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Outline

Part O: Introduction / Overview / Examples

Part 1: Problem Statements
o Continuous-discrete vs continuous-continuous vs discrete-discrete

Part 2: Four of Five Choices for Statistical Image Reconstruction
o Object parameterization

o System physical modeling

o Statistical modeling of measurements

o Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms

o Classical optimization methods

o Considerations: nonnegativity, convergence rate, ...

o Optimization transfer: EM etc.

o Ordered subsets / block iterative / incremental gradient methods

Part 4. Performance Analysis
o Spatial resolution properties

o Noise properties

o Detection performance



History

e Successive substitution method vs direct Fourier (Bracewell, 1956)
e |terative method for X-ray CT (Hounsfield, 1968)
e ART for tomography (Gordon, Bender, Herman, JTB, 1970)
e Richardson/Lucy iteration for image restoration (1972, 1974)
e Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

e Proposals to use Poisson likelihood for emission and transmission tomography
Emission: (Rockmore and Macovski, TNS, 1976)
Transmission: (Rockmore and Macovski, TNS, 1977)

e Expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)
Transmission: (Lange and Carson, JCAT, 1984)

e Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

e Ordered-subsets EM algorithm
(Hudson and Larkin, TMI, 1994)

e Commercial introduction of OSEM for PET scanners circa 1997



Why Statistical Methods?

e Object constraints (e.g., nonnegativity, object support)

e Accurate physical models (less bias =— improved quantitative accuracy)
(e.g., nonuniform attenuation in SPECT)
Improved spatial resolution?

e Appropriate statistical models (less variance —- lower image noise)
(FBP treats all rays equally)

e Side information (e.g., MRI or CT boundaries)

e Nonstandard geometries (e.g., irregular sampling or “missing” data)

Disadvantages?

e Computation time

e Model complexity

e Software complexity

Analytical methods (a different short course!)
e |dealized mathematical model
o Usually geometry only, greatly over-simplified physics
o Continuum measurements (discretize/sample after solving)
e No statistical model
e Easier analysis of properties (due to linearity)
e.g., Huesman (1984) FBP ROI variance for kinetic fitting
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What about Moore’s Law?
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Benefit Example: Statistical Models
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Benefit Example: Physical Models

a. True object a. Soft-tissue corrected FBP

A

b. Unocrrected FBP b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction




Benefit Example: Nonstandard Geometries

Detector Bins
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Truncated F an-Beam SPECT Transmission Scan

Truncated Truncated Untruncated
FBP PWLS FBP



One Final Advertisement

Spin Echo

[terative MUFFT
with min—mas

I ncorrected

. Iterative MR Reconstruction

Conjugate Phase




Part 1. From Physics to Statistics

or
“What quantity is reconstructed?”
(in emission tomography)

Outline

e Decay phenomena and fundamental assumptions
e |ldealized detectors

e Random phenomena

e Poisson measurement statistics

e State emission tomography reconstruction problem



What Object is Reconstructed?

In emission imaging, our aim is to image the radiotracer distribution.
The what?

At time t = 0 we Inject the patient with some radiotracer, containing a “large”
number N of metastable atoms of some radionuclide.

Let X,(t) € R® denote the position of the kth tracer atom at time t.
These positions are influenced by blood flow, patient physiology, and other
unpredictable phenomena such as Brownian maotion.

The ultimate imaging device would provide an exact list of the spatial locations
X1(t),...,Xn(t) of all tracer atoms for the entire scan.

Would this be enough?



Atom Positions or Statistical Distribution?

. N
Repeating a scan would yield different tracer atom sample paths {Xk(t>}k:1'

-, Statistical formulation

Assumption 1. The spatial locations of individual tracer atoms at any timet > 0
are independent random variables that are all identically distributed according to
a common probability density function (pdf) p(X).

This pdf is determined by patient physiology and tracer properties.

Larger values of p;(X) correspond to “hot spots” where the tracer atoms tend to
be located at time t. Units: inverse volume, e.g., atoms per cubic centimeter.

The radiotracer distribution p¢(X) is the quantity of interest.

N

(Not {Y(k(t)} )

k=1



Example: Perfect Detector

Radiotracer Distribution

A realization of N = 2000 i.i.d.
atom positions (dots) recorded
“exactly.”

True radiotracer distribution p;(X)
at some time t.

Little similarity!



Binning/Histogram Density Estimator

Histogram Density Estimate

Estimate of p;(X) formed by histogram binning of N = 2000points.
Ramp remains difficult to visualize.



Kernel Density Estimator

Gaussian Kernel Density Estimate

Horizontal Profile

Gaussian kernel density estimator Horizontal profiles at x, = 3 through
for pt(X) from N = 2000points. density estimates.



Poisson Spatial Point Process

Assumption 2. The number of administered tracer atoms N has a Poisson distri-
bution with some mean

(0]

W = E[N] = %nP{N =n}.

Nn=

Let N;(B) denote the number of tracer atoms that have spatial locations in any set
B C R3 (VOI) at time t after injection.

N;(-) is called a Poisson spatial point process.

Fact. For any set B, N;(B) is Poisson distributed with mean:

EIN(B)] = EINJP{Xu(t) € B} =y [ m(X)a%.

Poisson N injected atoms + i.i.d. locations =— Poisson point process



lllustration of Point Process ( iy = 200

25 points within ROI 15 points within ROI

20 points within ROI




Radionuclide Decay

Preceding quantities are all unobservable.
We “observe” a tracer atom only when it decays and emits photon(s).

The time that the kth tracer atom decays is a random variable T,.

Assumption 3. The T(’s are statistically independent random variables,
and are independent of the (random) spatial location.

Assumption 4. Each Ty has an exponential distribution with mean pr =t;,,/In2.
Cumulative distribution function: P{Ty <t} =1—exp(—t/)




Statistics of an Ideal Decay Counter

Let K(‘B) denote the number of tracer atoms that decay by time t,
and that were located in the VOI B C R? at the time of decay.

Fact. K;(‘B) is a Poisson counting process with mean

t
E[Kt(qs)]:/ /A(Y(,t)d)?dr,
0J3
where the (nonuniform) emission rate density is given by
e t/ur

L
Ingredients: “dose,” “decay,” “distribution”

AR ) = iy - pe(X).

Units: “counts” per unit time per unit volume, e.g., yCi/cc.

“Photon emission is a Poisson process

What about the actual measurement statistics?



ldealized Detector Units
A nuclear imaging system consists of ny conceptual detector units.

Assumption 5. Each decay of a tracer atom produces a recorded count in at
most one detector unit.

Let S € {0,1,...,ng} denote the index of the incremented detector unit for decay
of kth tracer atom. (S¢= 0 if decay is undetected.)

Assumption 6. The S/s satisfy the following conditional independence:

P{SL ., SUIN, Toyo T, K)o Rn() | = ﬁ P{SIRu(T) }
=1

The recorded bin for the kth tracer atom’s decay depends only on its position when
It decays, and is independent of all other tracer atoms.

(No event pileup; no deadtime losses.)



PET Example
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SPECT Example

Sinogram
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Detector Unit Sensitivity Patterns

Spatial localization:
5(X) £ probability that decay at X is recorded by ith detector unit.

