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Outline

e MR image reconstruction

e Model-based reconstruction

e lterations and Computation (NUFFT etc.)
e New regularization approach (ISBI '04)






Textbook MRI Measurement Model
Ignoring /ots of things:
yi = S(tj) + noise, 1=1,...,N
s(t) = [ (e ™7 ar,
where R(t) denotes the “k-space trajectory” of the MR pulse sequence.

e MRI measurements are (roughly) samples of the Fourier transform
of the object’s transverse magnetization f (7).

e Reconstruction problem: recover f(F) from measurements {y}. ;.

Inherently under-determined (ill posed) problem
= no canonical solution.



Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)
2. Apply inverse FFT to estimate samples of f(T)

Gridding from Polar to Cartesian
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Limitations of Gridding Reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”
3. Oversimplifications of Fourier transform signal model:

e Magnetic field inhomogeneity
e Magnetization decay (T»)
e Eddy currents

L
4. Sensitivity encoding ?
5. ...



Model-Based Image Reconstruction

More complete signal equation:
/f ) Seoil(7) €140t g R o 12K ()T g

y.—St.)+n0|se, i=1...,N

» Sil(T) Receive-coil sensitivity pattern(s) (for SENSE)

e w(r) Off-resonance frequency map
(due to field inhomogeneity and susceptibility)

e Ri(T) Relaxation map

Other factors (?)

o Eddy current effects; in k(t)
e Concomitant gradient terms
e Chemical shift

e Motion

Goal?
(it depends)



Inhomogeneity-Corrected Reconstruction
/f (7) Seoi(7) €7 @ AT e 12K T e

Goal: reconstruct f(T) given field map w(r)
(Assume all other terms are known or unimportant.)

(Sutton et al., ISMRM 2001; T-MI 2003)



Sensitivity-Encoded (SENSE) Reconstruction
/f (7) S0y (T) €40 @ RN g 12K g

Goal: reconstruct f(T) given sensitivity maps Seoi(T)
(Assume all other terms are known or unimportant.)

Can combine SENSE with field inhomogeneity correction “easily”

(Sutton et al., ISMRM 2001)



Joint Estimation of Image and Field-Map
/f (7) Seoi(7) €40 g AT e 12K T e

Goal: estimate both the image f(T) and the field map w(T)
(Assume all other terms are known or unimportant.)

(Sutton et al., ISMRM Workshop, 2001; ISBI 2002; ISMRM 2002;
ISMRM 2003; MRM in review)



The Kitchen Sink
S(t) _ / f(?) Scoil(r)) e—lw(F’)t e—R;(?)t e—IZHR(t)‘F’ dr

Goal: estimate image f(1), field map w(r), and relaxation map R5(T)

Requires “suitable” k-space trajectory.

(Sutton et al., ISMRM 2002: Twieg, MRM, 2003)



Estimation of Dynamic Maps
S(t) _ / f(?‘) Scoil(?) e—l&(?)t e—R’ﬁ(F’)t e—IZHR(t)-F’ dr

Goal: estimate dynamic field map w(T) and “BOLD effect” R;(T)
given baseline image f (1) in fMRI.

Motion...



Back to Basic Signhal Model

_ / f(?) e—|2nR(t)-? dar
(

Goal: reconstruct f(T) fromy= (y1,...,Yn), Where y; = s(t;) + €.

Series expansion of unknown object:

\Y
F)~ > fjb(F—rj) < usually 2D rect functions.
=1

M
Y %/|:Zfb(r» r):| —121K(t;) ?dr [/b —I2T[k F’dr» fj

= Saf, &= B(R(ti))e"z”k“‘m, b(7) <5 B(K).

Discrete-discrete measurement model with system matrix A= {a;; }:
y = Af +¢&.
Goal: estimate coefficients (pixel values) f = (fy,..., fy) fromy.



