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e Overview of image reconstruction methods

e Model-based image reconstruction
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e Example for partial non-Cartesian k-space

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



Why lterative Image Reconstruction?

e Statistical modeling may reduce noise

¢ Incorporate prior information, e.g.:
e support constraints

e (piecewise) smoothness
e phase constraints

e NO density compensation needed

¢ “Non-Fourier” physical effects such as field inhomogeneity
e Incorporation of coll sensitivity maps

e Improved results for under-sampled trajectories (?)

(“Avoiding k-space interpolation” is not a compelling reason!)



Primary drawbacks of Iterative Methods

e Choosing reqgularization parameter(s)
e Algorithm speed



Introduction



Non-Cartesian MR Image Reconstruction

“k-space” data Image
y=(Y---,¥m) £(r)
ky

K-space trajectory: spatial coordinates:
K(t) = (ke(l), ky(1)) FeR?



Textbook MRI Measurement Model

Ignoring lots of things, the standard measurement model is:
yi = S(tj) + noise, 1=1,....M

/f 2T g = F(R()).

r. spatial coordinates

K(t): k-space trajectory

f(T): object’s unknown transverse magnetization
F(K): Fourier transform of f(T)

Goal of image reconstruction: find f (F) from measurements {y;}\" .

The unknown object f(T) is a continuous-space function,
but the recorded measurements y = (y1,...,ym) are finite.

Inherently under-determined (ill posed) problem
— no canonical solution.

All MR scans provide only “partial” k-space data.



Image Reconstruction Strategies

e Continuous-continuous formulation
Pretend that a continuum of measurements are available:

F(R) = / f(F)e 2R gp
The “solution” Is an inverse Fourier transform:
f(r):/F(R)e'Z’WdR.

Now discretize the integral solution:
A M — M —
f(r) =3 F&) e T ~ R g,
= =

where w; values are “sampling density compensation factors.”
Numerous methods for choosing w; value in the literature.

For Cartesian sampling, using w; = 1/N suffices,
and the summation is an inverse FFT.

For non-Cartesian sampling, replace summation with gridding.



e Continuous-discrete formulation
Use many-to-one linear model:

y=A4f+g, where 4: £,(R%) — CM.
Minimum norm solution (cf. “natural pixels”):
min||f|| subjecttoy=4f
f

f=2aa)y=3sM,ce'?™ 7 where 44'c=Yy.

¢ Discrete-discrete formulation
Assume parametric model for object:

fM) =Y fipiT).
(F) J;Jpj()

Estimate parameter vector f = (fy,..., fy) from data vector y.



Model-Based Image Reconstruction: Details

Substitute series expansion of unknown object:

N
f(r) = Z f; p(T—Tj) <« usually 2D rect functions

into signal model y; = s(t;) + €, where

Ely] = s(t) = [ f(F)e “ ",
yields:

Ely) = / >

= Za-jfj, a =P<Ri>e—'2“ﬁi'fi, p(r) <= P(K).
=1

fip(f—7;) | e"#™iTdr = [/p e 7T ar | f,

Mz

Discrete-discrete measurement model with system matrix A= {a;; }:
y=Af+&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.




Small Pixel Size Need Not Matter
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Regularized Least-Squares Estimation

Estimate object by minimizing a cost function:

f —argmin®(f),  W(f)=|y—Af|°+aR(f)
feCN

o data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing term R(f) controls noise by penalizing roughness,

e.q.: R(f)z/\Dszdf’

O oa>0
controls tradeoff between spatial resolution and noise

» Equivalent to Bayesian MAP estimation with prior [0 e *R()

Issues:
e choosing R(f)

e choosing a
e computing minimizer rapidly.



Quadratic regularization

1D example: squared differences between neighboring pixel values:
\
1 2
R(f)="Y =|fj— fi_1|".
JZZZ ] |

In matrix-vector notation, R(f) = 3||Cf |# where

-1 10 0...0 b g,
o 0—11_.0.....0 s0Cf — |
0..0 0-11 RURIC

For 2D and higher-order differences, modify differencing matrix C.

Leads to closed-form solution:

N

f = argmin|ly— Af||°+o|Cf]|?
f

— [AA+0aC'C] " Ay.

(a formula of limited practical use for computing f)



Choosing the Regularization Parameter

Spatial resolution analysis (Fessler & Rogers, IEEE T-IP, 1996).
f — [AA+aCC] " Ay
Em [AA+aC'C] " AE[y
| F| = [AA+ aC'C] "AAf
blur

AA and C'C are Toeplitz = blur is approximately shift-invariant.

Frequency response of blur:

H(w)
H(w)+ aR(w)
o H(wx) = FFT(AAg) (lowpass)

e R(ux) =FFT(C'Cg) (highpass)

L(w) =

Adjust a to achieve desired spatial resolution.



Spatial Resolution Example

L=H/(H+R)

Radial k-space trajectory, FWHM of PSF is 1.2 pixels



Spatial Resolution Example: Profiles




Resolution/noise tradeoffs

Noise analysis:

Cov{} = [KA+aCC] ' ACov{y} A[AA+aCC] ™

Using circulant approximations to AA and C'C yields:

51 L 2 H (o)
Varthi} ~ %2 Hiea) + aR@0) 2
o H(wx) = FFT(AAg) (lowpass)
e R(wx) = FFT(C'Cg) (highpass)

—> Predicting reconstructed image noise requires just 2 FFTs.
(cf. gridding approach?)

