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Statistical X-ray CT image reconstruction

ft = argmax®(y,u) = argmaxL(y,u) — BR(u), R(u)= ;w([Cu]k)-

p=0 p=0

» Edge-preserving penalty functions, such as “hyperbola” penalty: w(z) = 8*(\/1+ (¢/8)2—1).
e How to choose the regularization parameter 6? based on '

e Too small o: preserve noise!

e Too large 6: smooth out the details!
o A statistical reconstruction example with same [ but different 6 values.




Covariance approximation: the matrix method

e For tomography, the measurements y = |yy,...,y,]' have indepen-
dent Poisson distributions.

e An accurate covariance approximation has been derived in (Fessler,
IEEE T-IP, 1996) for penalized likelihood estimators.

Cov{i} ~ (AWA+BR) 'AWAAWA+BR) ', (1)
o A: the system matrix

o W = diag(y)

e [7: the Hessian matrix of roughness penalty



Variance approximation: the FFT method

e The matrix method described in the previous slide has been used Iin
various applications, (Qi 2001, Stayman 2004).

o are usually used in practical com-
putation for shift-invariant imaging systems.
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where ¥ is a Fourier Transform and e; is the jth unit vector.

e Convenient for evaluating the variance at a few image locations of
Interest.



Drawbacks of the FFT method

e The FFT method provides accurate variance/standard deviation pre-
diction at some image location interested.

e The computation of this FFT approximation is expensive for realis-
tic image size when the variance must be computed for all pixels,
particularly for shift-variant systems like fan-beam tomography.

e |t needs

o Goal: faster variance approximation without losing accuracy.



Continuous-space covariance approximation

e Go back to from discrete space! With the same
philosophy in (Fessler,1996), one can derive the continuous-space
covariance operator X,

K= Cov{i} ~ (A WA+ R) ' A WaA( A WA+ R) ™,

e 4. the projection operator
e 7V/: the fan-beam weighting operator, ("W p)(s,B) = w(s,B)p(s,B)

e % : the regularization operator



Fourier covariance approximation

o Consider an impulse object 9,(x,y) = 6(x —x;,y —y;). Using local
Fourier-domain analysis, the local covariance operator can be ex-

pressed as
-l H](p7q)) >
A= ([Hj(p,cb) +R;(p,P)]? . (3)

with respect to some image location (x;,y;).

o : the Gram operator
e '/ : the Fourier operator
o : the local frequency response of the Gram operator 4™ W49,

o : the local frequency response of X9



Continuous-space variance approximation

» The variance at location (x;,y;) can then be expressed as an integral
in the frequency domain,

2T )
Var{fij} = / / Hi(p, q) +R(p q))]zpdpdq).

e The local frequency response of the Gram operator can be found by
taking local Fourier transform of 2" W46 ;:

1

Hj(p,®) & H(p, ®:0j.y)) = [ wi(®).
o = w(s",B)J(s) +w(s',B)J(s) . the fan-
. o=0 _ ¢=0-7
beam weighting function
o . the data statistics
o . the determinant of the Jacobian matrix of transforming from

the fan-beam coordinates to parallel-beam coordinates



Fourier domain variance integral

e Using , the variance of j; at location (x;,y;)
can be approximated analytically as

s @)/Ip
Wl ), G o+ o 0 0

e The parallel-beam geometry is just a special case with the angular
weighting function only consisting of the data statistics.

e Discretize this integral and evaluate it for a variance map!



Quadratic R(p,d) is approximately separable

e Consider penalty, whose R(p,®) is approximately separa-
ble in p and &,
Ri(p,®) ~ (21p)?R ().

e The variance approximation on previous slide becomes
Sy Wf,s?
/ / pdp (@
B(2mp)2R;(®)

|
— pmax d(b,
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for a quadratic penalty function.
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Computation of analytical variance estimation

o The computation of w;(P) for all pixels only requires the same com-
putation time as

e The variance prediction integral can be evaluated by a finite sum-
mation with correctly chosen p.x.

e The analytical prediction requires much less computation than the
FFT method and thus is practical for realistic tomography image
size.



Example: standard quadratic penalty

» Consider a standard quadratic penalty s.t. R;(®) = R; is indepen-
dent of ®. R; is chosen to match the resolution of PULS (penalized
unweighted least square) reconstruction with the same .

e The variance approximation in this case is of a very simple form:

{ } p3 27 1
Var{ji;} ~ —= ——dd. ®)
T3 o [wi(@) + BAn2p3R))




QPL reconstruction simulation

e 3rd-generation GE CT scanner.

e 128x128 Zubal phantom, 400 iterations of PL-IOT (incremental optimization transfer algo-
rithm, Ahn 2004), 450 realizations.

o FBP and PL-IOT reconstruction(p = 2'?) have matched resolution: FWHM = 1.76 pixels
i.e., 6.0mm

true phantom PL-IOT reconstruction FBP with matched resoluti%leo

prediction PL-IOT empirical FBP w/ matched resol (d|V|de1d5by 4)




Standard deviation image prediction results

e Vertical Profiles
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Standard deviation image prediction results

e Horizontal profiles
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Future work

o Evaluate the performance of the proposed method on the modified
quadratic penalty which leads to
(Shi, 2005).

e Investigate how to apply this prediction in
, possibly a locally-varied ¢ in edge-preserving regu-
larization.

e Investigate how well the proposed method can perform in

e Generalize the method to CT.



