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Outline

e MR image reconstruction

e Model-based reconstruction

e Ilterations and computation (NUFFT etc.)
e New regularization approach
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Textbook MRI Measurement Model

Ignoring lots of things:
Vi = s(t. + noise, 1=1,....N

/ 1: |2T[k(t ?dr»

where  denotes spatlal position, and

R(t) denotes the “k-space trajectory” of the MR pulse sequence,
determined by user-controllable magnetic field gradients.

g 12K T provides spatial information — Nobel Prize

e MRI measurements are (roughly) samples of the Fourier trans-
form of the object’s transverse magnetization f (7).

e Basic image reconstruction problem:
recover f(F) from measurements {y}\" ,.

Inherently under-determined (ill posed) problem
— no canonical solution.



Image Reconstruction Strategies

The unknown object f(T) is a continuous-space function,
but the recorded measurements y = (y1,...,yn) are finite.

Options?

e Continuous-discrete formulation using many-to-one linear model:
y=A4f-+e.
Minimum norm solution (cf. “natural pixels”):

min||f| subjecttoy=4f
f

f=a(2a)y=3sN, ce? 7 where 24°c=Yy.

¢ Discrete-discrete formulation
Assume parametric model for object:

f(F) =3 fbj(F).
]=1



e Continuous-continuous formulation
Pretend that a continuum of measurements are available:

/f 121K - T’dr
vs samples y, = F(ki) +E.
The “solution” Is an inverse Fourier transform:

_ / F (K) &2 gk,

Now discretize the integral solution:

ZF |2nk F’

where w; values are “sampling density compensation factors.”
Numerous methods for choosing w; value in the literature.



Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)
2. Apply inverse FFT to estimate samples of f(T)

Gridding from Polar to Cartesian




Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:

e Magnetic field inhomogeneity
e Magnetization decay (T,)
e Eddy currents

o ...
4. Sensitivity encoding ?
5. ...



Model-Based Image Reconstruction

MR signal equation with more complete physics:
/ £ () 501 (F) €40t g RAN! o 127k(t) T g

S(tj) + noise, 1=1,...,N

* Sil(T) Receive-coil sensitivity pattern(s) (for SENSE)

w(r) Off-resonance frequency map
(due to field iInhomogeneity / magnetic susceptibility)

e Ri(T) Relaxation map

Other factors (?)

o Eddy current effects; in k(t)
e Concomitant gradient terms
e Chemical shift

e Motion

Goal?
(it depends)



Field Inhomogeneity-Corrected Reconstruction

S(t) _ / f (?) Scoil(f) e—loo(?)t e R(T)t e—l2T[R(t) T dr

Goal: reconstruct f (1) given field map w(r).
(Assume all other terms are known or unimportant.)

Motivation
Essential for functional MRI of brain regions near sinus cavities!

(Sutton et al., ISMRM 2001; T-MI 2003)



Sensitivity-Encoded (SENSE) Reconstruction

/ £ (F)s0 (F) @40t g RADE o 12K T g

Goal: reconstruct f(T) given sensitivity maps S.qi(T).
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily”

(Sutton et al., ISMRM 2001)



Joint Estimation of Image and Field-Map

S(t) _ / f (r) Scoil(r) e—lw(?)t e R(T)t e—IZH_R(t) T dr

Goal: estimate both the image f(r) and the field map w(T)
(Assume all other terms are known or unimportant.)

Analogy:
joint estimation of emission image and attenuation map in PET.

(Sutton et al., ISMRM Workshop, 2001; I1SBI 2002; ISMRM 2002;
ISMRM 2003; MRM 2004)



The Kitchen Sink

S(t) _ / f (?) Scoil(r) e—lw(?)t e—RE(?)t e—IZH_R(t) T dr

Goal: estimate image f(T), field map w(r), and relaxation map R5(T)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)



Estimation of Dynamic Maps

/ £ (F) Sui(F) €140 g RATN o127kt T g

Goal: estimate dynamic field map w(T) and “BOLD effect” R;(T)
given baseline image f (1) in fMRI.

Motion...



