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Introduction



Standard MR Image Reconstruction

MR k—space data Reconstructed Image

Cartesian sampling in k-space. An inverse FFT. End of story.

Commercial MR system quotes 400 FFTs (2562) per second.






Example: Iterative Reconstruction under  ABg

Conjugate Phase Fast kerative Field Map [(Hz)
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Example: Iterative RF Pulse Design
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Textbook MRI Measurement Model

Ignoring lots of things:
y.—S(t. + noise, i=1,...,N

/ 1: —I2TTK(t) ?dr»

where I denotes spatlal position, and

K(t) denotes the “k-space trajectory” of the MR pulse sequence,
determined by user-controllable magnetic field gradients.

e 2T provides spatial information = Nobel Prize

e MRI measurements are (roughly) samples of the Fourier
transform F (K) of the object’s transverse magnetization f(T).

e Basic image reconstruction problem:
recover f(F) from measurements {y}\" ,.

Inherently under-determined (ill posed) problem
— NoO canonical solution.
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Image Reconstruction Strategies

The unknown object f(T) is a continuous-space function,
but the recorded measurements y = (yi,...,yn) are finite.

Options?

e Continuous-discrete formulation using many-to-one linear model:
y=4f-+¢.
Minimum norm solution (cf. “natural pixels”):
mfjn |f|| subjecttoy=4f

f=a2aa)y=3sN,ce'?™ 7 where 44'c=Yy.

e Discrete-discrete formulation
Assume parametric model for object:

f(F) = > fipi(r).
=1



e Continuous-continuous formulation
Pretend that a continuum of measurements are available:

F(R) = [ f(7)e ™

vs samples y; = F (K;) +¢;, where K = K(t;).
The “solution” Is an inverse Fourier transform:
f(F) — /F(R)e'zﬂwdz.

Now discretize the integral solution (two approximations!):
A N — N —
f(r) =3 F&) e T ~ 2 W g2,
= =

where w; values are “sampling density compensation factors.”
Numerous methods for choosing w; value in the literature.

For Cartesian sampling, using w; = 1/N suffices,
and the summation is an inverse FFT.
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Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)
2. Apply inverse FFT to estimate samples of f(T)

Gridding from Polar to Cartesian
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Gridding Approach 1: Pull from K nearest
Gridding by pulllng from 10 nearest
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Gridding Approach 2: Pull from neighborhood

Gridding by pulllng from Wlthln nelghborhood
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Gridding Approach 3: Push to neighborhood

o
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Gridding Approaches
Ignore noise: y; = F(K;)

Pull:

for each Cartesian grid point, use weighted average

of nonuniform k-space samples within some neighborhood
o Does not require density compensation

o Requires cumbersome search/indexing to find neighbors

Push:
each nonuniform k-space sample onto a Cartesian neighborhood

~ N

F (R) = Z YiWi C(R — R,)

o C(K) denotes the gridding kernel, typically separable Kaiser-Bessel
Jackson et al., IEEE T-MI, 1991

o “x” denotes convolution.

o O(-) denotes the Dirac impulse

o density compensation factors w; essential
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Post-IFFT Gridding Correction

Gridding as convolution in k-space:

Zy.wI C(K—K;j) Zy.wI O(K —Kj).

Inverse FT reconstruction:
N
finital(7) = F - {FK)} =c() § yiwje ™™,

Post-correction:

N

f\final(r) — fin(i:ti(?)( ?) .
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C(u)

Gridding Kernels and Post-corrections

Convolution kernels

0.8
0.6
04r
0.2
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Post—gridding correction functions
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Density Compensation
N
f(7) = / F(R) €287 4R ~ >y 2Ty
=

e Voronoi cell area
Bracewell, 1973, Astrophysical Journal; Rasche et al., IEEE T-MI, 1999

e Jacobians Norton, IEEE T-MI, 1987
e Jackson’s area density Jackson, |IEEE T-MI, 1991
e |terative methods Pipe and Menon, MRM, 2000
o ...

Tradeoffs between simplicity and accuracy.
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Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:

e Magnetic field inhomogeneity
e Magnetization decay (T,)
e Eddy currents

o ...
4. Sensitivity encoding ?
5. ...