Idealized Example . Shift-invariant PSF: s(X) = h(ki-X —r;)

e I; IS the radial position of ith ray

e k; is the unit vector orthogonal to ith parallel ray

e h(-) is the shift-invariant radial PSF (e.g., Gaussian bell or rectangular function)




Example: SPECT Detector-Unit Sensitivity Patterns

s1(X)

$(X)

X1

Two representative s(X) functions for a collimated Anger camera.




Example: PET Detector-Unit Sensitivity Patterns

-80 -60 -40 -20 0 20 40 60 80




Detector Unit Sensitivity Patterns

s(X) can include the effects of

e geometry / solid angle

e collimation

e Scatter

e attenuation

e detector response / scan geometry
e duty cycle (dwell time at each angle)
e detector efficiency

e positron range, noncollinearity
DR

System sensitivity pattern:

(probability that decay at location X will be detected at all by system)



(Overall) System Sensitivity Pattern:  s(X) = ¥4, 5(X)

X1
Example: collimated 180° SPECT system with uniform attenuation.



Detection Probabilities 5(Xp) (vs det. unit index i)

X1

Image domain

S (Xo)

r

Sinogram domain



Summary of Random Phenomena

e Number of tracer atoms injected N

. N
e Spatial locations of tracer atoms {Xk(t)}

k=1
e Time of decay of tracer atoms {Ti}_,
e Detection of photon [S, # O]

e Recording detector unit {S},



Emission Scan

Record events in each detector unit for t; <t <t,.
Y; £ number of events recorded by ith detector unit during scan, fori =1,...,ng.

Y, = ZE:l Hs=i, Teelttal}-

The collection {Y; :i=1,...,ng} is our sinogram. Note 0 <Y; <N.

Fact. Under Assumptions 1-6 above,
Y~ Poisson{ / S(X)AX) d)?} (cf “line integral’)

and Y;’s are statistically independent random variables,
where the emission density is given by
to 1
ANR) =t [ e py (%)t
tq M

(Local number of decays per unit volume during scan.)

Ingredients:

e dose (injected)

e duration of scan

e decay of radionuclide

e distribution of radiotracer



Poisson Statistical Model (Emission)
Actual measured counts = “foreground” counts + “background” counts.

Sources of background counts:

e cosmic radiation / room background

e random coincidences (PET)

e scatter not accounted for in 5(X)

e “crosstalk” from transmission sources in simultaneous T/E scans
e anything else not accounted for by [ s(X)A(X)dX

Assumption 7.
The background counts also have independent Poisson distributions.

Statistical model (continuous to discrete)

YiwPoisson{/s(?))\(i)diﬂi}, I=1...,ng

ri - mean number of “background” counts recorded by ith detector unit.



Emission Reconstruction Problem

Estimate the emission density A(X) using (something like) this model:

YiNPOiSSOﬂ{/S(Y())\(y()dy(—I—ri}, 1=1,...,ng.

Knowns:

o {Y,=v}.4, : observed counts from each detector unit
e 5(X) sensitivity patterns (determined by system models)
e Ii’'s : background contributions (determined separately)

Unknown: A(X)



List-mode acquisitions

Recall that conventional sinogram is temporally binned:

Y, £ ki 1is=i, Teeltto]}-

This binning discards temporal info;mation.

List-mode measurements: record all (detector,time) pairs in a list, i.e.,
{(&,Tk) : k=1,...,N}.

List-mode dynamic reconstruction problem:

Estimate A (X,t) given {(S, Tk)}.



Emission Reconstruction Problem - lllustration

A(X) {¥i}




Part 1. Problem Statement(s)

Example: in PET, the goal is to reconstruct radiotracer distribution A(X)
from photon pair coincidence measurements {y;}.4,,

given the detector sensitivity patterns s(X), i =1,...,nq, for each “line of response.”

Statistical model: y; ~ Poisson{/)\(T()S(T() d7<+ri}

-80 -60 -40 -20 O 20 40 60 80




Example: MRI “Sensitivity Pattern”

"'.'kx""

Each “k-space sample” involves the transverse magnetization f(X) weighted by:
e sinusoidal (complex exponential) pattern corresponding to k-space location k
e RF receive coil sensitivity pattern
e phase effects of field inhomogeneity
e spin relaxation effects.

Vi = / FR)SR)dR+e, i=1...,ng,  S(X)=cre(X)e WXl g /Tl g 12X



Continuous-Discrete Models
Emission tomography: yi ~ Poisson{ [ A(X) 5(X) dX —+r;}

Transmission tomography (monoenergetic): y; ~ Poisson{bi exp(—fg U(X) dé) + ri}

Transmission (polyenergetic): Yi ~ Poisson{f li(‘E) exp(— Jr (X, Z:)dé) dE +ri}

Magnetic resonance imaging: yi = [ f(X)s(X) dX+¢€

Discrete measurements y = (Y1,...,¥ny)
Continuous-space unknowns: A(X), u(X), f(X)
Goal: estimate f(X) giveny

Solution options

e Continuous-continuous formulations (“analytical”)
° Continuqus-discrete formulations

usually f(X) = ¥/, cis(X)
e Discrete-discrete formulations f(X) ~ ZJ 1 X bj(X)



Part 2: Five Categories of Choices

e Object parameterization: function f(r) vs finite coefficient vector x
e System physical model: {s(7)}

e Measurement statistical model y; ~ |?

e Cost function: data-mismatch and regularization
e Algorithm / initialization

No perfect choices - one can critique all approaches!



Choice 1. Object Parameterization
Finite measurements: {y;}.",. Continuous object: f(T). Hopeless?
“All models are wrong but some models are useful.”

Linear series expansion approach. Replace f(F) by X = (xa,...,Xy,) where

f(F) = > Xjbj(F) < “basis functions”

Forward projection:

[s@ i@

a0 3oi0]or= 3 [ [sonine]
- %a*'iXJ:[AXh, where &; é/s(r)bj(r)dr
j=1

e Projection integrals become finite summations.

e g is contribution of jth basis function (e.g., voxel) to ith measurement.
e The units of &; and x; depend on the user-selected units of b;(T).

e The ng x n, matrix A= {g;; } is called the system matrix.



(Linear) Basis Function Choices

e Fourier series (complex / not sparse)

e Circular harmonics (complex / not sparse)

e Wavelets (negative values / not sparse)

o Kaiser-Bessel window functions (blobs)

e Overlapping circles (disks) or spheres (balls)

e Polar grids, logarithmic polar grids

e “Natural pixels” {s(7)}

e B-splines (pyramids)

e Rectangular pixels / voxels (rect functions)

e Point masses / bed-of-nalls / lattice of points / “comb” function
e Organ-based voxels (e.g., from CT in PET/CT systems)



Basis Function Considerations

Mathematical

o Represent f(T) “well” with moderate n, (approximation accuracy)

e e.g., represent a constant (uniform) function

e Orthogonality? (not essential)

e Linear independence (ensures uniqueness of expansion)

e Insensitivity to shift of basis-function grid (approximate shift invariance)
e Rotation invariance

Computational

o “Easy” to compute a; values and/or Ax

e If stored, the system matrix A should be sparse (mostly zeros).

o Easy to represent nonnegative functions e.g., if x; > 0, then f(r) > 0.
A sufficient condition is b;(T) > O.



Nonlinear Object Parameterizations
Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models

e Circles / spheres

e Ellipses / ellipsoids

e Superquadrics

e Polygons

e Bi-quadratic triangular Bezier patches, ...