Small Pixel Size Does Not Matter




Profiles
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Regularized Least-Squares Estimation

f:argminLIJ(f), LP(f):Hy—AfHZ—FO(R(f)
fcCM

o data fit term ||y — Af||°
corresponds to negative log-likelihood of Gaussian distribution

e regularizing roughness penalty term R(f) controls noise

/HDfH dr

e regularization parameter a > 0
controls tradeoff between spatial resolution and noise
(Fessler & Rogers, IEEE T-IP, 1996)

» Equivalent to Bayesian MAP estimation with prior [ e °Rf)

Quadratic regularization R(f) = ||Cf||* leads to closed-form solution:
f = [KA+aC'C] Ay

(a formula of limited practical use)



lterative Minimization by Conjugate Gradients

Choose initial guess 9 (e.g., fast conjugate phase / gridding).
Iteration (unregularized):

g = mw(f") = A(AF" —y) gradient

p" = Pg" precondition

(0, n=0
_ (n) pn)

Vn — < <g y p > 7 n > O
L (g™, ph)

d" = —p™ 4y, d"Y search direction

V(n) — Ad(n)

an=(d", —g™) /(AF™ AT step size

£+ — £ g d update

Bottlenecks: computing Af and Aly.
e A s too large to store explicitly (not sparse)

o Even if Awere stored, directly computing Af is O(NM), per iteration,
whereas FFT is only O(NlogN)



Computing Af Rapidly

WY

Za”,_BRt. Z kT =1,

» Pixel locations {1} are uniformly spaced

e k-space locations {R(ti)} are unequally spaced

= needs nonuniform fast Fourier transform (NUFFT)



NUFFT (Type 2)

e Compute over-sampled FFT of equally-spaced signal
e Interpolate onto desired unequally-spaced frequency locations
e Dutt & Rokhlin, SIAM JSC, 1993, Gaussian bell interpolator

e Fessler & Sutton, IEEE T-SP, 2003, min-max interpolator
and min-max optimized Kaiser-Bessel interpolator.

NUFFT toolbox: http://www.eecs.umich.edu/ ~fessler/cod
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Worst-Case NUFFT Interpolation Error

Maximum error for K/N=2

Min—Max (uniform)
10°° | CEUSSERN(ER)
—%— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—4— Min—Max (L=13, B=1 fit)
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Field inhomogeneity?

Combine NUFFT with min-max temporal interpolator
(Sutton et al., IEEE T-MI, 2003)
(forward version of “time segmentation”, Noll, T-MI, 1991)

Simulation Object njugate Phase Slow herative
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Simulation Quantitative Comparison

Reconstruction Method | Time (s) NRMSE| NRMSE
complex | magnitude

No Correction 0.06 1.35 0.22
Full Conjugate Phase 4.07 0.31 0.19
Fast Conjugate Phase 0.33 0.32 0.19
Fast Iterative (10 iters) 2.20 0.04 0.04

Exact Iterative (10 iters) | 128.16 | 0.04 0.04

Computation time and NRMSE between f and f"®for simulation study



Human Data: Field Correction

Uncorrected Conpugate Phase Fast herative Field Map [Hz)

Uncarrected Conjugate Phase Fast Herative Field Map (Hz)




Regularization (ISBI '04)

e Conventional regularization for MRI uses a roughness penalty
for the complex voxel values:

\Y]
R(f)~ S |fj— fi_q|° (in 1D).
=1

e Regularizes the real and imaginary image components equally.

e In some MR studies, including BOLD fMRI:
o magnitude of f; carries the information of interest,
o phase of f; should be spatially smooth.
o This a priori information is ignored by R(f).

e Alternatives to R(f):
o Constrain f to be real?
(Unrealistic: RF phase inhomogeneity, eddy currents, ...)
o Determine phase of f “somehow,” then estimate its magnitude.
o Non-iteratively  (Noll, Nishimura, Macovski, IEEE T-MI, 1991)
o Iteratively (Lee, Pauly, Nishimura, ISMRM, 2003)



Separate Magnitude/Phase Regularization

Decompose f into its “magnitude” and phase:
fi(m,x) =m;e™, m; € R, Xj € R, j=1,....M.
(Allow “magnitude” m; to be negative.)