(But it is faster than iterative methods...)
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Model-Based Image Reconstruction: Overview
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Model-Based Image Reconstruction

MR signal equation with more complete physics:
/ f(F) 01 (F) @Mt g RANt g 127K(0) 7 g
S(t

S(tj) + noise, 1=1,...,N

o °1(T) Receive-coil sensitivity pattern(s) (for SENSE)

e w(r) Off-resonance frequency map
(due to field iInhomogeneity / magnetic susceptibility)

e R;(T) Relaxation map

Other physical factors (?)

e Eddy current effects; in K(t)
e Concomitant gradient terms
e Chemical shift

e Motion

Goal?
(it depends)
21



Field Inhomogeneity-Corrected Reconstruction

s(t) = / £ (P) 00 () @)t g ANt g 12K() 7 g

Goal: reconstruct f (1) given field map w(r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-I\/IIZgOOB)



Sensitivity-Encoded (SENSE) Reconstruction

s(t) = / £ (F) 00 (F) @Mt g RANt g 127K(0) 7 g

Goal: reconstruct f (') given sensitivity maps s*'(7).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily.”

(Sutton et al., ISMRM 2001, Olafszsson et al., ISBI 2006)



Joint Estimation of Image and Field-Map

s(t) = / £ (P) 00 () @)t g ANt g 12K() 7 g

Goal: estimate both the image f(r) and the field map w(T)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; I1SBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)
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The Kitchen Sink

s(t) = / £ (P) 00 () @)t g ANt g 12K() 7 g

Goal: estimate image f(T), field map w(r), and relaxation map R5(T)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)



Estimation of Dynamic Maps

s(t) = / £ (P) 00 () @)t g ANt g 12K() 7 g

Goal: estimate dynamic field map w(T) and “BOLD effect” R;(T)
given baseline image f(r) in fMRI.

Motion...
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Model-Based Image Reconstruction: Detalils
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Back to Basic Signal Model

/ f —I12TTK(t) rdr»

Goal: reconstruct f (T ) fromy=(y,.. ,yN), where y, = s(tj) + €.
Series expansion of unknown object:
M
r) ~ Z f; p(f—T;) «— usually 2D rect functions.
=1

/ Z fj p(r_rj) e—|2TrRi-F’dr»_ [/p I2T[K| F’dr f
=1

2

Yi

M
= Saf, aj= P(Roe-'m”i, p(r) <= P(R).
=1

Discrete-discrete measurement model with system matrix A = {&;; }
y = Af +¢&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.
28



Small Pixel Size Need Not Matter
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Reqgularized Least-Squares Estimation

f —argmin®(f), W(f)=|y—Af|?+aR(f)
feCM

e data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing roughness penalty term R(f) controls noise

R(f)z/HDszdf’

e regularization parameter a > 0
controls tradeoff between spatial resolution and noise
(Fessler & Rogers, IEEE T-IP, 1996)

e Equivalent to Bayesian MAP estimation with prior 0 e *Rf)

Quadratic regularization R(f) = ||Cf||* leads to closed-form solution:
f — [KA+aC'C] Ay

(a formula of Iimgtled practical use)



Choosing the Regularization Parameter

N

f = [AA+aC'C] Ay
[ } [AA+0aC'C] “AE[y]
| F| = [KA+ ac'c] 'AAf

blur

AA and C'C are Toeplitz = blur is approximately shift-invariant.

Frequency response of blur:
H(w)
H(w)+ aR(w)
where H = FFT(AAg) (lowpass) and R= FFT(C'Ceg)) (highpass)

L(w) =

Adjust a to achieve desired spatial resolution.
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Spatial Resolution Example

A'A e]. aCC ej
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Spiral k-space trajectory, FWHM of PSF is 1.2 pixels
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Spatial Resolution Example: Profiles
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lterative Minimization by Conjugate Gradients

Choose initial guess f© (e.g., fast conjugate phase / gridding).
lteration (unregularized):

g" =0W(f") = A(Af™ —y) gradient

p" = Pg" precondition
(0, n=20
Yn= < < n) pn>
e "0
d" —p (") +ynd (=1 search direction
v — Ad"
o, = (d", —g N /(AT AT step size
fO D — O 4 q,d™ update

