Iterative Reconstruction in MRI Using Iterative Methods

Jeffrey A. Fessler

EECS Department
The University of Michigan

University of Virginia

Apr. 14, 2004

Acknowledgements: Doug Noll, Brad Sutton

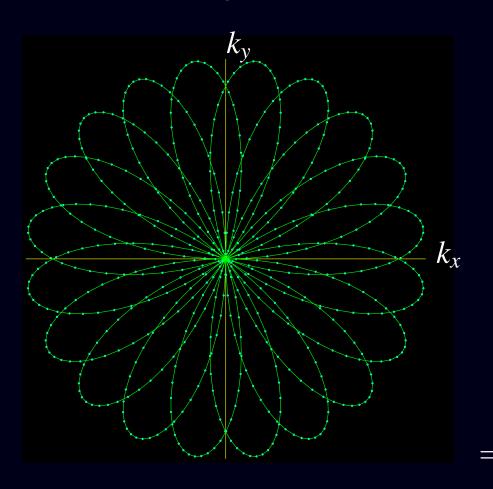
Outline

- MR image reconstruction
- Model-based reconstruction
- Iterations and Computation (NUFFT etc.)
- New regularization approach (ISBI '04)

MR Image Reconstruction

"k-space"

image



Textbook MRI Measurement Model

Ignoring *lots* of things:

$$y_i = s(t_i) + \text{noise}_i, \qquad i = 1, ..., N$$

$$s(t) = \int f(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r},$$

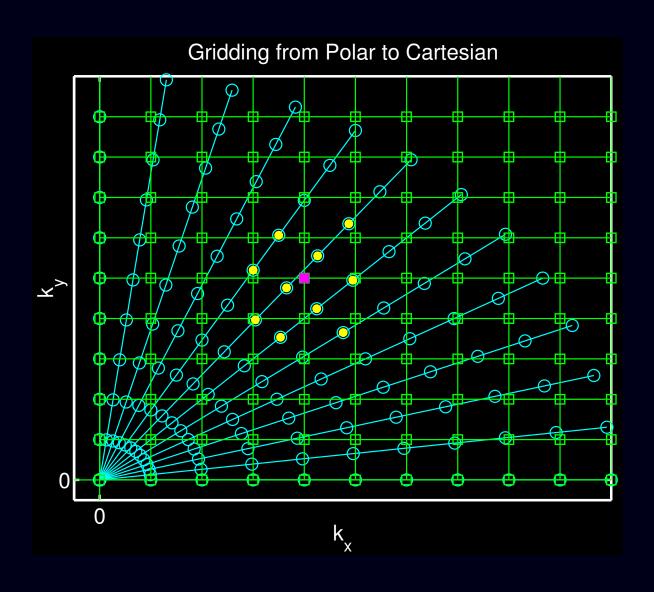
where $\vec{k}(t)$ denotes the "k-space trajectory" of the MR pulse sequence.

- MRI measurements are (roughly) samples of the Fourier transform of the object's transverse magnetization $f(\vec{r})$.
- Reconstruction problem: recover $f(\vec{r})$ from measurements $\{y_i\}_{i=1}^N$.

Inherently under-determined (ill posed) problem \implies no canonical solution.

Conventional MR Image Reconstruction

- 1. Interpolate measurements onto rectilinear grid ("gridding")
- 2. Apply inverse FFT to estimate samples of $f(\vec{r})$



Limitations of Gridding Reconstruction

- 1. Artifacts/inaccuracies due to interpolation
- 2. Contention about sample density "weighting"
- 3. Oversimplifications of Fourier transform signal model:
 - Magnetic field inhomogeneity
 - Magnetization decay (T₂)
 - Eddy currents
 - ...
- 4. Sensitivity encoding?
- 5. ...

Model-Based Image Reconstruction

More complete signal equation:

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$
$$y_i = s(t_i) + \text{noise}_i, \qquad i = 1, \dots, N$$

- $s_{\text{coil}}(\vec{r})$ Receive-coil sensitivity pattern(s) (for SENSE)
- $\omega(\vec{r})$ Off-resonance frequency map (due to field inhomogeneity and susceptibility)
- $R_2^*(\vec{r})$ Relaxation map

Other factors (?)

- Eddy current effects; in $\vec{k}(t)$
- Concomitant gradient terms
- Chemical shift
- Motion

Goal? (it depends)

Inhomogeneity-Corrected Reconstruction

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given field map $\omega(\vec{r})$ (Assume all other terms are known or unimportant.)

(Sutton et al., ISMRM 2001; T-MI 2003)

Sensitivity-Encoded (SENSE) Reconstruction

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ given sensitivity maps $s_{\text{coil}}(\vec{r})$ (Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction "easily"

(Sutton et al., ISMRM 2001)

Joint Estimation of Image and Field-Map

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate both the image $f(\vec{r})$ and the field map $oldsymbol{\omega}(\vec{r})$ (Assume all other terms are known or unimportant.)

