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Introduction

e RF transmit coils produce non-uniform field strengths
— tip angles vary over the field of view

e Focus: parallel transmit excitation (using a coil array)
(Katscher et al., 2003, MRM)

e RF pulse design requires map of B1+ field strength

e At high fields (> 3T), use for pre-scan calibration
(Cunningham et al., 2006, MRM)

SNR = 16.4 dB




Conventional Measurement Model

Two scans, one with twice the RF amplitude
yij1 = fjsin(a;) +&;;
yiz = fjsin(2a;)+&;j,

o fi: underlying object transverse magnetization

of the jth voxel (times receive coll sensitivity map)
e ny: number of voxels
e a;: unknown tip angle of the jth voxel

e £;: (complex) gaussian noise

Estimating a; equivalent to estimating B1+ field strength



Standard approach - Double Angle Formula

e Double Angle Formula:

Elyj2] sin(2a;) 2sin(aj)cogaj) |
E[y;ﬂ - Sin(ajj) - Sirj1(aj) - =2coda;).

e Method-of-moments estimator:

e Possible problems
e ignores noise

e performs poorly in areas with low spin density
o suffers from 2rambiguities if a; Is too large

e unstable where a; too small

e provides no phase information

e does not generalize to more tip angles



Improved Signal Model

e tfransmit separately from K coils and receive from a common coll
e apply a sequence of L tip angles with known RF amplitudes &
e K x L reconstructed images (assumes ideal rect profile):
yin = f;e®iksin(ax) +€ju

¢ Variables:

o fj : underlying object transverse magnetization (real)

e ¢ : phase of the kth coll

® Xjk : unknown “B1+ map”

°® €jy . Zero-mean complex gaussian noise

e | : voxel index, k : coil index, | : tip sequence index

Goal: estimate each B1+ map x and each B1+ phase map @ from
the images yju .

The unknown object magnetization f; Is a nuisance parameter.



Signal Model Comments

e Units of x;, are arbitrary
l.e. @ In gauss = Xjx radian/gauss

o f; real = model is identifiable,
ambiguity only in sign of f;

e Similar model considered In (Kerr et al., 2006, MRM)
o @ restricted to powers of two

o cost function: ,
Z(\yjm!—\fj\sm(!axjk\)) -

o not a complex gaussian statistical model
o general purpose minimization model from Matlab
o used value of tip index at each voxel where tip closest to 11/2

e Our model allows for arbitrary a, and uses all data at each voxel.



Regularized lterative Estimator

e Goal : estimate x, @, and f by minimizing W
e Cost function:

K Np L 1
Wx, @ f) = =~y — fi€®ksin(axiy)|?
(%@, f) I;J;I;Z\yjkl J (aXjk)|
+B1R(X«) +B2R(¢y)

e Maps are smooth
— regularize X= (Xy,...,X<) and @= (@,,...,®,)

e R(Xx) and R(@,) - quadratic regularizing
roughness penalty functions

e 3; and [3; - regularized parameters

e No analytical solution over all 3 sets of parameters
SO we use block alternating minimization



Optimization Transfer - Object

o f; has analytic solution (given ¢ and X) :

il
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Optimization Transfer - B1+ Magnitude Map

e X (given @ and f)
upper bound for the curvature given by:

e Using Separable quadratic surrogates

1

Xl(<n+1) p— X&n) — dlag{b—} mxk LIJ (X(n)7 (p(n), f(n+l)) )
J

where

L 2
b; = IZ a|2|fj(n+1)’ + B
=]

e I depends on choice of regularizer
For second order differences with 8 nearest neighbors,

r=4-4-(2+2/,/(2))



Optimization Transfer - B1+ Phase Map

e @ (given f and x)
upper bound for the curvature given by:

62
¢2UJ < |yji fj sin(ayXik)|
e Using Separable quadratic surrogates,
1
(n+1) _ x(M+1) M f(n+1)
(pk (pk dlag{dj}m%W( @ f ),

where
of £ Z ’yjmf (n+1) S|n(a4x”+1 ) ‘ +r 3.

e B1 map and phase map updates can be parallelized
because no coupling between colil terms in cost function



Initialization

e Algorithm Is non-convex - may descend to local minimum —
Good initial estimates crucial

. xff)) - use standard double angle method
e £(9 - use analytic formula
0
° (I)gk) -
Because we can write the cost function as

2
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It suggests:

L

1 .
2> Vi — e®iksin(axjc)|”
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Oy = 2 (fj > sin(aXj) ijl>
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Simulations

e Parameters:
o K =4 colls
o L = 3 different tip angles a = [10 20 30]
o 100 iterations
o Computation time - 17 sec total (in MATLAB)
o SNR of about 21 dB as calculated by

10logyo([|yll/[ly — Elylll)



True maps

Phase maps

object
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Noisy Data

Scan for a, = 10, center tip 0 [19.9 20.7]

Scan for a, = 20, center tip 0 [39.7 41.3]

Scan for a, = 30, center tip 00 [59.6 62.0]

SNR =21.0dB




Initializations

Blmap initial




Final Estimate

Blmap estimate

Phase estimate

Object estimate
1




Simulation conclusions

e Masked NRMSE (calculated where f; > .1+max(f;))
o B1+ magnitude map (double angle formula) - 72%
o B1+ magnitude map (regularized iterative) - 12%
o B1+ phase map (initial) - 52%
o B1+ phase map (regularized iterative) - 3%
o Object (initial) - 15%
o Object (iterative) - 3%

e Reduces the NRMSE by over a factor of 5
compared to the double angle formula!



MRI| dataset

e Phantom with colls positioned to create a B1+ map
with a large magnitude difference

e One coll used for transmit

e TR ~ 8sec

¢ 18 different nominal tip angles from 10° to 180C°

e Estimated with all data and with just 30°,60°, and 90O




MRI estimates

Initial |B1+| estimate 30,60,90 |[B1+| estimate All tips |B1+| estimate
0.209 1 0.209 1

0 128 0 128 0
128 1 128 1 128

Initial B1+ phase estimate 30,60,90 B1+ phase estimate All tips B1+ phase estimate
3.14 1 3.14

-3.14 128
1

Using all tips as truth,
B, | NRMSE (conventional) - 19.5% (masked)

B, | NRMSE (30°, 60°, 90°) - 14.0% (masked)
B, phase NRMSE under 5% (masked) for both estimates




Conclusion

e Large improvement (RMSE and smoothness) over double angle
formula

¢ Also estimates the phase for each coll

e Areas for future research
o Investigate in conjuction with slice selection effects
o Further explore the spatial resolution/CRB
o Modify model to include T1 effects
o Modify model to jointly estimate mosfet nonlinearity
o Use for parallel excitation RF pulse design



