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Introduction

e Focus: fast single-shot MR imaging,
such as echo-planar imaging (EPI) or spiral imaging for fMRI

e Long readout times
— sensitive to By field inhomogeniety / magnetic susceptibility

e Accurate correction for off-resonance effects requires a field map

¢ Field-corrected MR image reconstruction
o Pixel-shifting for EPI (Sekihara et al., 1985, IEEE T-MI)
o Conjugate phase (Macovski, 1985, MRM; Noll et al., 2005, IEEE T-MI)
o |terative (Sutton et al., 2003, IEEE T-MI)



Measurement model

Two reconstructed images with slightly different echo times:
yi = Tj+E€;
VARES fje'xi—H]j,
e fj: unknown complex transverse magnetization of the jth voxel
e ny: number of voxels
o X; = wj/\; : accrued phase
e w;: off-resonance of jth voxel

e /\:: echo-time difference
* gj, Nj:e (complex) noise.

J:].,,np

Goal: estimate phase map X = (Xg,...,X%,,) from images y and z.

The unknown image f = (fy,..., fy) is a nuisance parameter vector.



Conventional phase estimator

Phase difference of the two images: (Sekihara et al., 1985, IEEE T-MI):
)?j — Z(WZJ') — ZZJ' — Zyj

e Fieldmap estimate is simply scaled by echo-time difference:
(I)j = >A<J/ At .
e Works perfectly in the absence of noise and phase wrapping,
within voxels where |f;| > 0.
e Sensitive to noise in voxels where magnitude |f;| is small.
e Ignores a priori knowledge that fieldmaps tend to be smooth

o Post-filtering works poorly because X; is severely corrupted
In low SNR voxels.



Maximum-likelihood phase estimation
Maximum likelihood (ML) method based on a statistical model.

Assume independent zero-mean white gaussian complex noise.
Assume y and z have same variance o2

Joint log-likelihood for f and x given y and zis

logp(y,z f,x) = logp(y; f)+logp(z f,X)
1

= 272]21(|y1 —fil*+1z— f; e'xj\z) -

Simultaneous ML estimation of image f and phase map x:
np . . 2
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ML solution

Quadratic cost function in f;, leading to the following ML estimate:
¢ _Yitez
J 2 :
Substituting back into the cost function and simplifying yields the
following minimization problem for ML estimation of X:

Np 1
X=argmin¥(x), W(x)= Z 5 ly; —e ™ zj|2.
=]

2 ]

After simplifying:
p

WX)= > lyjzj|[1—cos Lz — Zy; —Xj)].
=1

One ML estimate is the minimizer:
>“<,- — ZZJ' — Zyj.
-~ Conventional phase estimate = ML estimate!



Penalized likelihood phase / fieldmap estimation

ML estimate ignores a priori smoothness of fieldmaps.
Penalized-likelihood approach using regularization (aka MAP)

o Reqgularize phase map x with strong roughness penalty

o No regularization of magnetization map f (anatomical details)

Reqgularized cost function:
Np

WX) = > lyjzj|[1—cod Lz — Zy; —Xj)| + BR(X)
=1

Down-weights data in voxels where the magnitude |y;z;| is small.
In such voxels the phase will be estimated from neighboring voxels,

due to the spatial roughness penalty R(x):
RX) = Ynoi Ymoo WXN,m —x[n—1,m
+ ngézm;f (X[n7 m] _X[nv m-— 1:

)
).

Quadratic potential function Yi(t) =t%/2. (No “edge”

preservation.)



Minimization algorithm

Optimization transfer approach leads to diagonally preconditioned
gradient descent algorithm:
1 )
XML — x™ _ diag{
o Initialize x© with conventional (aka ML) phase estimate
e Guaranteed to decrease W(x) monotonically

e W nonconvex = convergence to a local minimizer of W(x)

W (x™)

(movie in pdf)



pl-iter.avi
Media File (video/avi)


PWLS fieldmap estimator
Echo time difference /A usually small enough to prevent phase wrap.
Taylor series approximation 1— cogt) ~t2/2.

Penalized weighted-least squares (PWLS) cost function:

WX => Wj% (42— 2y;—%))* +BR(X),
=1

where we define a magnitude weighting function: w; = |y;z|.

PWLS estimators give more weight to the “good data”
and use regularization to control noise.

Alternative: binarize the weights w; using a threshold:

Wi = { 0. otherwise e.d., Y= O.4mjax\yjzj\.

Use conjugate gradient (CG) algorithm for minimization.



Example (3T MR scan)

magnitude raw phase map
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Results

e Real data from a 3T MR scanner.
e 150 iterations for PL: 4.4 s (Matlab on G5)
e 150 iterations for PWLS: 2.2 s

e 3% normalized RMS difference
for PL method vs PWLS approximation with ML weights.

e 42% normalized RMS difference
for PWLS with binary weights vs PWLS with ML weights.



Simulation 1

True field map Conventional PWLS (ML)

RMSE = 23.3 Hz RMSE = 2.7 Hz RMSE = 2.7 Hz

Field map display range: -40 to 120 Hz
Error map display range: -20 to 20 Hz.



Simulation 2

True field map Conventional PWLS (ML)

RMSE = 15.9 Hz RMSE = 3.3 Hz RMSE = 3.2 Hz

Field map display range: -40 to 120 Hz
Error map display range: -20 to 20 Hz.



Effect on EPI

True fieldmap
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30 msec EPI readout.
20 iterations of PWLS-CG field-corrected image reconstruction



Choosing regularization parameter 3

Spatial resolution analysis of fieldmap estimator (Fessler et al., IEEE T-Ml,
1996):

EIX] ~ II + Bdiag{wj}_lC’ClX,

Hfirtrer”
where C is the 1st-order or 2nd-order differencing matrix.

Local frequency response of the “filter” is: (Unser et al. IEEE T-SP 1991)
1

14 (B/wj) (@ + w3)P’
for regularization based on pth-order differences, where p=1or 2.

H (0, W)

e Inverse 2D DSFT yields PSF hin,m|.
o Tabulate FWHM of PSF vs (3/w;.
e Select required [3 based on desired spatial resolution (FWHM).



PSF FWHM vs B/w,
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PSF Shape (2nd-order preferable
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Summary

e Conventional phase estimate equivalent to joint ML estimate
e Penalized-likelihood estimation reduces fieldmap error

e PWLS estimator performs similarly:
preferable due to simplicity in absence of phase wrap

Future work

e Accelerate by preconditioning or multi-resolution
e Reqgularized estimation from k-space data
e lllustrate effects of phase errors on real EPI and spiral scans