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002; ISMRM 2003; MRM in review)

The Kitchen Sink

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Goal: estimate image $f(\vec{r})$, field map $\omega(\vec{r})$, and relaxation map $R_2^*(\vec{r})$

Requires "suitable" k-space trajectory.

(Sutton et al., ISMRM 2002; Twieg, MRM, 2003)

Estimation of Dynamic Maps

$$s(t) = \int f(\vec{r}) s_{\text{coil}}(\vec{r}) e^{-\iota \omega(\vec{r})t} e^{-R_2^*(\vec{r})t} e^{-\iota 2\pi \vec{k}(t)\cdot \vec{r}} d\vec{r}$$

Goal: estimate dynamic field map $\omega(\vec{r})$ and "BOLD effect" $R_2^*(\vec{r})$ given baseline image $f(\vec{r})$ in fMRI.

Motion...

Back to Basic Signal Model

$$s(t) = \int f(\vec{r}) e^{-i2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Goal: reconstruct $f(\vec{r})$ from $\mathbf{y} = (y_1, \dots, y_N)$, where $y_i = s(t_i) + \varepsilon_i$.

Series expansion of unknown object:

$$f(\vec{r}) \approx \sum_{j=1}^{M} f_j b(\vec{r} - \vec{r}_j)$$
 — usually 2D rect functions.

$$y_{i} \approx \int \left[\sum_{j=1}^{M} f_{j} b(\vec{r} - \vec{r}_{j}) \right] e^{-i2\pi \vec{k}(t_{i}) \cdot \vec{r}} d\vec{r} = \sum_{j=1}^{M} \left[\int b(\vec{r} - \vec{r}_{j}) e^{-i2\pi \vec{k}(t_{i}) \cdot \vec{r}} d\vec{r} \right] f_{j}$$

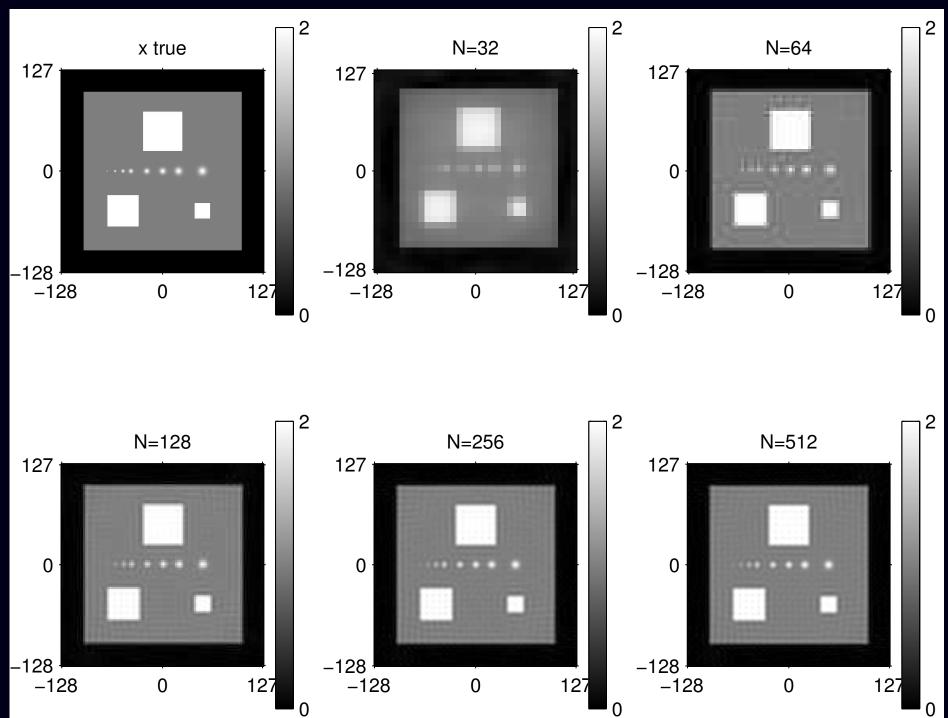
$$= \sum_{i=1}^{M} a_{ij} f_{j}, \qquad a_{ij} = B(\vec{k}(t_{i})) e^{-i2\pi \vec{k}(t_{i}) \cdot \vec{r}_{j}}, \qquad b(\vec{r}) \stackrel{\text{FT}}{\Longleftrightarrow} B(\vec{k}).$$

Discrete-discrete measurement model with system matrix $\mathbf{A} = \{a_{ij}\}$:

