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Introduction

e Magnetic field inhomogeneity (ABp) can cause blur/distortion
In MR images If uncorrected

e EXisting correction methods have drawbacks

o Assume field map constant within each voxel
Sutton, Noll, Fessler, IEEE T-Ml, Feb. 2003
Fessler, et al., IEEE T-SP, Sep. 2005

o Apply only to particular trajectories, e.g., spirals
Noll, Fessler, Sutton, IEEE T-MI, Mar. 2005

o Use slow iterative method based on piecewise-linear model
Sutton, Noll, Fessler, ISMRM, 2004

Goal:

o account for within-voxel field inhomogeneity (piecewise-linear model
o allow arbitrary trajectories

o provide accelerated (iterative) algorithm



Review of “conventional” MR signal model

Baseband MR signal:
/ f X, V, Zo |w(xyzot —|2T[[kx( )X+ky (1) dxdy

e 7. axial center of the slice.
e f(X,y,2): transverse magnetization of object (unknown).

e W(X,Y,Zp): off-resonance frequency map for slice z.
Field map: w= yABy, assumed known.

o (kx(t),ky(t)): k-space trajectory of the (2D) scan.

Goal: estimate f(X,y,Z) from M noisy signal samples:
yi:S(ti)+€i, i:l,...,M,
€. zero-mean, complex, white gaussian noise.



Conventional discretization

Finite-series expansions of object and field map using rect functions:

\
fX¥,20) = 5 fjb(x—Xj,y—yj)
J=1

\
(JL)(X,y,Zo) — Z (*)J b(x_xjay_yj)

|]=1
e b(x,y) = reck(%,%) denotes the object basis function
(square pixels of dimension A)
* (Xj,Y;): center of the jth basis function translate
o f;i: object pixel values
o w;: field map values (assumed constant within each voxel)
e N: number of parameters (pixels)



Conventional discretized signal model

Combining

S(t) _ // f(x,y, ZO) e—loa(x,y,zo)te—|2n[kx( )X+ky (1) dXdy
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where M x N system matrix A has elements

aij = SiNG(kx (t)A, ky (t)A) e 'wjt e 12m(kx (ti)Xj+ky (t))y})
basis spectrum field inhomog. NUFFT



Conventional regularized LS reconstruction

N

f:argrninLIJ(f), W(f) = ,Hy Af|>+ BR(f)
fet data fit  regularize

Conjugate gradient (CG) iterative algorithm, uses gradient:
OW(f) =AAf —y)+BOR(f).
Computing Af requires

N N
Z aij f; = sing(kx (1) A, ky (t)A) Z e 10jti @ 127(kx ()X} +ky (ti)yj) f
—1 _le -
Approximation (time segmentation, frequency segmentation, etc.):

e 'l Z b|IC|J
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Extended signal model

Extension: account for non-ideal slice profile:
// h ya ZO xy, ) |w(xyz —1211(kx () X+ky (1) dXdde

Natural series expansion of object magnetization:

f(x,y,2) Zfbx Xj,Y—VY;j), for z= z,

which treats the object magnetlzatlon as a constant across the slice,
leading to usual (unavoidable?) partial volume effects.

Substituting and simplifying yields this “inconvenient” signal model:

N
3 fj// b(x— X;,y— y;) & 2 Dxtky )
]=1

- [/ h(z— zp) €' “*¥2tdz| dxdy.

~/

Not a FT



Field map series expansion

Piece-wise linear model for field map, with through-plane gradients:

. X—Xj Y=Y
(O(X,y,Z) — Z |’er< JA J’y ij) (wj _|_2T[gj (Z_ZO))a
=1

* (Xj,Yj) : in-plane center coordinates of the jth voxel

o w;: off-resonance frequency at center of the jth voxel [rad/s]

e g;: field map through-plane gradient within the jth voxel [Hz / cm]
e Can generalize to include in-plane field-map gradients.

Determine {w;} and {g;} using regularized field map estimates
(Fessler et al., ISBI 2006) and central differences.