Other models
e Generalized series f(T) =

e Deformable templates f(T)
L_AAE

bj (T, 6)
( o(1))

J

Considerations

e Can be considerably more parsimonious

e If correct, yield greatly reduced estimation error

e Particularly compelling in limited-data problems

e Often oversimplified (all models are wrong but...)

e Nonlinear dependence on location induces non-convex cost functions,
complicating optimization



Example Basis Functions - 1D

Continuous object

6 8 10 12 14

Piecewise Constant Approximation

6 8 10 12

Quadratic B-Spline Approximation




Pixel Basis Functions - 2D

Pixel basris approximation
> 21 X by (T)




Blobs in SPECT: Qualitative

Post—filt. OSEM (3 pix. FWHM) blob-baseda=10.4 Post-filt. OSEM (3 pix. FWHM) rotation—based

(2D SPECT thorax phantom simulations)



Blobs in SPECT: Quantitative

Standard deviation vs. bias in reconstructed phantom images

—=— Per iteration, rotation—based
—A— Per iteration, blob—based a=10.4
—©— Per iteration, blob-based a=0
- Per FWHM, rotation—based
- Per FWHM, blob-based a=10.4
- Per FWHM, blob—based a=0
FBP
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Discrete-Discrete Emission Reconstruction Problem
Having chosen a basis and linearly parameterized the emission density...

Estimate the emission density coefficient vector X = (xy,...,Xn,)
(aka “image”) using (something like) this statistical model:

Mp
Yi ~ Poissonq % aijXj+Ti ¢, i=1,....,ng.
=1

e {yi};¥, : observed counts from each detector unit
e A={a;} : system matrix (determined by system models)
e Ii’'s : background contributions (determined separately)

Many image reconstruction problems are “find x given y’ where
Yi = 0i(|AX];) + &, i=1,...,Nnq.



Choice 2. System Model, aka Physics

System matrix elements: a; = /s,-(F’) b;(F)dr

e Scan geometry
e collimator/detector response

e attenuation

e scatter (object, collimator, scintillator)
e duty cycle (dwell time at each angle)
e detector efficiency / dead-time losses

e positron range, noncollinearity, crystal penetration, ...
.

Considerations
e Improving system model can improve
o Quantitative accuracy
o Spatial resolution
o Contrast, SNR, detectability
e Computation time (and storage vs compute-on-fly)
e Model uncertainties
(e.g., calculated scatter probabilities based on noisy attenuation map)
e Artifacts due to over-simplifications



Measured System Model?

Determine a;j's by scanning a voxel-sized cube source over the imaging volume
and recording counts in all detector units (separately for each voxel).

e Avoids mathematical model approximations

e Scatter / attenuation added later (object dependent), approximately
e Small probabilities = long scan times

e Storage

e Repeat for every voxel size of interest

e Repeat if detectors change



“Line Length” System Model for Tomography

a;j = length of intersection



“Strip Area” System Model for Tomography




(Implicit) System Sensitivity Patterns

=050

Line Length Strip Area



Point-Lattice Projector/Backprojector

a;j's determined by linear interpolation



Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

OO
45°

135°

180°

r r

Point Lattice Strip Area



Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):

%:/S(f)f(?)df’:Zpajxj:[Ax]i, or y=Ax
=1

Backprojection (projection domain to image domain):

Ng np
Ay =1 aijyi
{izl J I}j1
The term “forward/backprojection pair” often corresponds to an implicit choice for
the object basis and the system model.

Sometimes Ay is implemented as By for some “backprojector” B £ A

Least-squares solutions (for example):
X = [AA]'Ay # [BA] 'By



Mismatched Backprojector B # A

X(PWLS-CG) X(PWLS-CG)

Mismatched




(7))
@
T

@)

| —
al
@©

i’

-

@)
N

-

@)
I

Matched
—6— Mismatched




System Model Tricks

e Factorize (e.g., PET Gaussian detector response)
A~ SG
(geometric projection followed by Gaussian smoothing)
e Symmetry
e Rotate and Sum

e Gaussian diffusion
for SPECT Gaussian detector response

e Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector with A requires care.



SPECT System Modeling

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter

(MR system models discussed in Part Il)



Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model.”

Yi = Gi(|AX];)
for some functions g;, e.g., gi(I) = | +r; for emission tomography.

Statistical modeling is concerned with the “ ~ ” aspect.

Considerations

e More accurate models:

o can lead to lower variance images,

o may incur additional computation,

o may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)

e Statistical model errors (e.g., deadtime)
e Incorrect models (e.qg., log-processed transmission data)



Statistical Model Choices for Emission Tomography

e “None.” Assume y—r = Ax. “Solve algebraically” to find x.

e White Gaussian noise. Ordinary least squares: minimize ||y — Ax||°
(This Is the appropriate statistical model for MR.)

e Non-white Gaussian noise. Weighted least squares: minimize
Ng Mp
ly—AX|ly = Zwi (vi — [AX;)?, where [AX|; £} ajX
= =1

(e.qg., for Fourier rebinned (FORE) PET data)
e Ordinary Poisson model (ignoring or precorrecting for background)

Vi ~ Poisson{[AX]; }

e Poisson model
Vi ~ Poisson{[AX| +Ti}

¢ Shifted Poisson model (for randoms precorrected PET)
Vi, = y}orompt— yidelayw Poisson{ [AX]; + 2r;} —2r;



Shifted Poisson model for PET

Precorrected random coincidences: = yfjelay
yprompt ~ POiSSOn{[AX]i + ri}
Y . Poisson{r;}

Elyi] = [AX|
Var{yi} = |AX];+ 2r, Mean =# Variance = not Poisson!

Statistical model choices
e Ordinary Poisson model: ignore randoms

Yi];. ~ Poisson{|AX]; }

Causes bias due to truncated negatives
e Data-weighted least-squares (Gaussian model):

Yi ~ N([AXL 76-|2) ) 6-I2 — max(yi + Zﬁao-zmin)

Causes bias due to data-weighting
e Shifted Poisson model (matches 2 moments):

Vi + 2fi] . ~ Poisson{ [AX]; + 2 }

Insensitive to inaccuracies in ;.
One can further reduce bias by retaining negative values of y; + 2r;.



Shifted-Poisson Model for X-ray CT

A model that includes both photon variability and electronic readout noise:
yi ~ Poisson{¥i(W)} +N(0,0%)
Shifted Poisson approximation
[Yi + GZ] o Poisson{)7i(|.l) + 02}
or just use WLS...
Complications:

e Intractability of likelihood for Poisson+Gaussian

e Compound Poisson distribution due to photon-energy-dependent detector sig-
nal.

X-ray statistical modeling is a current research area in several groups!



Choice 4. Cost Functions

Components:

e Data-mismatch term

e Regularization term (and regularization parameter [3)
e Constraints (e.g., nonnegativity)

Cost function:
W(x) = DataMismatch(y, AX) + 3Roughness(X)
Reconstruct image X by minimization:
X £ argmin¥(x)

x>0

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “y = Ax.”



Why Cost Functions?
(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on minimizing a cost function: the negative log-likelihood

e ML is asymptotically consistent

e ML is asymptotically unbiased

e ML is asymptotically efficient (under true statistical model...)

e Estimation: Penalized-likelihood achieves uniform CR bound asymptotically

e Detection: Qi and Huesman showed analytically that MAP reconstruction out-
performs FBP for SKE/BKE lesion detection (T-Ml, Aug. 2001)

Practical reasons

e Stability of estimates (if W and algorithm chosen properly)
e Predictability of properties (despite nonlinearities)

e Empirical evidence (?)