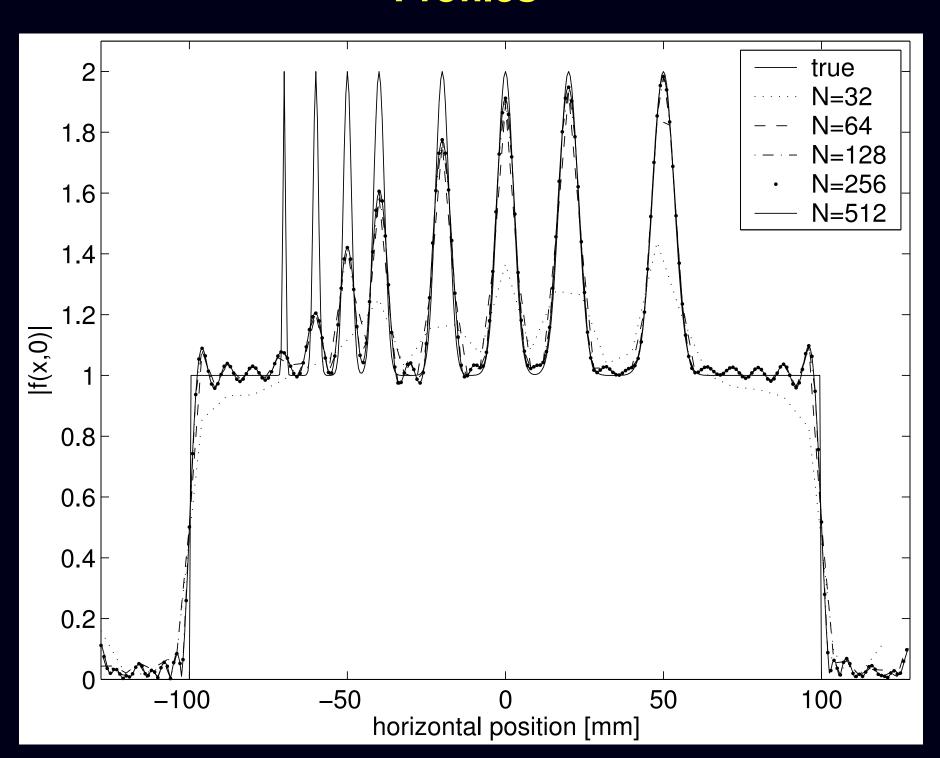
$$y = Af + \varepsilon$$
.

Goal: estimate coefficients (pixel values) $\mathbf{f} = (f_1, \dots, f_M)$ from \mathbf{y} .

Small Pixel Size Does Not Matter



Profiles



Regularized Least-Squares Estimation

$$\hat{\boldsymbol{f}} = \underset{\boldsymbol{f} \in \mathbb{C}^M}{\operatorname{arg \, min}} \Psi(\boldsymbol{f}), \qquad \Psi(\boldsymbol{f}) = \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{f}\|^2 + \alpha R(\boldsymbol{f})$$

- data fit term $\| {m y} {m A} {m f} \|^2$ corresponds to negative log-likelihood of Gaussian distribution
- regularizing roughness penalty term R(f) controls noise

$$R(\mathbf{f}) pprox \int \|\nabla f\|^2 \,\mathrm{d}\vec{r}$$

- regularization parameter $\alpha > 0$ controls tradeoff between spatial resolution and noise (Fessler & Rogers, IEEE T-IP, 1996)
- Equivalent to Bayesian MAP estimation with prior $\propto e^{-\alpha R(f)}$

Quadratic regularization $R(\mathbf{f}) = \|\mathbf{C}\mathbf{f}\|^2$ leads to closed-form solution:

$$\hat{\boldsymbol{f}} = \left[\boldsymbol{A}' \boldsymbol{A} + \alpha \boldsymbol{C}' \boldsymbol{C} \right]^{-1} \boldsymbol{A}' \boldsymbol{y}$$

(a formula of limited practical use)

Iterative Minimization by Conjugate Gradients

Choose initial guess $f^{(0)}$ (e.g., fast conjugate phase / gridding). Iteration (unregularized):

$$m{g}^{(n)} = m{\nabla} m{\Psi} m{f}^{(n)} = m{A}' m{A} m{f}^{(n)} - m{y}$$
 gradient precondition $m{p}^{(n)} = m{P} m{g}^{(n)}$ precondition $m{q}^{(n)} = m{q}^{(n)} m{p}^{(n)} m{q}^{(n)} = 0$ $m{q}^{(n)} = m{q}^{(n)} + m{q}^{(n)} m{p}^{(n-1)} m{q}^{(n-1)}$ search direction $m{v}^{(n)} = m{A} m{d}^{(n)}$ step size $m{f}^{(n+1)} = m{f}^{(n)} + m{\alpha}_n m{d}^{(n)}$ update

Bottlenecks: computing Af and A'y.