Back to Basic Signhal Model

S(t) = / f(P)e 2O 7 gp

Goal: reconstruct f(r) fromy= (yi,...,Yn), Where y; = s(tj) + &;.

Series expansion of unknown object:

\Y]
f(r) ~ Z fib(r—T1;) «— usually 2D rect functions.
]=1

- q q
/ > fib(r—7j)| e Tar = [ / b(F — ;) e ™) Tdr| f
| J=1

Q

Yi

y . ;
= Saifi, & =B(kt)e "™ W, b(F) < B(K).
=1

Discrete-discrete measurement model with system matrix A = {&;; }
y = Af +¢&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.



Small Pixel Size Does Not Matter
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Regularized Least-Squares Estimation

f = argmin¥(f), W(f) = |ly—Af||°+aR(f)
feCM

o data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing roughness penalty term R(f) controls noise

R(f)z/HDfHde’

e regularization parameter a > 0
controls tradeoff between spatial resolution and noise
(Fessler & Rogers, IEEE T-IP, 1996)

 Equivalent to Bayesian MAP estimation with prior 0 e *Rf)

Quadratic regularization R(f) = ||C f||* leads to closed-form solution:
f — [KA+aC'C] Ay

(a formula of limited practical use)



lterative Minimization by Conjugate Gradients

Choose initial guess f© (e.g., fast conjugate phase / gridding).
Iteration (unregularized):

g =0W(f") = A(Af™ —y) gradient

p" = Pg" precondition
(0, n=0
Yn= < < n) pn>
e "0
d" —p (") +ynd (=1 search direction
v — Ad"
o, = (d", —g N /(AT AT step size
fO D — O 4 q,d™ update

Bottlenecks: computing Af and Ay.
e Ais too large to store explicitly (not sparse)

e Even if A were stored, directly computing Af is O(NM)
per iteration, whereas FFT is only O(NIogN).



Computing At Rapidly
Za” fj = B(K(t) Ze kW, i=1,...,N

o Pixel locations {r;} are uniformly spaced

e k-space locations {E(ti)} are unequally spaced

— needs nonuniform fast Fourier transform (NUFFT)



NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal samples
e Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.
NUFFT toolbox: nttp://ww. eecs. unmi ch. edu/ ~f essl er/ code
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Worst-Case NUFFT Interpolation Error

Maximum error for K/N=2

Min—Max (uniform)
10°° | Gaussian (best)
—x— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—A— Min—Max (L=13, B=1 fit)
2 4 6 8 10
J

10—10




Field inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-Ml, 1991)

Recall: ﬁ
S(t) _ / f(F’) e—lo.(F’)t e—|2nk(t).?dr»

Temporal interpolation approximation (aka “time segmentation”):
L
e—lw(F’)t ~ al(t)e—lw(?)n

for min-max optimized temporal interpolation functions {a(-)}/_,.

S(t) ~ IZla(t) / [f(r) e—'“mﬂ e ' T gp

Linear combination of L NUFFT calls.



Field Corrected Reconstruction Example

Simulation using known field map w(T).

Simulation Object Slow Conjugate Phase Show erative

0jo]o

Mo Correction Fast Conjugate Phase Fast terative




Simulation Quantitative Comparison

e Computation time?

o NRMSE between f and fi"e?

Reconstruction Method | Time (s) NRMSE| NRMSE
complex | magnitude
No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04
Exact Iterative (10 iters) | 128.16 | 0.04 0.04




Human Data: Field Correction

Uncormected Conpugate Phase Fast herative Field Map [(Hz)
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Uncorrected Conjugate Phase Fasl heralive Field Map (Hz)
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Regularization

e Conventional regularization for MRI uses a roughness penalty
for the complex voxel values:

\Y]
R(F)~ S |fj— fi_q|° (in 1D).
=1

e Reqgularizes the real and imaginary image components equally.

e In some MR studies, including BOLD fMRI:
o magnitude of f; carries the information of interest,
o phase of f; should be spatially smooth.
o This a priori information is ignored by R(f).

e Alternatives to R(f):
o Constrain f to be real?
(Unrealistic: RF phase inhomogeneity, eddy currents, ...)
o Determine phase of f “somehow,” then estimate its magnitude.
o Non-iteratively (Noll, Nishimura, Macovski, IEEE T-MI, 1991)
o Iteratively (Lee, Pauly, Nishimura, ISMRM, 2003)



Separate Magnitude/Phase Regularization

Decompose f into its “magnitude” m and phase X:
fj(m,x):mje'xi, ijR, XjER, j=1,...,M.
(Allow “magnitude” m; to be negative.)