Bayesian Framework

Given a prior distribution p(x) for image vectors X, by Bayes’ rule:

posterior: p(X]y) = p(Y|X) p(X) / p(Y)

SO
logp(x|y) = logp(y|X) +logp(x) —logp(y)

e —logp(y|X) corresponds to data mismatch term (negative log-likelihood)
e —logp(X) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator

X = argmaxogp(x|y) = arg maxogp(y|X) +logp(X)
X X

e Has certain optimality properties (provided p(y|X) and p(X) are correct).
e Same formas W



Choice 4.1: Data-Mismatch Term

Options (for emission tomography):
e Negative log-likelihood of statistical model. Poisson emission case:

Ng

—L(x;y) = —logp(Y|X) = Z([Ax]i +ri) — yilog(|AX], 4 ri) +logy;!

e Ordinary (unweighted) least squares: z,”dlé(yl — [AX];)?
o Data-weighted least squares: S, 3(y; —fi — | ])2/0.2, 67 = max(y; + fi,0,) .

(causes bias due to data-weighting).
o Reweighted least-squares: 67 = [AX]. +F;
e Model-weighted least-squares (nonquadratic, but convex!)

5. 501 Fi— A/ (A, )

e Nonquadratic cost-functions that are robust to outliers
o ...

Considerations

e Faithfulness to statistical model vs computation
e Ease of optimization (convex?, quadratic?)

o Effect of statistical modeling errors



Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
lll-conditioned problems: small data noise causes large image noise

Solutions :
e Noise-reduction methods
e True regularization methods

Noise-reduction methods

e Modify the data
o Prefilter or “denoise” the sinogram measurements
o Extrapolate missing (e.g., truncated) data

e Modify an algorithm derived for an ill-conditioned problem
o Stop algorithm before convergence
o Run to convergence, post-filter
o Toss in a filtering step every iteration or couple iterations
o Modify update to “dampen” high-spatial frequencies



Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
e Simplicity (?)
e Familiarity
e Appear less subjective than using penalty functions or priors
e Only fiddle factors are # of iterations, or amount of smoothing
e Resolution/noise tradeoff usually varies with iteration
(stop when image looks good - in principle)
e Changing post-smoothing does not require re-iterating

Advantages of true regularization methods

e Stability (unigue minimizer & convergence = initialization independence)
e Faster convergence

e Predictability

e Resolution can be made object independent

e Controlled resolution (e.g., spatially uniform, edge preserving)

e Start with reasonable image (e.g., FBP) — reach solution faster.



True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

Options

e Use bigger pixels (fewer basis functions)
o Visually unappealing
o Can only preserve edges coincident with pixel edges
o Results become even less invariant to translations

e Method of sieves (constrain image roughness)
o Condition number for “pre-emission space” can be even worse
o Lots of iterations
o Commutability condition rarely holds exactly in practice
o Degenerates to post-filtering in some cases

e Change cost function by adding a roughness penalty / prior
X =arg min¥(x), W(x) =L (X) +BR(X)
X
o Disadvantage: apparently subjective choice of penalty

o Apparent difficulty in choosing penalty parameter(s), e.g., 3
(cf. apodizing filter / cutoff frequency in FBP)



Penalty Function Considerations

e Computation

e Algorithm complexity

e Unigueness of minimizer of W(x)

e Resolution properties (edge preserving?)

e # of adjustable parameters

e Predictability of properties (resolution and noise)

Choices

e separable vs nonseparable
e quadratic vs nonquadratic
e CONvex VS nonconvex



Penalty Functions: Separable vs Nonseparable

Separable

e Identity norm: R(x) = 3XIx= 37, x2/2
penalizes large values of X, but causes “squashing bias”

e Entropy: R(X) = 5 *, X logx,

e Gaussian prior with mean p;, variance o%: R(x) = Z XJZGE’)

e Gamma prior R(X) = Z?ilp(xj, Hj,0;) where p(x,y,0) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means ;.
Np
General separable form: R(x) = Z fi(x;)
=1

Slightly simpler for minimization, but these do not explicitly enforce smoothness.
The simplicity advantage has been overcome in newer algorithms.



Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

Example
R(X) = (X2 —X1)? + (X — X2)* + (X5 — Xa)
+ (Xq — X1)2 + (X5 — X2)2

2

R(X)=1 R(X) =6 R(x) = 10

Rougher images = larger R(x) values



Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

np l
ROO=3 5 3 W0 —%0
J=1% ke
A = neighborhood of jth pixel (e.g., left, right, up, down)
) called the potential function

Finite-difference approximation to continuous roughness measure:

2 2

) 2 19 )
D) — 2A47 — e e v =
R = [ 1010 12dr= [ | 260 +|S100] +| 5,10 o
Second derivatives also useful: 02
(More choices!) 02 t(r) r, ~ F(Fja) =21 (7)) + (1)



Penalty Functions: General Form

Np

R(X) = thk([Cx]k) where [CX]x = Z CkjXi
=1

Example :

Cx

R(X) = kZ Wk([CxJk)
= P1(X2 — X1) + WXz — X2) + W3(Xs — Xa) + Pa(Xa — X1) + Ps(Xs — X2)



Penalty Functions: Quadratic vs Nonquadratic

= ZwdexJ )
Quadratic

If Y(t) =t2/2, then R(x) = 2X'C'Cx, a quadratic form.
e Simpler optimization
e Global smoothing

Nonquadratic i

e Edge preserving

e More complicated optimization. (This is essentially solved in convex case.)
e Unusual noise properties

e Analysis/prediction of resolution and noise properties is difficult

e More adjustable parameters (e.g., 0)

t2/2, t| <o

Example: Huber function. y(t) = {5!t| 5/2, t| > d

Example: Hyperbola function. (t) (\/1+ (t/8)2— )



Quadratic vs Non—quadratic Potential Functions

—— Parabola (quadratic)
- - - Huber, 0=1
----- Hyperbola, 0=1

Lower cost for large differences — edge preservation



Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty



More “Edge Preserving” Regularization

Chlewicki et al., PMB, Oct. 2004: “Noise reduction and convergence of Bayesian
algorithms with blobs based on the Huber function and median root prior”



Piecewise Constant “Cartoon” Objects

L] X true

i* |

IX| “enj Phage" ]|x| pcg quaa2 1x| pcg edgé

j = §= |

% "conj pha?e ﬁ X pcg quad 1 x pcg edgé
0.51 . 0.51




Total Variation Regularization
Non-quadratic roughness penalty:

JAELGIE S
Uses magnitude instead of squared magnitude of gradient

Problem: |-| is not differentiable.

Practical solution: t|~d (\/1+ (t/0)%— 1)

Potential functions
5 AN

- - - Total Variation
—— Hyperbola, 6=0.2
—— Hyperbola, =1

(hyperbola!)



Penalty Functions: Convex vs Nonconvex

Convex
e Easier to optimize
e Guaranteed unique minimizer of W (for convex negative log-likelihood)

Nonconvex

e Greater degree of edge preservation

e Nice images for piecewise-constant phantoms!

e Even more unusual noise properties

e Multiple extrema

e More complicated optimization (simulated / deterministic annealing)
e Estimator X becomes a discontinuous function of data Y

Nonconvex examples
e “broken parabola”

P(t) = min(t?, tra)
e true median root prior:

Np

(x; — median(x))?
R(X) = .
(X J; median(X)

where median(x) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!