- A is too large to store explicitly (not sparse)
- Even if A were stored, directly computing Af is O(NM), per iteration, whereas FFT is only $O(N\log N)$

Computing Af Rapidly

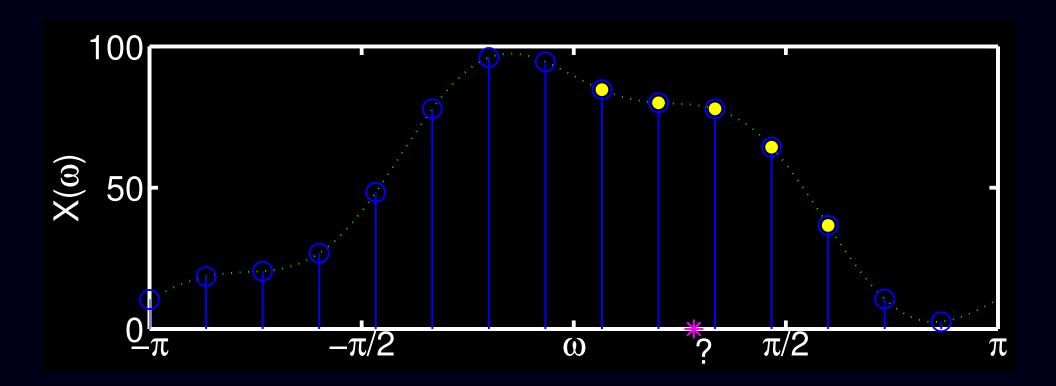
$$[\mathbf{A}\mathbf{f}]_i = \sum_{j=1}^M a_{ij} f_j = B(\vec{k}(t_i)) \sum_{j=1}^M e^{-i2\pi \vec{k}(t_i) \cdot \vec{r}_j} f_j, \qquad i = 1, \dots, N$$

- Pixel locations $\{\vec{r}_j\}$ are uniformly spaced
- ullet k-space locations $\left\{ ec{k}(t_i)
 ight\}$ are unequally spaced

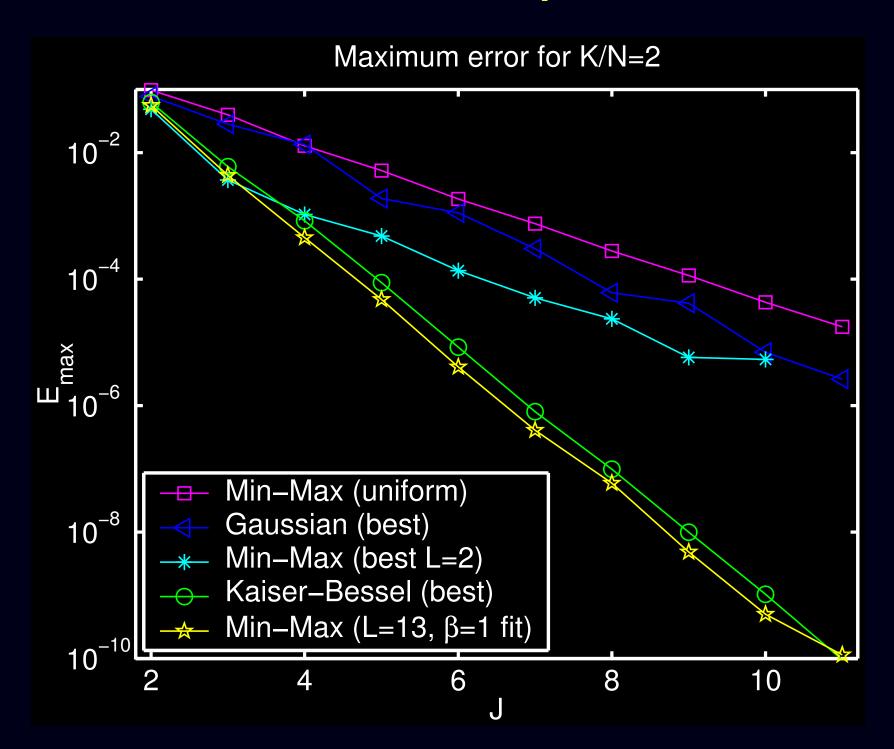
⇒ needs nonuniform fast Fourier transform (NUFFT)

NUFFT (Type 2)

- Compute over-sampled FFT of equally-spaced signal samples
- Interpolate onto desired unequally-spaced frequency locations
- Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator
- Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator and min-max optimized Kaiser-Bessel interpolator.
 NUFFT toolbox: http://www.eecs.umich.edu/~fessler/code



Worst-Case NUFFT Interpolation Error



Field inhomogeneity?

Combine NUFFT with min-max temporal interpolator (Sutton *et al.*, IEEE T-MI, 2003) (forward version of "time segmentation", Noll, T-MI, 1991)

Recall:

$$s(t) = \int f(\vec{r}) e^{-i\omega(\vec{r})t} e^{-i2\pi \vec{k}(t)\cdot\vec{r}} d\vec{r}$$

Temporal interpolation approximation (aka "time segmentation"):

$$e^{-\iota \omega(\vec{r})t} \approx \sum_{l=1}^{L} a_l(t) e^{-\iota \omega(\vec{r})\tau_l}$$