Extended signal model continued

Substituting field map series expansion into preceding signal model
and simplifying yields:

S(t) _ //ZH tgj f recb( _AXJ y— yJ) g0t g 121(kx (t)x+ky (t) dxdy

\
= sing(kx (t)A, ky (t) Z (tg)) e a0t g—121(kx ()X +ky (D)) f,

where h < H.
e H(tg;) describes signal loss due to through-plane dephasing.

o e 't describes phase accumulation due to off-resonance.

e Simplifies to “conventional” signal model if no through-plane field
gradients, I.e., if g; = 0.

e Presence of H(tg;) prohibits direct use of previous fast methods.
e How to form a fast algorithm?



Proposed signal model

Proposed approximation:

L .
D 1=1,.... M
H(tigj)e Imjtl%|§1bnqj7 J =1,...,N°’
Substituting into “inconvenient” signal model and simplifying yields:

L N
S(ti) ~ Z of SinCz(kX(ti)A, ky(ti)A) Z g2k (t )X} +ky(t)y;) (C|j fJ) :
=1 lzl P
NUFFT (or FFT for EPI)

With this form, multiplication with A or A requires L NUFFT calls.

Thus CG-NUFFT requires O(LNIlogN) flops per iteration.
(Same compute time per iteration as CG with off-resonance only.)



Key approximation
tgj e 'Ol Z b||C|J, i.e., H~ BC

How to choose basis signals B and coefficients C?
(Alternate view: C is basis images and B is temporal interpolation.)

Brute force: principle components analysis (PCA) via SVD.
Drawback: N and M huge.

Here, each (w;,0;) pair corresponds to a signal H(tjg;) e '/l.

Solution: “parametric PCA:” apply PCA to a representative subset.



MR field map data

Magnitude images

Field maps

Fieldmap z—gradients

e Human brain MR field maps: Yip, Fessler, Noll, MRM, Nov. 2006.
e 64 x 64x 40, 24 cm transaxial FOV, A, =1 mm



Histogram of ( w;,g;) pairs
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(within the brain voxels exceeding 1% of the maximum magnitude value)




Histogram-based parametric PCA

Coarsely sampled bin centers (&, Gk), k=1,...,K < N.
These bin centers parameterize the “representative signals.”
e For now, chosen to uniformly sample (w, g) parameter space.

e Interesting question: how to optimize sampling?
Let wi denote number of (w;j,g;) pairs in the kth bin.

Choose basis B via this weighted PCA problem:

K \Y
m|~n Z Wk Z Iooktl Z b|| Clj
BC k=1 i=

Solution for basis signals B uses SVD of M x K matrix, not M x N.

Similar approach for (w,R5) in Fessler, et al., IEEE T-SP, Sep. 2005.



Example representative signals

Histogram Corresponding "signals"
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o H (ti gk) e—"bkti

o h(2) = rect(z/A,) < H(v) = A, sinqVA,)
e A, = 4 mm thick slice
e Typically 20-40 ms readout time for fMRI



Resulting basis functions

Histogram Basis components
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(Weighted SVD design, uniform sampling. Energy computed from C for entire 3D volume.)



z—qgradient [Hz/cm]
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(Designed for 20 msec readout with Tz = 30 msec.)



Simulation

e Simulation using (wj,g;) maps shown below.
e EPI trajectory: 20 msec readout, Tg = 30 msec
e Data generated with exact signal model (noiseless)

Field map Z gradients




Results

e Reconstructed by conventional inverse FFT.
CPU time <« 1 sec

e Reconstructed by CG with L =5, off-resonance model only.
10 iteration CPU time = 2 sec

e Reconstructed by CG with L =5, as proposed,
10 iteration CPU time = 2 sec

e Regqgularizaton parameter (3 chosen so that FWHM = 1.1 pixels

Classical FFT CG, Off-Res only CG, Proposed

Onoon

NRMS = 25.9% NRMS = 21.4% NRMS = 5.0%




Summary

e Model-based approaches to MR reconstruction

e Account for physical effects such as off-resonance, through-plane
susceptibility

e Improves image quality
e Fast algorithm compared to previous model-based approach
e Increased CPU time relative to classical inverse FFT

Future work

e In-plane field gradients

e Toeplitz approximation to AA

e Real data

e Effects of errors in field map and its gradients
e Other k-space trajectories such as spiral-in