Bottlenecks: computing Af and Ay.
e Ais too large to store explicitly (not sparse)

e Even if A were stored, directly computing Af is O(NM)
per iteration, whereas FFT is only O(NlogN).
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Computing Af Rapidly
M M
Afl =S aifi=PK)S e Tif,  i=1..N
Af] J; jfj=P( )J; j

e Pixel locations {r;} are uniformly spaced
e k-space locations {K;} are unequally spaced

— needs nonuniform fast Fourier transform (NUFFT)
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NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal samples
¢ Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: nttp://ww. eecs. umi ch. edu/ ~f essl er/ code
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Worst-Case NUFFT Interpolation Error

10

Maximum error for K/N=2

| ¢ Gaussian (best)

-10|L

—— Min—Max (uniform)

—%— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—&— Min—Max (L=13, B=1 fit)

4 6 8
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Further Acceleration using Toeplitz Matrices

Cost-function gradient:

where
T 2 AA b= Ay.

In the absence of field inhomogeneity, the Gram matrix T is Toeplitz:
A/ jk _ Zl“:) 2 —|2m<I (Fi—Ti)

Computing T " requires an ordinary (2x over-sampled) FFT.

(Chan & Ng, SIAM Review, 1996)
In 2D: block Toeplitz with Toeplitz blocks (BTTB).

Precomputing the first column of T and b requires a couple NUFFTSs.
(Wajer, ISMRM 2001, Eggers ISMRM 2002, Liu ISMRM 2005)
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NUFFT with Field Inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-Ml, 1991)

Recall signal model including field inhomogeneity:
/ 1: |w(? |2T[K( ) ?dr».

Temporal interpolation approximation (aka “time segmentation”):
|w(? ~ Z al |w(F’)
for min-max optimized temporal interpolation functions {34(')}|L:1-

3o e

Linear combination of L NUFFT calls.

40



Field Corrected Reconstruction Example

Simulation using known field map w(T).

Simulation Object Slow Conjugate Phase Slow terative

0|0

Mo Correction Fast Conjugate Phase Fast lterative
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Simulation Quantitative Comparison

e Computation time?

e NRMSE between f and fi"e?

Reconstruction Method | Time (s) NRMSE| NRMSE
complex | magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) | 128.16 | 0.04 0.04
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Human Data: Field Correction

Conjugate Phase Fast kerative Field Map [(Hz)

Uncormected
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Uncorrected Conjugate Phase Fasl heralive Field Map (Hz)
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Acceleration using Toeplitz Approximations

In the presence of field inhomogeneity, the system matrix is:
3y = P(R’I) e—lw(fj)ti e—IZHRi T
The Gram matrix T = AAis not Toeplitz:

A/ jk_ Zl“:) 2 —|2m<I (T F’k)e ( (F’j)—oo(?k))ti.
Approximation (“time segmentatlon”)

e (@l t'NZb"e —a(fig)

D £ dlag{e () T'}
[Tl]jk_ZI 1’P(KI)‘ b e~ 2K (Fj=Tio)

L
T = A’A ~ D|/T| D|,
Each T, is Toeplitz— T f using L pairs of FFTs.

(Fessler et al., IEEE T-SP, Sep. 2005, brain imaging special issue)
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Fieldmap: Brain

Toeplitz Results

Uncorrected

CG-NUFFT
L=6
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Conj. Phase, L=6

CG-Toeplitz
L=8
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Precomputation

Toeplitz Acceleration

NRMS % vs SNR

Method L|B,C ADy b=Ay| T, | 15 iter | Total Time o | 50 dB |40 dB |30 dB | 20 dE
Conj. Phase |6 0.4 | 0.2 0.6 30.7| 37.3| 46.5| 65.3| 99.¢
CG-NUFFT |6 0.4 5.0 5.4 5.6 16.7| 26.5| 43.0] 70.4
CG-Toeplitz |8 0.4 0.2 |06 1.3 2.5 55| 16.7| 26.4| 429| 704

e Reduces CPU time by 2x on conventiona

e No SNR compromise
¢ Eliminates k-space interpolations = ideal for FFT hardware

46
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Joint Field-Map / Image Reconstruction

Signal model:
y=st)+e,  st)= [ (e e TG,

After discretization:
y=AW)f+eg  aw) =PK)e lieg 2T
Joint estimation via regularized (nonlinear) least-squares:
(f,@) = argmin |ly—A(w)f[|*+BRy(f) + BoRo(0).
fcCM, weRM

Alternating minimization:
e Using current estimate of fieldmap W,

update f using CG algorithm.

e Using current estimate f of Image,
update fieldmap @ using gradient descent.

