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History

e 1994 MIC, Fessler and Rogers
o Uniform quadratic penalties cause nonuniform image resolution
o Simple “certainty-based” correction for shift-invariant systems

e 1998 ICIP, Stayman and Fessler
o Improved regularization design for shift-invariant systems,
compensating for anisotropy of local PSF

e 1999 Fully 3D
o QI and Leahy: design for uniform pixel contrast
o Stayman and Fessler: design for 3D shift-invariant systems

e 2001 MIC, Stayman and Fessler
o Improved (but complicated) design allowing negative weights

e 2002 MIC
o Stayman and Fessler: faster method for space varying systems
o Nuyts and Fessler: simplified design

All based on matrix analysis!



Local Impulse Response

e Noisy measurement vector y = AX+ noise
y. measured projection data
A. system matrix
X: unknown image pixel values to reconstruct

e General image reconstruction method: X = X(y)
e Local impulse response for jth pixel:
. “ ) — R
U _ jim X(y+ oAe!) — X(y)
0—0 0

e’ = point source in jth pixel
“How does a small impulse in the jth pixel affect other pixels?”

e Useful for design of regularized reconstruction methods

Goal. Design the estimator X to have good noise properties and

spatial resolution properties that are isotropic and uniform, or ...



Penalized-Likelihood Reconstruction

Regularized estimator:
X =argminL(AX,Y) + R(X)
X

e X: unknown image pixel values to reconstruct

e Y. measured projection data

e A: system matrix

e L : negative log-likelihood (e.g., Poisson statistical model)

e R(x): quadratic regularizing roughness penalty R(x) = 2x'Rx
Ris the Hessian of the penalty function R(x)

Local impulse response:
I = [AWA+R "AWAge’
W depends on the log-likelihood and y, e.g., W = diag{1/y}.

This matrix form has been the foundation of most previous methods!



Local Discrete Fourier Approximations
Let Q denote the DFT matrix for image domain.

Local system frequency response:
AWAe ~ Qdiag\, | Qe N = FFT{AWAe/}
Local regularization frequency response:
Re' ~ Qdiag{ i } Qe/, & = FFT{Rel}

Local impulse response with local Fourier approximation:

| B . | A -
Il — [AWA+ R 1AWAe! ~ dla{ } e
| +R] Qdiag ot o Q

Useful for design of the regularizer R, but requires FFTs for every pixel.
(And forward- / back-projections for each pixel for shift varying systems.)



Position-Dependent Regularization
™ f[n,m] — f[n—1,m—0]|*+
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rl =(rq,...,r4) : 4 penalty coefficients per pixel.
Conventional regularizer: ri=rz3=1,ro=rs= 1/\f2.

fln—21,m+1] f(n,m+ 1] fin+21,m+1]




Linearized Regularization Design

Goal: choose R (i.e., {rj}) such that the resulting local impulse
response |! approximates some desired target PSF.
Natural target PSF Is from unweighted penalized least-squares:
Il = [AWA+ R AWAe ~ [A A+ Ry " AAe .
Wolor:1 imﬁalse resp. Targéf PSF

Nonlinear in R = complicated design.

Linearize by “cross multiplying:”
[AAo+ Ry AWAe ~ [AWA+ R| AAce.
Simplify using “local shift invariance” approximations:
RAWAe ~ RAAE.
“Linearized regularization design” (still with matrices):

min||RoAWAe' — RAA€!||.

RcR



Analytical Regularization Design

Matrix approach: MiNgeR || ROAWAe — RA A€ ||

Key idea: replace 4 matrices with analytical Fourier approximations.

1. Nominal system transfer function

A _ |B()
Ao = 8

e (p,0) : polar coordinates in frequency space
e B(p): “typical” detector frequency response

2. Weighted system transfer function
| . 2
wi(0) |Bb(P)
P
o Bj, (p): detector response at projection angle ¢ for jth pixel

o W!(¢): angular weighting (certainty) for jth pixel (from W)

AWA=




Analytical Regularization Design
3. Isotropic 1st-order roughness: Ro(f) = [||Of||°
Ry = |2mp|*

4. Local roughness penalty (simplified)

ZZn—]f n,m — f[n—n,m—m]*

n,m|=

Penalty coefficients rl = (ry,...,r.) to be designed (for each pixel).

After some Fourier analysis...

R=( incoszq) b)), ¢ =tan T

(Each penalty coefficient influences PSF shape along some direction.)



Analytical Regularization Design

Rewrite the “matrix” minimization using the 4 Fourier approximations.

Simplifying yields the following matrix-free design criterion:
2

rl = argmin/o1T w () — i ricos (o —d)| dé
=

r-0

w!(d): angular “certainty” weighting for jth pixel, from data statistics.
cos (¢ — ¢)) : angular contribution for Ith penalty direction.

No matrix inverses (cf. analytical 1/p).

For 2nd-order neighborhood (L = 4), exact closed-form solution.
(No NNLS iterations needed.)

Solution requires just three sums (over projection angle) per pixel:

dy || Rowi(e) d¢ “average”
d) | = | L/ewi(¢)cos2p)dp | *Oand I
| [Rowi(@)sin20)dp | “Fand I




Eight-fold symmetry
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Analytical solution

Four penalty coefficients per pixel for 2nd-order neighborhood:

1

Wl s

ri=5(h+dz), ra=rz=rs=0

1 3

rlzgl—dl—l——dz—dgl, r3:1—2[d3—(§d2_1—dl>]a r2:r4:O

5|2 2

1
n=4d,, r,=0, rz3=di—2d,+2d3, rs=2 [édl — (d2—|- d3>]

I’1:2(i—[1d1—|-d2), r2:2(%1d1—d2)
rg=2 (%d1—|— dg) , I'g= 2 (%dl — d3)



Example
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Summary

e Simple, fast, effective regularization design
for uniform, isotropic spatial resolution

e Analogy to FBP: solve first, discretize second.
(cf. Fourier (1/p)~! = p versus matrix [AAq] )

e Recommendation: combine modest regularization with post-filtering

e Extends to 3D and to shift-variant systems.
Requires somewhat more computation for designing the regularizer,
but is still more practical than alternatives.

e Analytical approximations also applicable to variance/autocorrelation
predictions.

e Non-quadratic edge-preserving regularizers for transmission case?

e Matlab tomography toolbox:
http://www.eecs.umich.edu/ ~fessler
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