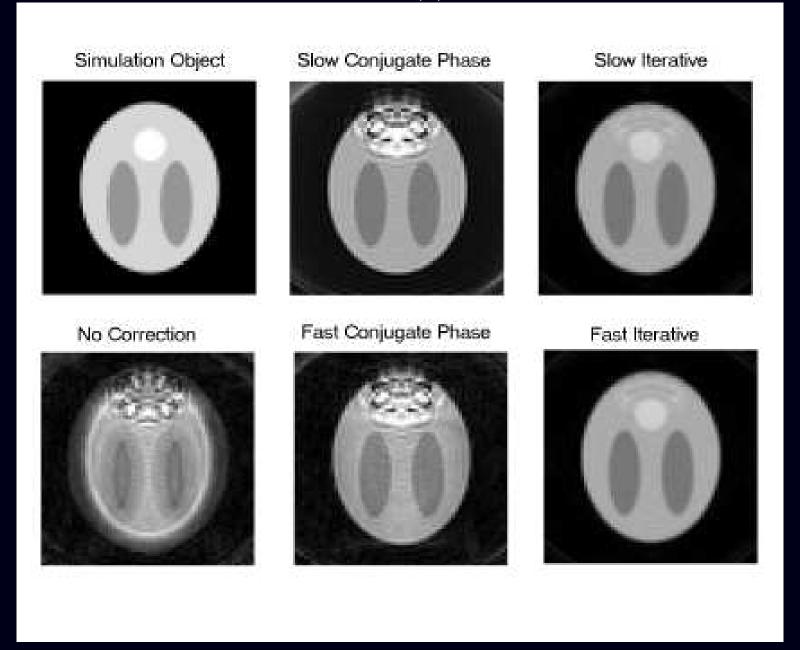
for min-max optimized temporal interpolation functions $\{a_l(\cdot)\}_{l=1}^L$.

$$s(t) \approx \sum_{l=1}^{L} a_l(t) \int \left[f(\vec{r}) e^{-\iota \omega(\vec{r}) \tau_l} \right] e^{-\iota 2\pi \vec{k}(t) \cdot \vec{r}} d\vec{r}$$

Linear combination of *L* NUFFT calls.

Field Corrected Reconstruction Example

Simulation using known field map $\omega(\vec{r})$.

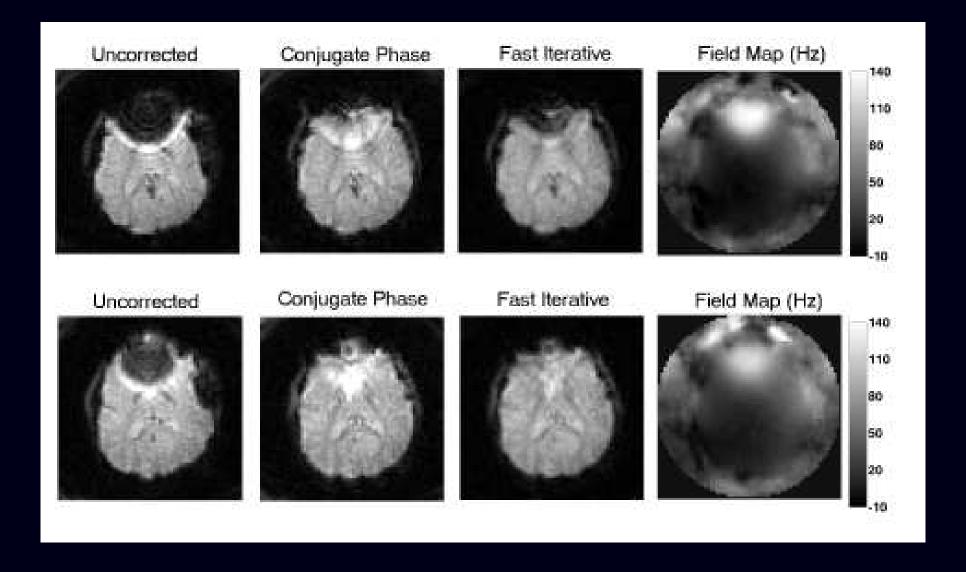


Simulation Quantitative Comparison

- Computation time?
- NRMSE between \hat{f} and f^{true} ?

Reconstruction Method			
		complex	magnitude
No Correction	0.06	1.35	0.22
Full Conjugate Phase	4.07	0.31	0.19
Fast Conjugate Phase	0.33	0.32	0.19
Fast Iterative (10 iters)	2.20	0.04	0.04
Exact Iterative (10 iters)	128.16	0.04	0.04

Human Data: Field Correction



Regularization (ISBI '04)

 Conventional regularization for MRI uses a roughness penalty for the complex voxel values:

$$R(\mathbf{f}) \approx \sum_{j=1}^{M} |f_j - f_{j-1}|^2$$
 (in 1D).

