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Nonrigid Image Registration

e Estimating geometric transformation that aligns objects in
two images

A

0 = argmaxb(A(Te(")), B(")) — B (8),

where, Ty : RR — R® denotes a parametric nonrigid defor-
mation model, ®(A(-),B(-)) is a similarity measure, K is a
constraint set, (3 is a regularization parameter and % (9) is
a penalty function.



Image Registration Problem

e Deformation model

e Similarity measure

e Penalty functions and/or constraint set

e Optimization methods (unconstrained or constrained)



Deformation Model using B-spline functions

e Deformation model using parameters 6 = (6%,6Y, 6%
TG(X7 Y; Z) — [X—|_ fgx(X, Y; Z) Y g9y<X, Y; Z) , 2+ hez(X, Y; Z)] 9 (1)
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he=(X,Y,2) = ! EKzeijkB?)(?x - |)B3(?y - J)Bs(i —K).

where, 8%,6Y,0* are the unknown coefficients, Ky, Ky, K; are
the sets of "knot locations”, and Ty, Ty, T, are expansion pa-
rameters.



Regularization and Invertibility

e The estimated deformation should be invertible.

e Jacobian determinants of the estimated deformation should
be nonzero everywhere (inverse function theorem).

e Jacobian determinants should be positive by the continu-
ity of the determinant (assuming there is a region without
deformation).

Goals: Constrain 0 to ensure positive Jacobian determinants



Existing Methods- Unconstrained Optimization
with a Penalty Function

e Bending energy ['99 Rueckert et al .]
e Smoothness penalty ['03 Rohfling et al ]

e EXponential function of Jacobian determinant ['00 Kybic et
al.]

—Invertibility is not guaranteed.
—Regularization parameter tuning Is required.

—Jacobian determinants between grid points can be nega-
tive even if those are positive at grid points.



Penalty function
e Quadratically penalize Jacobian determinants smaller than

threshold
E;= _Z(eJ(Xi,Yj,Zk)a (2)

|7J7
N ¢ if detd(x,y,2) > J
&%), &) = { (detd(xi,Yj,z) — J)? otherwise,
where J; Is a threshold.
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Existing Methods- Constrained Optimization
subject to Constraints Ensuring Positive Jacobian
Determinants

e Bounding gradients by 1/3 ensures positive Jacobian de-
terminants

e Bound coefficients to bound gradients by 1/3 -['03 Rhode et
al.]

—Search space is too much restricted (large deformations
with small gradients are precluded.)

—Relationship between gradient bounds and Jacobian de-
terminants bounds would be more desirable



Proposed Approach

e Relate Jacobian determinants (local volume change) bounds
to displacement gradient bounds: Proposition 1

e Expand search space to include large deformation with small
gradients by bounding differences between two neighbor-
Ing coefficients: Proposition 2

e Constrained optimization subject to polyhedral constraints
designed using Proposition 1 and 2



Search Space of 1D deformation

e Rhode’s constraint and proposed constraint

Ci.1 and G; are two neighboring coefficients.



Jacobian Determinants and Gradient Bounds
of( xyz <k
. <kgand oh( xyz

" ah(xyz ‘ < K, foer Y,Z. 1f 0 <K, kg, kn < 1, then 1_(kf+kg+

Kn) < detJ(x,y, 2) < (14Ke)(1+kg)(1+kn) + (1 + ke )kgkn + (1 +
Ko)Krkn + (14 kn)Kikg.

Proposition 1. Suppose that

ag(x,y,2) xyz ag xyz ag xyz xyz

e Derived using Kuhn-Tucker condition

e Rhode’s result is a special case for minimum detJ(x,y, z)
when K¢ = kg = k.