Use spiral-in / spiral-out sequence or “racetrack” EPI.
(Sutton et al., MRM, 2004)
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Joint Estimation Example

(a) uncorr., (b) std. map, (c) joint map, (d) T1 ref, (e) using std, (f) using joint.
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Activation Results: Static vs Dynamic Field Maps

== Dyn. Est. FM
Std. FM

Number Active
Number Active
Number Active

0 .
8 % 6 0.7 5 B h 0.5 0.6 0.7 0.8 | 85 0.6 0.7 0.8

Correlation Coefficient Correlation Coefficient I Correlation Coefficient
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Functional results for the two reconstructions for 3 human subjects.

Reconstruction using the standard field map
for (a) subject 1, (b) subject 2, and (c) subject 3.

Reconstruction using the jointly estimated field map
for (d) subject 1, (e) subject 2, and (f) subject 3.

Number of pixels with correlation coefficients higher than thresholds
for (g) subject 1, (h) subject 2, and (i) subject 3.

Take home message: dynamic field mapping is possible, using
iterative reconstruction as an essential tool.

(Standard field maps based on echo-time differences work poorly
for spiral-in / spiral-out sequences due to phase discrepancies.)
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Tracking Respiration-Induced Field Changes

—— Measured Resp.
—+— Est. Field Map

AHz

_1 i i
40 >0 60 70

Seconds
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Regularization Variations
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Regularization Revisited

e Conventional regularization for MRI uses a roughness penalty
for the complex voxel values:

M
R(f)~ S |fj— fi_q|% (in 1D).
=1

e Reqularizes the real and imaginary image components equally.

¢ In some MR studies, including BOLD fMRI:
o magnitude of f; carries the information of interest,
o phase of f; should be spatially smooth.
o This a priori information is ignored by R(f).

e Alternatives to R(f):
o Constrain f to be real?
(Unrealistic: RF phase inhomogeneity, eddy currents, ...)
o Determine phase of f “somehow,” then estimate its magnitude.
o Non-iteratively (Noll, Nishimura, Macovski, IEEE T-MI, 1991)
o Iteratively (Lee, Pauly, Nishimura, ISMRM, 2003)
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Separate Magnitude/Phase Regularization

Decompose f into its “magnitude” m and phase X:
fj(m,x):mje'xi, ijR, XjER, j=1,...,M.
(Allow “magnitude” m; to be negative.)
Proposed cost function with separate regularization of mand Xx:
W(m,x) = [ly—Af(m,x)[|*+yRu(m) +BRy(X)

Choose 3 > yto strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:
(M,X) = argmin ¥Y(m,x)

mcRM, xeRM

W is not convex = need good initial estimates (M, x©).
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Alternating Minimization

Magnitude Update:
m"®" = arg min¥ (m, x°%)

mcRM

Phase Update:
X" =argmin¥(m"™" x),
XeRM

Since fj = m;€”i is linear in m;, the magnitude update Is easy.
Apply a few iterations of slightly modified CG algorithm
(constrain mto be real)

But f; = m; €™ is highly nonlinear in x. Complicates “argmin.”

Steepest descent?
X(n+1) AI]XLP( O|d ( )) .
Choosing the stepsize A is difficult.
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Optimization Transfer
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Surrogate Functions

To minimize a cost function ®(x), choose surrogate functions ¢"(x)
that satisfy the following majorization conditions:

" (x<”>) = O(x")
gV (x) > d(x), VxeRM
lteratively minimize the surrogates as follows:

XM = argming™(x) .
x(N) cRM

This will decrease ® monotonically; ®(x™) < d(x™).

The art is in the design of surrogates.
Tradeoffs:

o complexity

o computation per iteration

o convergence rate / number of iterations.
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Surrogate Functions for MR Phase
N
L(x) £ |y—Af(m,x)||* = _Zhi([Af(m,X)]i),
where hi(t) £ |y; —t|* is convex.