Proposed cost function with separate regularization of mand x:
W(m,x) = [ly—Af(m,x)[|*+yRy(M) +BRy(X).
Choose 3 > yto strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:

(M,X) = argmin ¥Y(m,Xx)
mecRM, xeRM

W is not convex =—> need good initial estimates (M, x©),



Alternating Minimization

Magnitude Update:
m"®" = arg min¥ (m, x°)

mcRM

Phase Update:
X" =argmin¥(m"™" x),
XeRM

Since fj = m;€”i is linear in m;, the magnitude update Is easy.
Apply a few iterations of slightly modified CG algorithm
(constrain mto be real)

But f; = m; €™ is highly nonlinear in x. Complicates “argmin.”

Steepest descent?
X(n+1) AI]XLP( O|d ( )) .
Choosing the stepsize A is difficult.



Optimization Transfer




Surrogate Functions

To minimize a cost function ®(x), choose surrogate functions ¢"(x)
that satisfy the following majorization conditions:

" (x(”>) = O(x")
gV (x) > d(x), VYxeRM
Iteratively minimize the surrogates as follows:

XM = argming™(x) .
x(N) eRM

This will decrease ® monotonically; ®(x™) < d(x™).

The art is in the design of surrogates.
Tradeoffs:

o complexity

o computation per iteration

o convergence rate / number of iterations.



Surrogate Functions for MR Phase
\
L(x) £ ly—Af(m,x)|* = _Zhi([Af(m,X)]i),
where hi(t) £ |y; —t|* is convex.

Extending De Pierro (IEEE T-MI, 1995), for 15; > 0 and le\/l:lTﬁj = 1.

Atm) =3 by =3 [ (e e ) 1y
’ | — [ - I ?
& J ) J Tﬁj |

where bjj £ a;m;, ¥ = [Af(m,x™")];. Choose Ti; >0and 3!, ;=1

Since h;j IS convex:

M b @
hi Af mXx)ji) = hi - A(elxj_elxj )+—i(n)]
((Af(m X)) (zn, B g
<y myh (o (&) +9)
- JZ]- J T[IJ | ,

with equality when x = x\",



Separable Surrogate Function
S )< S S 1ijh (b” (e'xj _e'Xgn)> +9(n)>
ZI le P T |
\Y

( (e‘xi — e'Xgn)> +)7§n)> .

-~

Qj(xj; x™)

Construct similar surrogates {Sj} for (convex) roughness penalty...

Surrogate: @" ZQ, Xj; X)) 4+ BS; (xj; x™).

Parallelizable (simultaneous) update, with 1D minimizations:

XM = argming™ (x) = X" = argminQ; (x;; X™) + BS;(x;; X7).
x(N) cRM XjER

Intrinsically guaranteed to monotonically decrease the cost function.



1D Minimization: cos + quadratic

m(1-cos(t—p)) + bt + ¢/2 2

surrogate(t)

. N W b 0 OO N 00 ©

Simple 1D optimization transfer iterations...



Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:
(N1 — g _ D(x™)Od(x™)

where the diagonal matrix D has elements that ensure ® decreases
monotonically.

Alternate between magnitude and phase updates...



Preliminary Simulation Example

U X true

Undersampled Spiral
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Summary

e |terative reconstruction: much potential in MRI

e Computation: reduced by tools like NUFFT / temporal interpola-
tion;
combined with careful optimization algorithm design
cf. Shepp and Vardi, 1982, PET

e Problems involving phase terms €* suitable for optimization trans-
fer.

Future work

e Multiple receive coils (SENSE)

e Through-voxel field inhomogeneity gradients
e Motion (dynamic field maps...)

e Real data...