Potential Functions

- - - Parabola (quadratic)
Huber (convex)
—— Broken parabola (non—convex)
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Local Extrema and Discontinuous Estimators

Small change in data =— large change in minimizer X.
Using convex penalty functions obviates this problem.




Augmented Regularization Functions

Replace roughness penalty R(x) with R(x|b) + aR(b),

where the elements of b (often binary) indicate boundary locations.
e Line-site methods

e Level-set methods

Joint estimation problem:

(%,b) = argminW¥(x,b), W(x,b) = £(X)[x;y¥] + BR(x|b) + aR(b).
X,b

Example: by indicates the presence of edge between pixels j and k:

Np 1
R(x|b) = (1—bji)5 (%) — %)
Penalty to discourage too many edges (e.g.):
R(b) = by.
2

e Can encourage local edge continuity
e May require annealing methods for minimization



Modified Penalty Functions

Zp Z Wik W(Xj — Xk)

Adjust weights {wj} to
e Control resolution properties
e Incorporate anatomical side information (MR/CT)
(avoid smoothing across anatomical boundaries)

Recommendations
e Emission tomography:
o Begin with quadratic (nonseparable) penalty functions
o Consider modified penalty for resolution control and choice of (3
o Use modest regularization and post-filter more if desired
e Transmission tomography (attenuation maps), X-ray CT
o consider convex nonquadratic (e.g., Huber) penalty functions
o choose & based on attenuation map units (water, bone, etc.)
o choice of regularization parameter [3 remains nontrivial,
learn appropriate values by experience for given study type



Choice 4.3: Constraints

e Nonnegativity
e Known support
e Count preserving
e Upper bounds on values
e.g., maximum p of attenuation map in transmission case

Considerations

e Algorithm complexity

o Computation

e Convergence rate

e Bias (in low-count regions)
e ...



Open Problems

Modeling

e Noise in g; values (system model errors)

e Noise in fj values (estimates of scatter / randoms)
e Statistics of corrected measurements

e Statistics of measurements with deadtime losses

For PL or MAP reconstruction, Qi (MIC 2004) has derived a bound on system
model errors relative to data noise.

Cost functions

e Performance prediction for nonguadratic penalties

o Effect of nonquadratic penalties on detection tasks

e Choice of regularization parameters for nonquadratic regularization



Summary

e 1. Object parameterization: function f(T') vs vector X
e 2. System physical model: s(T)

e 3. Measurement statistical model Y; ~ |?

e 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method = Cost Function + Algorithm

Naming convention: “criterion”-“algorithm”:
e ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...



Part 3. Algorithms
Method = Cost Function + Algorithm

Outline
e |ldeal algorithm
e Classical general-purpose algorithms
e Considerations:
o nonnegativity
o parallelization
o convergence rate
o monotonicity
e Algorithms tailored to cost functions for imaging
o Optimization transfer
o EM-type methods
o Poisson emission problem
o Poisson transmission problem
e Ordered-subsets / block-iterative algorithms
o Recent convergent versions (relaxation, incrementalism)



Why iterative algorithms?

e For nonquadratic W, no closed-form solution for minimizer.
e For quadratic W with nonnegativity constraints, no closed-form solution.
e For quadratic W without constraints, closed-form solutions:

PWLS: &= argmin|ly — AX||&,.2 + XRx= [AWA+ R AWy
X
OLS: & =argmin|y— Ax||* = [KA] Ay
X

Impractical (memory and computation) for realistic problem sizes.
A is sparse, but AA is not.

All algorithms are imperfect. No single best solution.



General Iteration

Projection _ _
Measurements Calibration ...

lteration

Parameters

Deterministic iterative mapping: XM = g (xM)



X" =

Properties

stable and convergent
converges quickly
globally convergent
fast

robust

user friendly

parallelizable
simple
flexible

ldeal Algorithm

arg min¥(x) (global minimizer)
x>0

{xW} converges to x* if run indefinitely

{xW} gets “close” to x* in just a few iterations
lim,x™ independent of starting image x©
requires minimal computation per iteration
Insensitive to finite numerical precision
nothing to adjust (e.g., acceleration factors)

(when necessary)
easy to program and debug
accommodates any type of system model

(matrix stored by row or column, or factored, or projector/backprojector)

Choices: forgo one or more of the above



Classic Algorithms

Non-gradient based
e Exhaustive search
e Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
e Gradient descent
XD 2y _ o Oy (x)

Choosing a to ensure convergence is nontrivial.
e Steepest descent

XM £ X —a,0W(x™) where a, = argmin®(x™ —oa OW(x™))
a
Computing stepsize a, can be expensive or inconvenient.

Limitations
e Converge slowly.
e Do not easily accommodate nonnegativity constraint.



Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization  of differentiable cost functions:
OW(x) =0 when x=x"

e A necessary condition always.
e A sufficient condition for strictly convex cost functions.
e |terations search for zero of gradient.

Nonnegativity-constrained minimization

Karush-Kuhn-Tucker conditions

0
— WY(x
3 VX
e A necessary condition always.
e A sufficient condition for strictly convex cost functions.
e |terations search for ???

e 0= xj*aixj W(x*) is a necessary condition, but never sufficient condition.

. =0, x;>0
IS >0, xi=0
—X* — 7



1 O

Karush-Kuhn-Tucker lllustrated

—— Inactive constraint
— - Active constraint

XE I

4 5




Why Not Clip Negatives?

WLS with Clipped Newton—Raphson

' \\\\

o
L

Newton-Raphson with negatives set to zero each iteration.
Fixed-point of iteration is not the constrained minimizer!



Newton-Raphson Algorithm
XM = x — 0@ (x™) ] OwW(x™)

Advantage :
e Super-linear convergence rate (if convergent)

Disadvantages

e Requires twice-differentiable W

e Not guaranteed to converge

e Not guaranteed to monotonically decrease W

e Does not enforce nonnegativity constraint

o Computing Hessian 0%W often expensive

e Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms



Newton’s Quadratic Approximation
2nd-order Taylor series:

Y(x) ~ e(x;x") £ P(x™) +0W(x") (x —x) + %(x —xMT 2P (x™) (x—x™)

Set x"b to the (“easily” found) minimizer of this quadratic approximation:

XM 2 arg ming(x; x™)
X
= x" - [0*®(x™)] " OW(x™)

Can be nonmonotone for Poisson emission tomography log-likelihood,
even for a single pixel and single ray:

W(X) = (X+r)—ylog(x+r).



0.5

-1.5

Nonmonotonicity of Newton-Raphson

= e o — == T

— - Log-Likelihood
— - Newton Parabola
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Consideration: Monotonicity

An algorithm is monotonic if
P(xMH) <w(x),  wx".

Three categories of algorithms:

e Nonmonotonic (or unknown)

e Forced monotonic (e.g., by line search)

e Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

xiemp & M(X(n)), d = xteMP_ x(M

X" & x"V _q,d™ where a,2 argmin®(x” —ad™)
a

Inconvenient, sometimes expensive, nonnegativity problematic.



Conjugate Gradient (CG) Algorithm

Advantages

e Fast converging (if suitably preconditioned) (in unconstrained case)
e Monotonic (forced by line search in nonquadratic case)

e Global convergence (unconstrained case)

e Flexible use of system matrix A and tricks

e Easy to implement in unconstrained quadratic case

e Highly parallelizable

Disadvantages

e Nonnegativity constraint awkward (slows convergence?)
e Line-search somewhat awkward in nonquadratic cases
e Possible need to “restart” after many iterations

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.



Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBBI, ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)

update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE

(Perhaps the most nontrivial to implement)

Sequential (column action)
update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE



Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)

Update one pixel at a time, holding others fixed to their most recent values:

X' = arg mlnLIJ( X1, X X, X ,xﬂ'd) j=1,...,n
Xj=>0

Advantages

e Intrinsically monotonic

e Fast converging (from good initial image)

e Global convergence

e Nonnegativity constraint trivial

Disadvantages

e Requires column access of system matrix A

e Cannot exploit some “tricks” for A, e.g., factorizations
e Expensive “arg min” for nonquadratic problems

e Poorly parallelizable



Constrained Coordinate Descent lllustrated

Clipped Coordinate—Descent Algorithm




Coordinate Descent - Unconstrained

Unconstrained Coordinate—Descent Algorithm
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Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:

e quadratic or nearly-quadratic convex cost function

e nonnegativity constraint desired

e precomputed and stored system matrix A with column access
e parallelization not needed (standard workstation)

Cautions:
e Good initialization (e.g., properly scaled FBP) essential.
(Uniform image or zero image cause slow initial convergence.)
e Must be programmed carefully to be efficient.
(Standard Gauss-Siedel implementation is suboptimal.)
e Updates high-frequencies fastest —- poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation



Summary of General-Purpose Algorithms

Gradient-based

e Fully parallelizable

e Inconvenient line-searches for nonquadratic cost functions
e Fast converging in unconstrained case

e Nonnegativity constraint inconvenient

Coordinate-descent

e Very fast converging

e Nonnegativity constraint trivial

e Poorly parallelizable

e Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but poorly suited to large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

. need special-purpose algorithms for image reconstruction!



Data-Mismatch Functions Revisited
For fast converging, intrinsically monotone algorithms, consider the form of V.

WLS:

%iwu ]i)zzighi([Ax]i), where h;i(l) é%wi (yi_|)2.

Emission Poisson (negative) log-likelihood

Ng

L(X):_Z([Ax]i+ri)_yilog i +1i) Zh
where hi(1) = (I +r;) —yilog(l +T1;).

Transmission Poisson log-likelinood

=3 (be i) ~ylog(be ™) = 3 h((AX)

where hi(l) £ (bie”' +r;) —yilog(bie™ +r1;).

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same partially separable form.



General Imaging Cost Function

General form for data-mismatch function:

Ng
=) h;j(|AX
2"
General form for regularizing penalty function:

= ZLIJk([CX] k)

General form for cost function:

W(x) = £(X) +BR(X Zlh +BZka ([CXi)

Properties of W we can exploit:

e summation form (due to independence of measurements)
e convexity of h; functions (usually)

e summation argument (inner product of x with ith row of A)

Most methods that use these properties are forms of optimization transfer.



Optimization Transfer lllustrated

W(x) and ¢ (x)

- - - Surrogate function
— Cost function




Optimization Transfer

General iteration:

x™ = arg ming(x; x™)
x>0

Monotonicity conditions (cost function W decreases provided these hold):

o (x;xM) = W(xM) (matched current value)

o [y@(x;x"M) = 0W(x) (matched gradient)
x=x(" x=x("

o p(x;x") >WY(x) Vx>0 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and its relatives like SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.



Optimization Transfer in 2d




Optimization Transfer cf EM Algorithm
E-step: choose surrogate function ¢(x; x™)

M-step: minimize surrogate function

x™ = argming(x; x™)
x>0

Designing surrogate functions
e Easy to “compute”

e Easy to minimize

e Fast convergence rate

Often mutually incompatible goals . compromises



Convergence Rate: Slow

High Curvature
Small Steps
Slow Convergence




Convergence Rate: Fast

Low Curvature
Large Steps
Fast Convergence




Tool: Convexity Inequality

g convex = g(ax;+ (1—a)x) < ag(xq) + (1—a)g(xe) for a € [0, 1]

More generally: ax > 0and Yok =1= 9(3x0X) < S0kd(X).  Sum outside!




Example 1: Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):

Ngd
— Zhi([AX]i), hi(l):(|—|—I’i)—yi|0g(|—|—l’i).
=
Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let yi" = [Ax“‘)]- +17):

Z Z Xm) Xj o)
n
)

Since the hi’s are convex in Poisson emission model:
() |
hi ﬁyﬁm
—n) (i
Yi X

(LAX];) = hi 7 i
hi ([AX];) h(;[%) Jy 2,

Ng Mp alx(n) X
h < (p X X n # h _Jym)
ZI ) I;; [ )—/ifn) ] ' (Xgn) |

Replace convex cost function W(x) with separable surrogate function @(x; x™).

VAN
>
©
2
X



“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

2" Xj otn)
@ (x;;x™), where @;(xj;x") £ hil ==y | .
Z 1\ J( J ) i; yicn) ' Xgn) |

M-step separates:

x™ = argming(x; x") = X(jn+1) = arg ming; (x;; x"), j=1,...,np

x>0 Xj=0
Minimizing:

0

ox; 7 (X Zla” (‘mxj/x(in)) Zla”[ y XJ/X ] X=X

Solving (in case ri = 0):
Ny
/ ai |, j=1,...,n
gl (3 p

g e

e Derived without any statistical considerations, unlike classical EM formulation.
e Uses only convexity and algebra.

e Guaranteed monotonic: surrogate function @ satisfies the 3 required properties.
e M-step trivial due to separable surrogate.




ML-EM Is Scaled Gradient Descent

X" =x" 4+ D(xV) OW(x™)

This particular diagonal scaling matrix remarkably
e ensures monotonicity,
e ensures nonnegativity.



Consideration: Separable vs Nonseparable

Separable Nonseparable
2 2
1 1
< 0 < 0
-1 -1
-2 : -2 :
-2 0 2 -2 0
X1 X1

Contour plots: loci of equal function values.

Uncoupled vs coupled minimization.



Separable Surrogate Functions (Easy M-step)

The preceding EM derivation structure applies to any cost function of the form

=_§h&[Ax

cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction
Derivation yields a separable surrogate function
Y(x) < p(x;x™), where @(x;x" Z @ (xj; X'
M-step separates into 1D minimization problems (fully parallelizable):
X" = argminp(x; x") = x(j”“) = arg ming; (x;; x™), j=1,...,n,

x>0 Xj>0

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?



Separable vs Nonseparable

Separable Nonseparable

Separable surrogates (e.g., EM) have high curvature .. slow convergence.
Nonseparable surrogates can have lower curvature .. faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).



hi(1) and Q(I;17)
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High Curvature of EM Surrogate

— Log-Likelihood
--- EM Surrogates




1D Parabola Surrogate Function
Find parabola ¢ (1) of the form:
: 1
6" (1) = hi(67) +hi(67) (1 =6") +6" 50— 47)2, where £ 2 [AX™]
Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

& min{cz 0. q"(1)>h(), V> o}.

Surrogate Functions for Emission Poisson

120 — Negative log-likelihood
- - - Parabola surrogate function

10 - — EM surrogate function /

I
|
|
|
|
|
1

Cost function values

P Lower
(n) |
1% — curvature!