Gradient Bounds and Constraints in Parameter
Space

Proposition 2. If

b
<2

X,Y,Z
I-I-ljk Ijk| <bvleEKX’ then‘ (ax )
of
e ,Jk|<bV.,kEKx,then‘ 0T (xy2)

y | = fy and
161, kr1— 65kl < Db,Vijk € K implies |af(x,y, 2)

Similarly, if

b
<2

0z

e Bounds on differences between two consecutive parame-
ters (polyhedral convex set in parameter space).



Constrained Optimization

e Combining proposition 1 and 2 leads to polyhedral con-
straint set that bounds Jacobian determinants

Hi ={0eX[(0,f) <c}, i=1...r €)
K = ()4, (4)

where, X Is the parameter space, r is the number of con-
straints, fj and c; are appropriate vectors and scalars.

e Proposed image registration method
6 = argmaxd(A(Te(")), B()), (5)



Gradient Projection Method

e Gradient projection method

™ = Py (8" — ag®(A, B; 9)), (6)
where, K Is the convex constraint set and P, denotes the
orthogonal projection onto the convex set x .

e Convergence Is guaranteed, If a Is chosen appropriately.
e In general, determining P4 Is challenging.



Dykstra’s Cyclic Projection Method

e Projection onto the intersection of convex sets can be com-
puted by cyclic projections onto the convex sets

e Computing a projection onto a half space is easy.
e Dykstra’s algorithm converges to P, geometrically.



Inhale/exhale Lung CT Registration

e Inhale/exhale CT images (64 x36x10)

¢ Two synthetic deformations using sinusoidal basis function
e Constrained optimization method (gradient bound 1/3)

e Penalty based method using Jacobian determinants

Inhale CT image Exhale CT image



Simulation Results

e Number of B-splines: 30x16x8x3
e X-axis deformation evaluated at one slice
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Simulation Results

e Two synthetic deformations: small and large gradient

Constrained
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Simulation Results

Characteristics of the estimated deformations

Synthetic deformation 1 | Proposed | Ej penalty | Synthetic deformation 2 | Proposed | Ej penalty

min|J| 0.807 0.648 | 0.231 0.201 0.433 | 0.029

max|J) 1.324 1398 | 1.939 1.457 1912 | 3.887
max| 2f 2 0.251 0.196 | 0.446 0.199 0.303 | 0.893
max| 22 0.229 0.204 | 0.264 0.551 0.328 | 1.547
max| 252 0.269 0.318 | 0.473 0.319 0.319 | 2.034
max| 28U%2) 0.192 0174 | 0.321 0.445 0.331 | 3.002
max| 202 0.224 0.224 | 0.389 0.317 0.242 | 3.616
max| 2902 0.329 0.323 0.586 0.609 0.333 2.442
max| N2 0.109 0.163 | 0.162 0.233 0241 | 0.598
max| A2 0.201 0.191 | 0.212 0.204 0.276 | 0.889
max| Y2 0.287 0310 | 0672 0.786 0.333 | 0.867




Experimental Results

e Inhale/Exhale CT registration for 8 patients

e Optimization parameter is tuned for PTO1 (Registration af-

ter 150 iterations).

(p Is correlation coefficient between images)

Lung CT registration results

PTO1

PTO2

PTO3

PTO4

PTO5
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p after registration
min|J|
maxJ|

P before registratiof

10.701
0.981
0.332
2.323

0.678
0.964
0.277
2.477

0.852
0.97/8
0.444
2.089

0.722
0.970
0.295
2.176

0.888
0.979
0.337
2.269

0.755
0.935
0.180
2.395

0.956
0.970
0.428
2.103

0.930
0.963
0.413
2.023




Summary

¢ Jacobian determinant penalty method yielded larger gradi-
ent deformation than truth.

e Different regularization parameters were required for differ-
ent images.

e Proposed method performed well but required additional
computation.



Future Work

e Apriori information about gradient and Jacobian bound would
e desirable.

e How to validate the estimated deformation in practice?
e How to remove manual tuning procedure for optimization?

e Comparison study with interior point methods for optimiza-
tion