- Regularizes the real and imaginary image components equally.
- In some MR studies, including BOLD fMRI:
 - \circ magnitude of f_i carries the information of interest,
 - \circ phase of f_i should be spatially smooth.
 - \circ This *a priori* information is ignored by $R(\mathbf{f})$.
- Alternatives to R(f):
 - Constrain f to be real?
 (Unrealistic: RF phase inhomogeneity, eddy currents, ...)
 - \circ Determine phase of f "somehow," then estimate its magnitude.
 - Non-iteratively (Noll, Nishimura, Macovski, IEEE T-MI, 1991)
 - Iteratively (Lee, Pauly, Nishimura, ISMRM, 2003)

Separate Magnitude/Phase Regularization

Decompose f into its "magnitude" m and phase x:

$$f_j(\boldsymbol{m},\boldsymbol{x}) = m_j e^{ix_j}, \qquad m_j \in \mathbb{R}, \qquad x_j \in \mathbb{R}, \qquad j = 1,\ldots,M.$$

(Allow "magnitude" m_i to be negative.)

Proposed cost function with separate regularization of m and x:

$$\Psi(\boldsymbol{m},\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{f}(\boldsymbol{m},\boldsymbol{x})\|^2 + \gamma R_1(\boldsymbol{m}) + \beta R_2(\boldsymbol{x}).$$

Choose $\beta \gg \gamma$ to strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:

$$(\hat{\boldsymbol{m}}, \hat{\boldsymbol{x}}) = \underset{\boldsymbol{m} \in \mathbb{R}^M, \ \boldsymbol{x} \in \mathbb{R}^M}{\operatorname{arg\,min}} \Psi(\boldsymbol{m}, \boldsymbol{x})$$

 Ψ is not convex \Longrightarrow need good initial estimates $(\mathbf{m}^{(0)}, \mathbf{x}^{(0)})$.

Alternating Minimization

Magnitude Update:

$$m^{\text{new}} = \underset{m \in \mathbb{R}^M}{\operatorname{arg\,min}} \Psi(m, x^{\text{old}})$$

Phase Update:

$$\mathbf{x}^{\text{new}} = \underset{\mathbf{x} \in \mathbb{R}^M}{\operatorname{arg min}} \Psi(\mathbf{m}^{\text{new}}, \mathbf{x}),$$

Since $f_j = m_j e^{ix_j}$ is linear in m_j , the magnitude update is easy. Apply a few iterations of slightly modified CG algorithm (constrain m to be real)

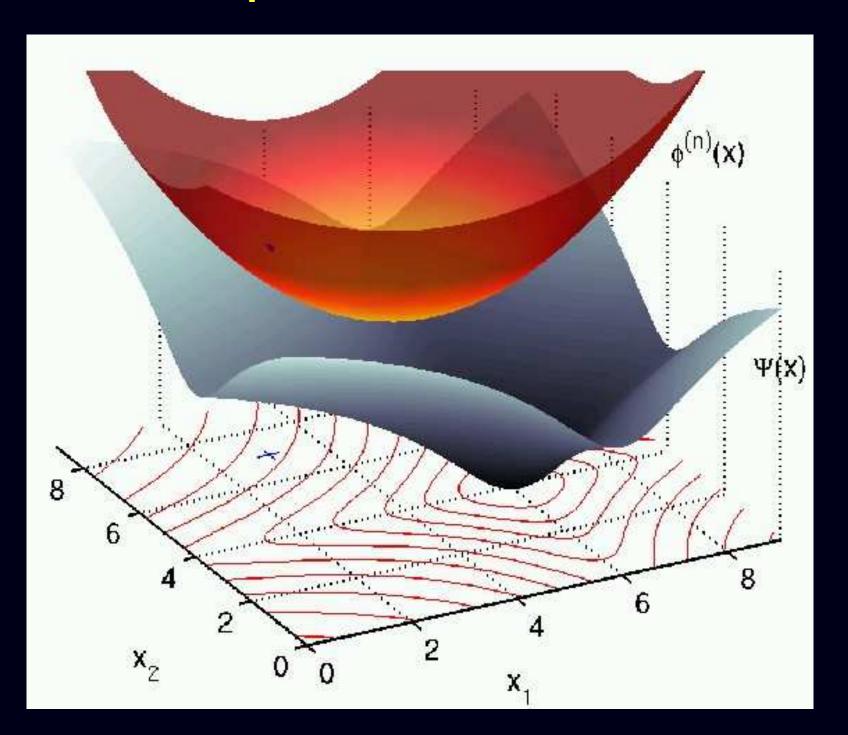
But $f_j = m_j e^{ix_j}$ is highly nonlinear in x. Complicates "argmin."

Steepest descent?

$$\boldsymbol{x}^{(n+1)} = \boldsymbol{x}^{(n)} - \lambda \nabla_{\boldsymbol{x}} \Psi(\boldsymbol{m}^{\mathrm{old}}, \boldsymbol{x}^{(n)}).$$

Choosing the stepsize λ is difficult.