Paraboloidal Surrogate

Combining 1D parabola surrogates yields paraboloidal surrogate:

Zh ) < o(x;x™) Zlq,

Rewriting: @(d3+x";x™) =¥ (x") +0W(x™) 8+ EB’A’diag{ci(”) } Ad

Advantages
e Surrogate @(x;x") is quadratic, unlike Poisson log-likelihood
—> easier to minimize
e Not separable (unlike EM surrogate)
e Not self-similar (unlike EM surrogate)
e Small curvatures — fast convergence
e Intrinsically monotone global convergence
e Fairly simple to derive / implement

Quadratic minimization
e Coordinate descent
+ fast converging
+ Nonnegativity easy
- precomputed column-stored system matrix
e Gradient-based gquadratic minimization methods
- Nonnegativity inconvenient



Example: PSCD for PET Transmission Scans

PL-OSTR-16 PL-PSCD
4 iterations 10 iterations

e square-pixel basis

e strip-integral system model

e shifted-Poisson statistical model

e edge-preserving convex regularization (Huber)

e nonnegativity constraint

e inscribed circle support constraint

e paraboloidal surrogate coordinate descent (PSCD) algorithm



Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:

n
A=y [%(xj ") +e§”>] A=A
=1 |
Provided 15; > 0 and > =1 Thj = 1, since parabola q; is convex
Np . Np N
a" ([AX) =g" (Zlﬂsj [%(Xj —X§”>)+€§”)D <3 g" (%(x,- —x§”>)+£§”>)
j= j=

)< x2S S % —X) + £
Zlql ¢ lelnqul T[i'(XJ XJ )"' [
|

j
Separable Paraboloidal Surrogate:

Np
_ A NO (n)
=5 @ (x;;x™), i (X5 % §Tl'. q (— + £ )
12—1 J( j ) j j T )

Parallelizable M-step (cf gradient descent!):

X(_n+1) — arg mmq) (X.-X(n)) — [Xm) 1 0 LP( )] d_(n) _ ks ai_ZjC_(n)
: Xj=>0 S J d GX _|_’ J & T['|J '

Natural choice is T5; = |a;|/|al,

ali = ijl‘ai”



Example: Poisson ML Transmission Problem
Transmission negative log-likelinood (for ith ray):
h|(|) = (bie" + ri) —Y, Iog(bie" + ri) :
Optimal (smallest) parabola surrogate curvature (Erdogan, T-Ml, Sep. 1999):

[ [.h(0) —h(1)-+h()I
Ci(n) =C(€i(n),hi), C(|,h) — _"2 ( ) |(2) ( ) +, | >0
[, )
Separable Paraboloidal Surrogate (SPS) Algorithm
Precompute [ai = 3P aj, i=1,...,ng
oV = [AX];, (forward projection)
o= be " +r (predicted means)
h" = 1-y/y" (slopes)
c¢” = c(¢",h)  (curvatures)
X§n+1> _ Xgn) _ d.]('n)%kp(xm)) — lxgn) _ njilaij hi(n()n)] ’ j=1...,n
j J + =1 &j|alic; N

Monotonically decreases cost function each iteration. No logarithm!



The MAP-EM M-step “Problem”

Add a penalty function to our surrogate for the negative log-likelihood:

LP( ) ( )+BR( X)
Zl(PJ Xj;X") +BR(X)

M-step: x™P = argming(x;x") = arg mlnz @ (x;X") +BR(x) = ?

x>0 x>0 =1

For nonseparable penalty functions, the M-step is coupled .. difficult.

Suboptimal solutions
e Generalized EM (GEM) algorithm (coordinate descent on @)
Monotonic, but inherits slow convergence of EM.
e One-step late (OSL) algorithm (use outdated gradients) (Green, T-Ml, 1990)
?
a0 A X™) = 20y (%1 X™) +B5R(X) = 57 ) (xj; X™) +B5-R(X™)

J
Nonmonotonic. Known to diverge, depending on (3.
Temptingly simple, but avoid!
Contemporary solution

e Use separable surrogate for penalty function too (De Pierro, T-MI, Dec. 1995)
Ensures monotonicity. Obviates all reasons for using OSL!



De Pierro’s MAP-EM Algorithm

Apply separable paraboloidal surrogates to penalty function:

Mp
R(X) < RspgX, X") = Z R; (xj;x™)

Mp
Overall separable surrogate: @(x;x" Z¢J Xj; X"V) 4B ZRj (xj; X
|=

The M-step becomes fully parallelizable:
§n+1) = arg ming, (Xj;Xm)) —BR; (Xj;Xm)), i=1,....n.

XjO

X

Consider quadratlc penalty R(x) = ¥, W([CX]x), where Y(t) =t2/2.
If yj > 0 and 21 1Ykj = 1 then

Ck
CX k = Z Ykj [ykj _ Xgn)) + [Cx(n)]k] .

<Z Ykj [;: - -n))+[CX(n)]k]>

Np

< JZ Yij (ij( — X(jn)) + [CX(n)]k)

Since Y is convex:

W([Cxlk)



De Pierro’s Algorithm Continued

So R(x) < R(x;x™) £ 5® Rj(x;;x™) where

Rj(inX(”))éZVkJLUG—E(X —x") + [Cx" ])

M-step: Minimizing @; (x;; X™) +BR; (xj;x<”>) yields the iteration:
(1) _ i 2i= 1a”y,/

X
Bj+\/BZ (X'n 2 aYi/ in)> (szcﬁj/ykj)

j
Al o Skium -
where Bj:é i;aijJrBZ ij[CX ]k—y—kJX 3 ] =

and Y™ = [AX"]; +r;.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate



Ordered Subsets Algorithms
aka block iterative or incremental gradient algorithms
The gradient appears in essentially every algorithm'
ZIh aXJ Zla”

This is a backprojection of a sinogram of the derivatives {hi i)}.
Intuition: with half the angular sampling, this backprojection would be fairly similar

1 M.

e MO 5] .Zf“
where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.

Recall typical iteration:
X(n+1) — X(n) _ D(X(n)) Dw(x(n)) .



Geometric View of Ordered Subsets

-

argmax f (X) .-

-
';’_’

argmax f, (X)

Two subset case: W(x) = f1(X) + f2(X) (e.g., odd and even projection views).

For x far from x*, even partial gradients should point roughly towards x*.
For x™ near x*, however, DW(X) =~ 0, so f;(X) =~ —[Of,(X) = cycles!
Issues. “Subset gradient balance”: W (x) ~ MOfy(x). Choice of ordering.




