls tradeoff between spatial resolution and noise

» Equivalent to Bayesian MAP estimation with prior [0 e *R()

Issues:
e choosing R(f)

e choosing a
e computing minimizer rapidly.



Quadratic regularization

1D example: squared differences between neighboring pixel values:
\
1 2
R(f)="Y =|fj— fi_1|".
JZZZ ] |

In matrix-vector notation, R(f) = 3||Cf |# where

-1 10 0...0 b g,
o 0—11_.0.....0 s0Cf — |
0..0 0-11 RURIC

For 2D and higher-order differences, modify differencing matrix C.

Leads to closed-form solution:

N

f = argmin|ly— Af||°+o|Cf]|?
f

— [AA+0aC'C] " Ay.

(a formula of limited practical use for computing f)



Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996).
f — [AA+aCC] " Ay
Em [AA+aC'C] " AE[y
| F| = [AA+ aC'C] "AAf
blur

AA and C'C are Toeplitz = blur is approximately shift-invariant.

Frequency response of blur:

H(w)
H(w)+ aR(w)
o H(wx) = FFT(AAg) (lowpass)

e R(ux) =FFT(C'Cg) (highpass)

L(w) =

Adjust a to achieve desired spatial resolution.



Spatial Resolution Example

L=H/(H+R)

Radial k-space trajectory, FWHM of PSF is 1.2 pixels



Spatial Resolution Example: Profiles




Resolution/noise tradeoffs

Noise analysis:

Cov{} = [KA+aCC] ' ACov{y} A[AA+aCC] ™

Using circulant approximations to AA and C'C yields:

51 L 2 H (o)
Varthi} ~ %2 Hiea) + aR@0) 2
o H(wx) = FFT(AAg) (lowpass)
e R(wx) = FFT(C'Cg) (highpass)

—> Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust a to achieve desired spatial resolution / noise tradeoft.



Resolution/Noise Tradeoff Example

——Under—-sampled radial
o —— Nyquist—-sampled radial
1 NQ —&— Cartesian I

Relative standard deviation

1 1.2 1.4 1.6 1.8 2
PSF FWHM [pixels]

In short: one can choose a rapidly and predictably for quadratic regularization.



lterative Minimization by Conjugate Gradients

Choose initial guess f© (e.g., fast conjugate phase / gridding).
lteration (unregularized):

g =0w(f") = A(Af" —y) gradient

p" = Pg" precondition
(0, n=0
Yn = < < 7 p >
| Tgro, pry "0
d" =—p" +ynd (=1 search direction
v<”> — Ad"
an = (d", —g")/|V"" step size
fHD — £ 4 g, d™ update

Bottlenecks: computing Af™ and A'r.
e Ais too large to store explicitly (not sparse)

e Even if A were stored, directly computing Af is O(MN)
per iteration, whereas FFT is only O(MlogM).



Computing Af Rapidly
\ \
Afl =S aifi=PK)S e?®Tif,  i=1..M
Af] ;1 jfj=P( )J; j

o Pixel locations {r;} are uniformly spaced
e k-space locations {K;} are unequally spaced

— needs nonuniform fast Fourier transform (NUFFT)



NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal samples
e Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: nttp://ww. eecs. um ch. edu/ ~f essl er/ code
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Worst-Case NUFFT Interpolation Error

Maximum error for K/N=2

Min—Max (uniform)
10°° | Gaussian (best)
—x— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—A— Min—Max (L=13, B=1 fit)
2 4 6 8 10
J

10—10




Further Acceleration using Toeplitz Matrices

Cost-function gradient:

where
T 2 AA b= Ay.
In the absence of field inhomogeneity, the Gram matrix T is Toeplitz:

A/ jk_ ZI“:) 2 —I2T[K| (Tj=Ti)

Computing T f™ requires an ordinary (2x over-sampled) FFT.

(Chan & Ng, SIAM Review, 1996)
In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of T and b requires a couple NUFFTSs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

This formulation seems ideal for “hardware” FFT systems.



Toeplitz Acceleration

Example: 256’ image. radial trajectory, 2x angular under-sampling.

h

, 0
CG-NUFFT CG-Toeplitz CG-NUFFT CG-Toeplitz

(Iterative provides reduced aliasing energy.)



Toeplitz Acceleration

Method ADy b=Ay T 20 iter Total Time|NRMS (50dB)
Conj. Phase | 0.3 0.3 7.8%
CG-NUFFT 12.5 12.5 4.1%
CG-Toeplitz 0.3 |0.8] 35 4.6 4.1%

e Toeplitz aproach reduces CPU time by more than 2x
on conventional workstation (Xeon 3.4GHz)

e Eliminates k-space interpolations — ideal for FFT hardware
e No SNR compromise

e CG reduces NRMS error relative to CP, but 15x slower...
(More dramatic improvements seen in fMRI when correcting
for field inhomogeneity.)




NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-Ml, 1991)

Recall signal model including field inhomogeneity:
/ 1: |w(F’ —I2TTK(t) ?dr».

Temporal interpolation approximation (aka “time segmentation”):
|w(? ~ Z al |w(F’)

for min-max optimized temporal interpolation functions {34(')}|L:1-

3o roeo]a

Linear combination of L NUFFT calls.



Field Corrected Reconstruction Example

Simulation using known field map w(T).

Simulation Object Slow Conjugate Phase Show erative

0jo]o

Mo Correction Fast Conjugate Phase Fast terative




Simulation Quantitative Comparison

e Computation time?

o NRMSE between f and fi"e?