Optimization Transfer



Surrogate Functions

To minimize a cost function $\Phi(\mathbf{x})$, choose surrogate functions $\phi^{(n)}(\mathbf{x})$ that satisfy the following *majorization* conditions:

$$egin{aligned} oldsymbol{\phi}^{(n)}(oldsymbol{x}^{(n)}) &= \Phi(oldsymbol{x}^{(n)}) \ oldsymbol{\phi}^{(n)}(oldsymbol{x}) &\geq \Phi(oldsymbol{x}), & orall oldsymbol{x} \in \mathbb{R}^M. \end{aligned}$$

Iteratively minimize the surrogates as follows:

$$\mathbf{x}^{(n+1)} = \underset{\mathbf{x}^{(n)} \in \mathbb{R}^M}{\operatorname{arg min}} \phi^{(n)}(\mathbf{x}).$$

This will decrease Φ monotonically; $\Phi(\mathbf{x}^{(n+1)}) \leq \Phi(\mathbf{x}^{(n)})$.

The art is in the design of surrogates.

Tradeoffs:

- ocomplexity
- ocomputation per iteration
- oconvergence rate / number of iterations.

Surrogate Functions for MR Phase

$$L(\boldsymbol{x}) \stackrel{\triangle}{=} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})\|^2 = \sum_{i=1}^N h_i([\boldsymbol{A}\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{x})]_i),$$

where $h_i(t) \stackrel{\triangle}{=} |y_i - t|^2$ is convex.

Extending De Pierro (IEEE T-MI, 1995), for $\pi_{ij} \ge 0$ and $\sum_{j=1}^{M} \pi_{ij} = 1$:

$$[\mathbf{A}\mathbf{f}(\mathbf{m},\mathbf{x})]_i = \sum_{j=1}^M b_{ij} e^{ix_j} = \sum_{j=1}^M \pi_{ij} \left[\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_j} - e^{ix_j^{(n)}} \right) + \bar{y}_i^{(n)} \right],$$

where $b_{ij} \stackrel{\triangle}{=} a_{ij} m_j$, $\bar{y}_i^{(n)} \stackrel{\triangle}{=} [\boldsymbol{A}\boldsymbol{f}(\boldsymbol{m},\boldsymbol{x}^{(n)})]_i$. Choose $\pi_{ij} \geq 0$ and $\sum_{j=1}^M \pi_{ij} = 1$.

Since h_i is convex:

$$h_i([m{A}m{f}(m{m},m{x})]_i) = h_i\Biggl(\sum_{j=1}^M \pi_{ij}\Biggl[rac{b_{ij}}{\pi_{ij}}\Biggl(e^{ix_j} - e^{ix_j^{(n)}}\Biggr) + ar{y}_i^{(n)}\Biggr]\Biggr) \ \le \sum_{j=1}^M \pi_{ij}h_i\Biggl(rac{b_{ij}}{\pi_{ij}}\Biggl(e^{ix_j} - e^{ix_j^{(n)}}\Biggr) + ar{y}_i^{(n)}\Biggr),$$

with equality when $x = x^{(n)}$.

Separable Surrogate Function

$$L(\mathbf{x}) = \sum_{i=1}^{N} h_{i}([\mathbf{A}\mathbf{f}(\mathbf{m}, \mathbf{x})]_{i}) \leq \sum_{i=1}^{N} \sum_{j=1}^{M} \pi_{ij} h_{i} \left(\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_{j}} - e^{ix_{j}^{(n)}}\right) + \bar{y}_{i}^{(n)}\right)$$

$$= \sum_{j=1}^{M} \sum_{i=1}^{N} \pi_{ij} h_{i} \left(\frac{b_{ij}}{\pi_{ij}} \left(e^{ix_{j}} - e^{ix_{j}^{(n)}}\right) + \bar{y}_{i}^{(n)}\right).$$

$$Q_{j}(x_{j}; \mathbf{x}^{(n)})$$

Construct similar surrogates $\{S_i\}$ for (convex) roughness penalty...

Surrogate:
$$\phi^{(n)}(\mathbf{x}) = \sum_{j=1}^{M} Q_j(x_j; \mathbf{x}^{(n)}) + \beta S_j(x_j; \mathbf{x}^{(n)}).$$

Parallelizable (simultaneous) update, with 1D minimizations:

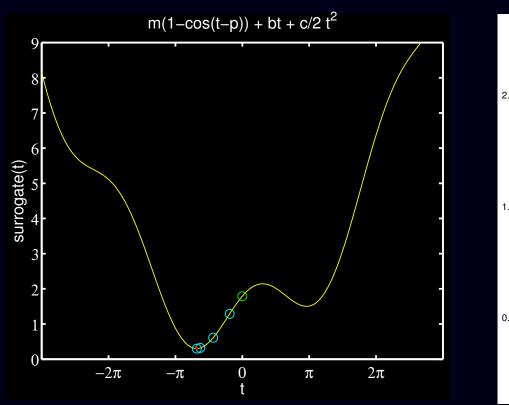
$$\boldsymbol{x}^{(n+1)} = \underset{\boldsymbol{x}^{(n)} \in \mathbb{R}^M}{\min} \, \boldsymbol{\phi}^{(n)}(\boldsymbol{x}) \implies x_j^{(n+1)} = \underset{x_j \in \mathbb{R}}{\arg \min} \, Q_j(x_j; \boldsymbol{x}^{(n)}) + \beta S_j(x_j; \boldsymbol{x}^{(n)}).$$