Extending De Pierro (IEEE T-MI, 1995), for 15; > 0 and z'j\":lﬂ;j = 1.
M

[Af(m, X)] - blj eXi — Z Tﬁj [_ ( g% _ e|x§n)> _|_)—/i¢n)

=
where by; £ a;m;, yi"

Y

> H

[Af(m,x™)];. Choose 15; > 0and 3, T = 1.

Since h;j IS convex:

hi(JAF(M,X)]) = h, (%mj [—’ (e'xj — e ) +y"

M ! (n)
< ZT[' ( ( X _ g )+yitn))’
]=1

with equality when x = x(",




Separable Surrogate Function
S )< S S i h (b” (e'xj_e'xgn)) +¢n))
ZI le P |
M

( (e'xi — e.x§“)> +)7fn)> .

-~

Qj(xj; x™)

Construct similar surrogates {Sj} for (convex) roughness penalty...

Surrogate: @" ZQ, Xj; X)) 4+ BS; (xj; x™).

Parallelizable (simultaneous) update, with 1D minimizations:

XM = argming™ (x) = X" = argminQ; (x;; X™) + BS; (x;; X7).
x(N) cRM Xj€R

Intrinsically guaranteed to monotonically decrease the cost function.
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1D Minimization: cos + quadratic

Qj (Xj;X(n)) = — |r§”)

_ydm (n)
c:os(xj—xj — AT ),

* N
= (67) 18y - AX) o+ mM S (PR)

2
m(l—COS(t—p)) + bt + C/2 t Surrogates for sinusoids
3

surrogate(t)

. N W b O OO N 00 ©

Simple 1D optimization transfer iterations...
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Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:
X1 — g _ D(x™)Od(x™)

where the diagonal matrix D has elements that ensure ® decreases
monotonically.

Alternate between magnitude and phase updates...
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Preliminary Simulation Example

|X| true [ X true

28

Undersampled Spiral

28

. 5 .
ooooo

L 0 n 28



Parallel Imaging
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Sensitivity encoded (SENSE) imaging

Use multiple receive coils (requires multiple RF channels).
Exploit spatial localization of sensitivity pattern of each coill.

Note: at 1.5T, RF is about 60MHz.
— RF wavelength is about 3-10°m/s/60- 10°Hz = 5 meters

Pruessmann et al., MRM, 1999
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SENSE Model

Multiple coll data:
yi = S (i) + &, /f (F) (T e 7™ Tdr, 1 =1,...,L = N

Goal: reconstruct f(T) from coil data y,,...,y,
“given” sensitivity maps {qco“(?)}lL oy

Benefit; reduced scan time.

Left: sum of squares; right: SENSE.



SENSE Reconstruction
Signal model:

S (t) _ / f(r») SlCoil(r») e—|2nR(t)Tdr»

Discretized form:
y|:AD|f—|—8|, |=1,...,L,

where A is the usual frequency/phase encoding matrix and
D, contains the sensitivity pattern of the Ith coil: D = diag{s/®(F;)} .

Regularized least-squares estimation:
R L
f —argminy |y, —AD; f||*+BR(f).
f 1=

Can generalize to account for noise correlation due to coil coupling.
Easy to apply CG algorithm, including Toeplitz/NUFFT acceleration.

For Cartesian SENSE, iterations are not needed.
(Solve small system of linear equgtions for each voxel.)



RF Pulse Design
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Example: Iterative RF Pulse Design
(3D tailored RF pulses for through-plane dephasing compensation)
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Multiple-colil Transmit Imaging Pulses (Mc-TIP)

ilap
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Summary

e |terative reconstruction: much potential in MRI

e Even nonlinear problems involving phase terms €* are tractable
by using optimization transfer.

e Computation: reduced by tools like NUFFT / Toeplitz

e Optimization algorithm design remains important
(cf. Shepp and Vardi, 1982, PET)

Some current challenges

e Sensitivity pattern mapping for SENSE

e Through-voxel field inhomogeneity gradients

e Motion / dynamics / partial k-space data

e Establishing diagnostic efficacy with clinical data...
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Advertisement

“Image Reconstruction: Algorithms and Analysis”
book Iin preparation.

Email f essl er @im ch. edu for notification of web publication.
(Some chapters should be available in Summer 2006.)
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