Incremental Gradients (WLS, 2 Subsets)

200 f (x) 2 f

difference

odd™®)

(full — subset)




Subset Gradient Imbalance

difference

difference

4

-5
(full — subset)




Problems with OS-EM

e Non-monotone
e Does not converge (may cycle)

e Byrne’s “rescaled block iterative” (RBI) approach converges only for consistent
(noiseless) data

e . Unpredictable
e What resolution after n iterations?
Object-dependent, spatially nonuniform
e What variance after n iterations?
e ROI variance? (e.g., for Huesman’s WLS kinetics)



OSEM vs Penalized Likelihood

e 64 x 62image

e 66 x 60 sinogram

e 1P counts

e 15% randoms/scatter

e uniform attenuation

e contrast in cold region

e within-region o opposite side




Contrast-Noise Results

OSEM 1 subset
OSEM 4 subset
OSEM 16 subset
PL-PSCA

(64 angles)

Uniform image

Contrast




Horizontal Profile

—>—  OSEM 4 subsets, 5 iterations
—©— PL-PSCA 10 iterations
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Making OS Methods Converge

e Relaxation
e Incrementalism

Relaxed block-iterative methods
\Y
Yx) = 3 Wn(x)
m=1

y(H-(MHL) /M) s(n+m/M) _ O(nD(X<n+m/M>)D W, (X<n+m/|v|)) | m=0,.. . M-1
Relaxation of step sizes:

a,— 0asn— o, Y O =, zaﬁ<oo
n n

e ART
e RAMLA, BSREM (De Pierro, T-Ml, 1997, 2001)
e Ahn and Fessler, NSS/MIC 2001, T-MI 2003

Considerations

e Proper relaxation can induce convergence, but still lacks monotonicity.

e Choice of relaxation schedule requires experimentation.

o Wn(x) = £m(X) +7- R(X), so each W, includes part of the likelihood yet all of R
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Incremental Methods
Incremental EM applied to emission tomography by Hsiao et al. as C-OSEM
Incremental optimization transfer (Ahn & Fessler, MIC 2004)

Find majorizing surrogate for each sub-objective function:

= Wn(X), VX
(X X) > Wn(x), VXX

Define the following augmented cost function: F(X;Xg,...,Xu) = 3 m_; @n(X; Xm) .
Fact: by construction X = argmin W (x) = argminming, _ x, F (X X1,...,Xm).

Alternating minimization: f or m=1,...,M:

X" — argminF (x; XY LK X XX

X
XY — argminF (x”e‘”; XX X, X )?&?) = X"V
Xm
e Use all current information, but increment the surrogate for only one subset.
e Monotone in F, converges under reasonable assumptions on ¥
e In constrast, OS-EM uses the information from only one subset at a time



TRIOT Example: Convergence Rate

Transmission incremental optimization transfer (TRIOT)
64 subsets, initialized with uniform image

10° . . .
| SPS-MC
| —«— SPS-PC |
ol TRIOT-MC |
5 —+— TRIOT-PC |;
% i - 0OS-SPS
£ 10}
s |
© |
8 L
N 107
(0] !
E |
S |
10_45'
| 2 iterations of OS-SPS included

0 5 10 15 20
iteration



TRIOT Example: Attenuation Map Images

FBP PL optimal image

OS-SPS TRIOT-PC

OS-SPS: 64 subsets, 20 iterations, one point of the limit cycle
TRIOT-PC: 64 subsets, 20 iterations, after 2 iterations of OS-SPS)



OSTR aka Transmission OS-SPS

PL-OSTR-16 PL-PSCD
4 iterations 10 iterations

Ordered subsets version of separable paraboloidal surrogates
for PET transmission problem with nonquadratic convex regularization

Matlab m-file ht t p: / / www. eecs. um ch. edu/ ~f essl er
/ code/transm ssi on/tpl osps. m



Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm

WD _ |y 2, @ hi ([AX™];)
n
9, & lalic”

Ordered-subsets abandons monotonicity, so why use optimal curvatures ci(”)?

Precomputed curvature:

¢ = hi(li), i = argminh;(I)
|

Precomputed denominator (saves one backprojection each iteration!):

Ng
dj:Zaj|a\ici, j:l,...,np.
=

OS-SPS algorithm with M subsets:
(n+1) _ [X(_n) B Zi€5(n) aij hi([AXm)]i)] , J _ 1’ . np
+

" | dj /M



Summary of Algorithms

e General-purpose optimization algorithms
e Optimization transfer for image reconstruction algorithms
e Separable surrogates —- high curvatures — slow convergence
e Ordered subsets accelerate initial convergence
require relaxation or incrementalism for true convergence
e Principles apply to emission and transmission reconstruction
e Still work to be done...

Matlab/Freemat “image reconstruction toolbox” online:
http://ww. eecs. um ch. edu/ ~f essl er / code

An Open Problem

Still no algorithm with all of the following properties:
e Nonnegativity easy

e Fast converging

e Intrinsically monotone global convergence

e Accepts any type of system matrix

o Parallelizable



Part 4. Performance Characteristics

e Spatial resolution properties
e Noise properties
e Detection properties



Spatial Resolution Properties
Choosing [3 can be painful, so ...

For true minimization methods:

X = argminy(x)
X

the local impulse response is approximately (Fessler and Rogers, T-Ml, 1996):
E[X|x+dej| —E[X|x _ _
]

0 = lim, 5

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm (if iterated “to convergence”).

e Enables prediction of resolution properties
(provided W is minimized)

e Useful for designing regularization penalty functions
with desired resolution properties. For penalized likelihood:

() ~ [AWA+ BR| TAWAX™e

e Helps choose (3 for desired spatial resolution



Modified Penalty Example, PET

a) filtered backprojection

b) Penalized unweighted least-squares

c) PWLS with conventional regularization
d) PWLS with certainty-based penalty [36]
e) PWLS with modified penalty [139]



Modified Penalty Example, SPECT - Noiseless

Target filtered object

Truncated EM

FBP

Post-filtered EM

Conventional PWLS

L ]
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LY . .
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Modified Regularization



Modified Penalty Example, SPECT - Noisy

Target filtered object FBP Conventional PWLS

TER L
seurs x. ]
aeEe

Truncated EM Post-filtered EM Modified Regularization



Regularized vs Post-filtered, with Matched PSF

Noise Comparisons at the Center Pixel

—+— Uniformity Corrected FBP
—©— Penalized-Likelihood
—— Post-Smoothed ML
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Reconstruction Noise Properties

For unconstrained (converged) minimization methods, the estimator is implicit:

X=X(y) =argmin¥(x,y).
X

What is Cov{X}? New simpler derivation.

Denote the column gradient by g(x,y) = Oy W(X,y).

Ignoring constraints, the gradient is zero at the minimizer: g(X(y),y)

First-order Taylor series expansion:

gXy) = g(x™%y) + Oxg(X™4y) (X —x"°)
_ g< true y>_1_|:|2L|J< true )( true>

Equating to zero:
K ~ xirue _ [|:|)2(L|_,(Xtrue7 Y)} I:IXLIJ( xirue y) .

If the Hessian 0°W is weakly dependent on y, then

= 0.

Cov{X} ~ [D)z( W (Xtruej y)] —1 COV{ 0, W (Xtrue’ Y) } [D)Z( W (Xtrue’ y)] -1

If we further linearize w.r.t. the data: g(X,y) ~ g(X,¥) + Uya(X,y)(y—Y), then

Cov{X} ~ [OgW] . (OxOyW) Cov{y} (DhOyW)" [ORW]



Covariance Continued

Covariance approximation:

Cov{%} ~ [DFW(X™%, )] Cor{ W (X"2y) } [TRW(x™¥)] ™

Depends only on chosen cost function and statistical model.
Independent of optimization algorithm.

e Enables prediction of noise properties

e Can make variance images

e Useful for computing ROI variance (e.g., for weighted kinetic fitting)

e Good variance prediction for quadratic regularization in nonzero regions
¢ Inaccurate for nonquadratic penalties, or in nearly-zero regions



Qi and Huesman’s Detection Analysis
SNR of MAP reconstruction > SNR of FBP reconstruction (T-Ml, Aug. 2001)

quadratic regularization
SKE/BKE task
prewhitened observer
non-prewhitened observer

Open issues

Choice of regularizer to optimize detectability?
Active work in several groups.
(e.g., 2004 MIC poster by Yendiki & Fessler.)
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