Reconstruction Method | Time (s) NRMSE| NRMSE
complex | magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) | 128.16 @ 0.04 0.04




Human Data: Field Correction
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Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:
aj = P(R’i)e w(T)t; e 12TIKj T
The Gram matrix T = AAis not Toeplitz:

A/ jk_ Zl“:) 2 —|2m<I (T F’k)e ( (F’j)—oo(?k))ti.
Approximation (“time segmentatlon”)

g (@l t'NZb"e —a(fig)

D £ dlag{e () T'}
[Tl]jk_ZI 1’P(KI)‘ by e~ 2k (Fj=Tio)

L
T = A’A ~ D|/T| D|,
Each T, is Toeplitz— T f using L pairs of FFTs.

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)



Toeplitz Results

Uncorrected Conj. Phase, L=6

Fieldmap: Brain

CG-NUFFT CG-Toeplitz
L=6 L=8




Precomputation

Toeplitz Acceleration

NRMS % vs SNR

Method L|B,C ADy b=Ay| T, | 15 iter | Total Time o | 50 dB |40 dB |30 dB | 20 dE
Conj. Phase |6 0.4 | 0.2 0.6 30.7| 37.3| 46.5| 65.3| 99.¢
CG-NUFFT |6 0.4 5.0 5.4 5.6 16.7| 26.5| 43.0| 70.4
CG-Toeplitz |8 0.4 0.2 |06 1.3 2.5 55| 16.7| 26.4| 429| 704

e Reduces CPU time by 2x on conventiona

e No SNR compromise
e Eliminates k-space interpolations = ideal for FFT hardware

workstation (Mac G5)



Joint Field-Map / Image Reconstruction

Signal model:
Vi :S(ti)‘|‘8i, /f |oo(?t —I12TTK(t) ?dr

After discretization:
y=Awf+eg  aw) =PK)e g2
Joint estimation via regularized (nonlinear) least-squares:
(f,@) = argmin [ly— A(w)f|*+ BiRu(f) + B2Ro(w).
fcCN, weRN

Alternating minimization:
e Using current estimate of fieldmap W,

update f using CG algorithm.

e Using current estimate f of Image,
update fieldmap @ using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.
(Sutton et al., MRM, 2004)



Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.



Activation Results: Static vs Dynamic Field Maps

>
-
-
e
-

Number Active
Number Active

Number

5 0.6 0.7 0.8 7 ¢ 5 0.8 0.7 0.8
Correlation Coefficient Correlation Coefficient




Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map
for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map
for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds
for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using iter-
ative reconstruction as an essential tool.

(Standard field maps based on echo-time differences work poorly
for spiral-in / spiral-out sequences due to phase discrepancies.)



Tracking Respiration-Induced Field Changes

- Measured Resp.
—— Est. Field Map

60

Seconds




Myths

e Choosing a is difficult
e Sample density weighting is desirable



Sampling density weighted LS

Some researchers recommend using a weighted LS cost function:
W(f) =ly—Aflw

where the weighting matrix W is related to the k-space sample den-
sity compensation factors (DCF).

Purported benefits:
e Faster convergence

e Better conditioning

But, Gauss-Markov theorem from statistical estimation theory states
that lowest estimator variance is realized by choosing W = o, I, the
Inverse of the data noise covariance.



Resolution/Noise Tradeoff: Example with Weighting

Nyquist—sampled radial, DCF weights
—%— Nyquist—-sampled radial
—=— Cartesian

—

0.8f

cond(A’'WA) = 1.04673e+06
cond(A’A) =1.11761e+08

Relative standard deviation
O o
I o))

O
N

1 1.2 1.4 1.6 1.8 2
PSF FWHM [pixels]



Don’t just take it from me...

a.

b.
d.

Figure 5. Reconstructed images for simulated spiral sampling of the noisy k-space of the SL phantom (609 noise) using conventional
pridding (a), F-CG without (b) and with spiral DCF (c), and DING (d).

Fig. 5 of Gabr et al., MRM, Dec. 2006

Wiley-Liss, Inc.



Acceleration via Weighting?

F-CG (Voronoi DCF)
— DING
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Figure 8. The RMS error of F-CG and DING vs. the number of CG iterations for the simulated noiseless SL
the random trajectory. Errors stabilize after approximately 15 iterations.

Fig. 8 of Gabr et al., MRM, Dec. 2006. Zero initialization!




NRMS Error
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Acceleration via Initialization
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Parallel Imaging



Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels).
Exploit spatial localization of sensitivity pattern of each coill.

Note: at 1.5T, RF is about 60MHz.
— RF wavelength is about 3-10°m/s/60- 10°Hz = 5 meters

Pruessmann et al., MRM, 1999



SENSE Model

Multiple coll data:
vi=s(t)+&i, s(t)= / f(P) (M) e ™ U Tdr, 1=1,...,L =N

Goal: reconstruct f(T) from coil data y,,...,y,
“given” sensitivity maps {s'(F }I -

Benefit: reduced scan time.

Left: sum of squares; right: SENSE.



SENSE Reconstruction
Signal model:

S (t) _ / f(r») S|C0i|<r»> e—IZHR(t) F’dr»

Discretized form:
y|:AD|f—|—€|, |=1,...,L,

where A is the usual frequency/phase encoding matrix and
D, contains the sensitivity pattern of the Ith coil: D, = diag{s/®(F;)} .

Regularized least-squares estimation:
R L
f = argminy |y, —AD; f||*+BR(f).
f 1=

Can generalize to account for noise correlation due to coil coupling.
Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed.
(Solve small system of linear equations for each voxel.)



Summary

e |terative reconstruction: much potential in MRI
e Quadratic regularization parameter selection is tractable
e Computation: reduced by tools like NUFFT / Toeplitz

e But optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)

Some current challenges

e Sensitivity pattern mapping for SENSE

e Through-voxel field inhomogeneity gradients

e Motion / dynamics / partial k-space data

e Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