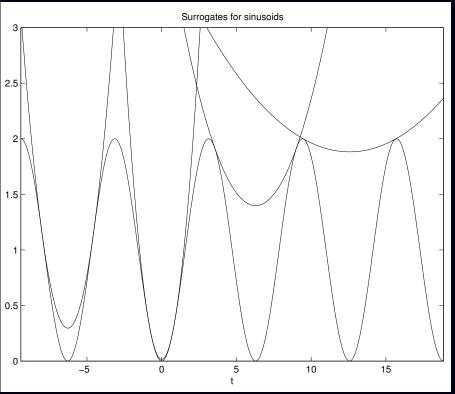
Intrinsically guaranteed to monotonically decrease the cost function.

1D Minimization: cos + quadratic

...
$$Q_j(x_j; \mathbf{x}^{(n)}) \equiv -|r_j^{(n)}| \cos(x_j - x_j^{(n)} - \angle r_j^{(n)}),$$

 $r_j^{(n)} = (f_j^{(n)})^* [\mathbf{A}'(\mathbf{y} - \mathbf{A}\mathbf{x}^{(n)})]_j + |m_j|^2 M \sum_{i=1}^N |B(\vec{k}(t_i))|^2$





Simple 1D optimization transfer iterations...

Final Algorithm for Phase Update

Diagonally preconditioned gradient descent:

$$\boldsymbol{x}^{(n+1)} = \boldsymbol{x}^{(n)} - \boldsymbol{D}(\boldsymbol{x}^{(n)}) \nabla \Phi(\boldsymbol{x}^{(n)})$$

where the diagonal matrix ${\bf \it D}$ has elements that ensure Φ decreases monotonically.

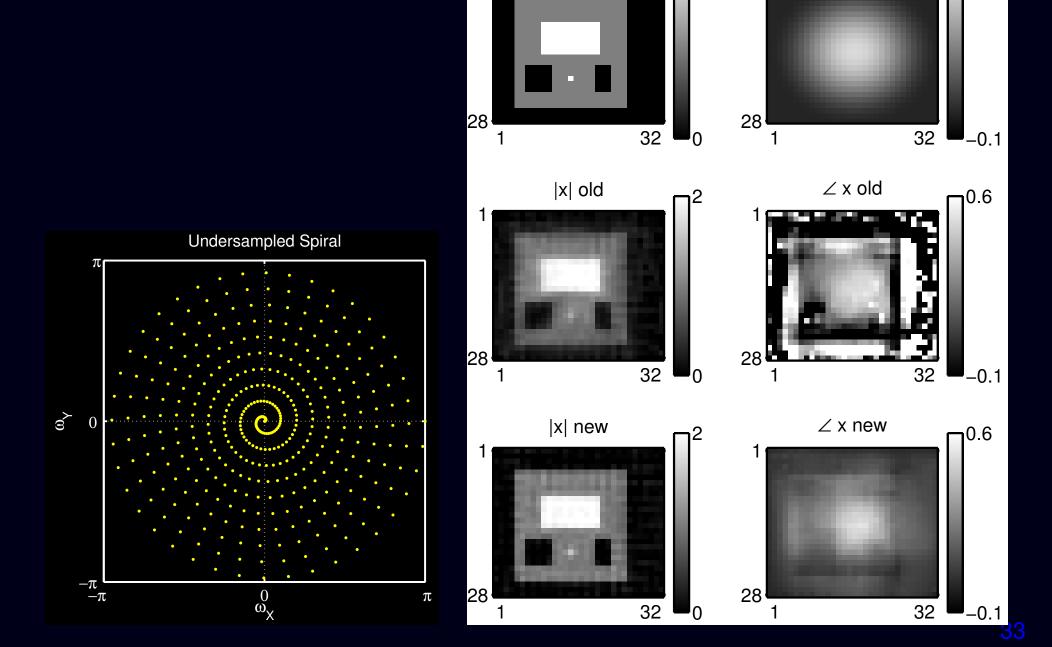
Alternate between magnitude and phase updates...

Preliminary Simulation Example

|x| true

∠ x true

0.6



Summary

- Iterative reconstruction: much potential in MRI
- Computation: reduced by tools like NUFFT / temporal interpolation; combined with careful optimization algorithm design cf. Shepp and Vardi, 1982, PET
- Problems involving phase terms e^{ix} suitable for optimization transfer.

Future work

- Multiple receive coils (SENSE)
- Through-voxel field inhomogeneity gradients
- Motion (dynamic field maps...)
- Real data...