Adjust a to achieve desired spatial resolution / noise tradeoft.



Resolution/Noise Tradeoff Example

——Under—-sampled radial
o —— Nyquist—-sampled radial
1 NQ —&— Cartesian I

Relative standard deviation

1 1.2 1.4 1.6 1.8 2
PSF FWHM [pixels]

In short: one can choose a rapidly and predictably for quadratic regularization.



lterative Minimization by Conjugate Gradients

Choose initial guess f© (e.g., fast conjugate phase / gridding).
lteration (unregularized):

g" =0W(f") = AAf™ —y) gradient

p" :(Pgm) precondition
0, n=2~0
Vi = < <g(n)7 p(n)> 10
(@b, pn—h)’
d"” = —p™+y,d" Y search direction
on=(d™, —g™) /(AT Af™) step size
fOHY — £V 4 o, d" update

Bottlenecks: computing Af™ and A'r.
e Ais too large to store explicitly (not sparse)

e Even if A were stored, directly computing Af is O(MN)
per iteration, whereas FFT is only O(M logM).



Computing Af Rapidly
\ \
Afl =S aifi=PK)S e?®Tif,  i=1..M
Af] ;1 jfj=P( )J; j

o Pixel locations {r;} are uniformly spaced
e k-space locations {K;} are unequally spaced

— needs nonuniform fast Fourier transform (NUFFT)



NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal samples
e Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: nttp://ww. eecs. um ch. edu/ ~f essl er/ code
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Worst-Case NUFFT Interpolation Error

Maximum error for K/N=2

Min—Max (uniform)
10°° | Gaussian (best)
—x— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—A— Min—Max (L=13, B=1 fit)
2 4 6 8 10
J
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Further Acceleration using Toeplitz Matrices

Cost-function gradient:

where
T 2 AA b= Ay.
In the absence of field inhomogeneity, the Gram matrix T is Toeplitz:

A/ jk_ ZI“:) 2 —I2T[K| (Tj=Ti)

Computing T f™ requires an ordinary (2x over-sampled) FFT.

(Chan & Ng, SIAM Review, 1996)
In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of T and b requires a couple NUFFTSs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)

This formulation seems ideal for “hardware” FFT systems.



Toeplitz Acceleration

Example: 256’ image. radial trajectory, 2x angular under-sampling.

h

, 0
CG-NUFFT CG-Toeplitz CG-NUFFT CG-Toeplitz

(Iterative provides reduced aliasing energy.)



Toeplitz Acceleration

Method ADy b=Ay T 20 iter Total Time|NRMS (50dB)
Conj. Phase | 0.3 0.3 7.8%
CG-NUFFT 12.5 12.5 4.1%
CG-Toeplitz 0.3 |0.8] 35 4.6 4.1%

e Toeplitz aproach reduces CPU time by more than 2x
on conventional workstation (Xeon 3.4GHz)

e Eliminates k-space interpolations — ideal for FFT hardware
e No SNR compromise

e CG reduces NRMS error relative to CP, but 15x slower...
(More dramatic improvements seen in fMRI when correcting
for field inhomogeneity.)




Myths

e Choosing a is difficult
e Sample density weighting is desirable



Sampling density weighted LS

Some researchers recommend using a weighted LS cost function:
W(f) =ly—Aflw

where the weighting matrix W is related to the k-space sample den-
sity compensation factors (DCF).

Purported benefits:
e Faster convergence

e Better conditioning

But, Gauss-Markov theorem from statistical estimation theory states
that lowest estimator variance is realized by choosing W = o, I, the
Inverse of the data noise covariance.



Resolution/Noise Tradeoff: Example with Weighting

Nyquist—sampled radial, DCF weights
—%— Nyquist—-sampled radial
—=— Cartesian

—

0.8f

cond(A’'WA) = 1.04673e+06
cond(A’A) =1.11761e+08

Relative standard deviation
O o
I o))

O
N

1 1.2 1.4 1.6 1.8 2
PSF FWHM [pixels]



Don’t just take it from me...

a.

b.
d.

Figure 5. Reconstructed images for simulated spiral sampling of the noisy k-space of the SL phantom (609 noise) using conventional
pridding (a), F-CG without (b) and with spiral DCF (c), and DING (d).

Fig. 5 of Gabr et al., MRM, Dec. 2006

Wiley-Liss, Inc.



Acceleration via Weighting?
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Figure 8. The RMS error of F-CG and DING vs. the number of CG iterations for the simulated noiseless SL
the random trajectory. Errors stabilize after approximately 15 iterations.

Fig. 8 of Gabr et al., MRM, Dec. 2006. Zero initialization!




NRMS Error

10C

80f

60f

40t

20F

Acceleration via Initialization

i

Unweighted, O initialized
Weighted, O initialized

—<—Unweighted, CP initialized

X
X
X

X
X
X

0 2 4

6 8 10
lteration



Summary

e |terative reconstruction: much potential in MRI
e Quadratic regularization parameter selection is tractable
e Computation: reduced by tools like NUFFT / Toeplitz

e But optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)

Some current challenges

e Sensitivity pattern mapping for SENSE

e Through-voxel field inhomogeneity gradients

e Motion / dynamics / partial k-space data

e Establishing diagnostic efficacy with clinical data...

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