Proposed cost function with separate regularization:
W(m,x) = [ly—Af(m,x)[*+yR(m) + BR(X)
Choose (3 > yto strongly smooth phase estimate.

Joint estimation of magnitude and phase via regularized LS:

(M,X) = argmin ¥Y(m,x)
meRY, xeRM

W is not convex = need good initial estimates (M©,x?).



Alternating Minimization

Magnitude Update:

X" = arg min¥(m° x)
xRV

Phase Update:
m™" = argmin¥(m, x""),
mcRV

Since f; = m;e” is linear in m;, the magnitude update is easy.
Apply a few iterations of slightly modified CG algorithm
(constrain mto be real)

But f; = m; € is highly nonlinear in x. Complicates “argmin.”

Steepest descent?
X(n+1) _ X(n) . )\DXLIJ(mO'd, X(n)).

Choosing the stepsize A is difficult.



Optimization Transfer




Surrogate Functions

To minimize a cost function ®(x), choose surrogate functions ¢"(x)
that to satisfy the following majorization conditions:

@ (X<n>) — o(xM)
¢V(x) > d(x), YxeRM
Iteratively minimize the surrogates as follows:

x™Y = arg ming™(x).

x(NeRM

This will decrease ® monotonically; ®(x("Y) < d(x).

The art is in the design of surrogates.
Tradeoffs:

ocomplexity

ocomputation per iteration

oconvergence rate / number of iterations.



Surrogate Functions for MR Phase
N
L(X) = ly— Af(m,x)|* = 3 m(AT(m X)),

where hi(t) = |y; —t|? is convex.

Extending De Pierro (IEEE T-Ml, 1995) for ;; > O and ZIJ'\/':]_T[” = 1.

o n
[Af(mx = Zb”elxJ _ ZTEJ [ = ( IXJ_e|x§>) _|_yi€n)] 7

where bij £ a;m;, y"

IID ||

[Af(m,x")];. Choose 1;; > 0and 3}, 1 = 1.

Since h; IS convex:

hi([Af(m,x)]i) = h; (Z TG llk')ﬁ_lj (e'xi _ e'XEn)) +>7i€n)]>

with equality when x = x(".



Separable Surrogate Function

Z

L) = 3 h(AFmX)) < 5 g”ﬂh (,t;j (=) +¢n>>

= =1j=1

Construct similar surrogates {Sj} for (convex) roughness penalty...

Surrogate: ¢" Z Q;(xj; x™) +BS; (x; xM).

Parallelizable (simultaneous) update, with 1D minimizations:
X = argming™ (x) = X" = argminQ; (x;; X™) + BS; (x;; xM).

x(MecRM XjeR

Intrinsically guaranteed to monotonically decrease the cost function.



1D Minimization: cos + quadratic

(n)
I

Qj (Xj;X(n)) = — COin —X(-

N
7= (3 1D+ 17 Ky — AXT))

m(1-cos(t—p)) + bt + ¢/2 t2

surrogate(t)

O = N W b O1 O N 0 ©

Simple 1D optimization transfer iterations...



Final Algorithm for Phase Update
Diagonally preconditioned gradient descent:
X(n+1) — X(n) _ D(X(n))DCD(X(n))

where the diagonal matrix D has elements that ensure ® decreases
monotonically.

Alternate between magnitude and phase updates...



Preliminary Simulation Example

Undersampled Spiral




Summary

e Iterative reconstruction: much potential in MRI

e Computation: reduced by tools like NUFFT / temporal interpolation;
combined with careful optimization algorithm design
cf. Shepp and Vardi, 1982, PET

e Problems involving phase terms €* suitable for optimization transfer.
Future work

e Multiple receive coils (SENSE)

e Through-voxel field inhomogeneity gradients
e Motion (dynamic field maps...)

e Real data...



