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e Min-max framework for nonuniform FFT
e Examples

e Features / Limitations

e Future goals

MRI work with Brad Sutton, Doug Noll
Tomography work with Samuel Matej






Simplified MRI Signal Model

Ignoring /lots of things:
yi =s(ti) +noise,  i=1,...,Nsamples

s(t) = / f(7) exp( —12mK(t) -T) o,

where T((t) denotes the “k-space trajectory” of the MR pulse seguence.

e MRI measurements are (roughly) samples of the Fourier transform
of the object’s transverse magnetization f(T).

e Reconstruction problem: recover f(T) from measurements {y;}



Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)
2. Apply inverse FFT to estimate samples of f(F)

Gridding from Polar to Cartesian

15 EI
G—GZ‘
O i

,Zé
e ® /Z’Z)EJ Ew s {1
o @ b7 0 B ]
I I /@ o]
S os! g o Z [ 03 5s! B o) I
c'\/ZJ (mm] ﬂ Fé’l/@/ﬁ/e/ﬂ m = /e/r'"l l':]
%w LW %J/ [m.] [m.) [u
/-,_] ml /a"l

% x
i&{ |
[ 1




Limitations of MR gridding-based reconstruction

1. Artifacts/inaccuracies due to interpolation
2. Contention about sample density “weighting”

3. Oversimplifications of Fourier transform signal model:
e Magnetic field inhomogeneity

e Magnetization decay (T>)
e Eddy currents



MR Image Reconstruction as an Inverse Problem

. Series expansion of unknown object:
Np

HOE Z Xjb(F —Tj)
=1

. Discrete-discrete measurement model:
y = Ax+¢€
aj = / b(r —T7/) exp(—IZT[R(ti) -r) dr = B(K(t)) e~

. € Includes both measurement noise and model error
. A can also include “non-Fourier” effects (inhomogeneity, decay, etc.)
. Least-squares formulation (Gaussian noise model):

z—argmin¥(z), W(z)=|y—Az|°

. Regularization included when needed (depends on R(t))
. Preconditioned conjugate gradient iteration for minimization.



Challenges for iterative MR image reconstruction

e Each PCG iteration requires calculation of A'(y — Az™)
e A is too large to store explicitly (not sparse)

e Even if A were stored, directly computing Ax is O(ng), per iteration,
whereas FFT is only O(nylogny)

= need fast algorithm for computing Az, i.e., for computing
z Z e—|2n(k1(ti)n1+k2(ti)n2) X(nl, nZ),

ng no

assuming the rj’s (basis centers) are unit spaced on a rectilinear grid.

Need: fast algorithm for 2D nonuniform Fourier transform



Tomography Application
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Simplified tomography measurement model (sinogram):
yi:(h*pei(°;f))(ri)+n0ise7 i:17"'7nd7 Ng = N - Ng.
Radon transform degraded by radially shift-invariant blur with PSF h(r).

Radon transform (line integrals):

pe(r;f):/f(rcose—lsine,rsin9+lCose)dl

Goal: reconstruct object f(T) from sinogram measurements {y;}




Classical Fourier-transform reconstruction

Fourier-slice theorem:
1D FT 2D FT

Pe(r; f) <— Ps(p) =F(p,0) —— f(X,y)
e Compute 1D FFT of each row of sinogram.
e Possibly deconvolve blur h(r)
e Interpolate from polar samples onto rectilinear frequency samples
e Compute inverse 2D FFT

Limitations

e Artifacts due to polar-cartesian interpolation

e Suboptimal treatment of nonuniform-variance noise, e.g., Poisson
e Over-simplified measurement model

e Disregards nonnegativity constraint

Proposed approach partially overcomes first two limitations



Iterative Tomographic Image Reconstruction

. Series expansion of unknown object:
Np

HOE Z Xjb(F —Tj)
=1

. Discrete-discrete measurement model
y=Ax+e,  aj=Nh(r)xpe(r;b(-—Tj))

F=r;
. Penalized weighted least-squares (PWLS) formulation
x = argmin¥(x), WY(x)=(y— Ax)W(y— Ax)+BR(x)

xr

. Weighting matrix W for nonuniform noise variance
(cf Delaney and Bresler, IEEE T-IP, May 1996)

. Reqgularization essential due to ill-conditioned nature of tomography
. Preconditioned conjugate gradient iteration for minimization.



Challenges for Iterative Tomographic Reconstruction

e Each PCG iteration requires calculation of AW (y — Ax™)

e A is sparse, but very large for 3D PET, too large to store in 2D X-ray
CT

e Even if A were stored, directly computing Ax is O(ng), per iteration,
whereas FFT is only O(nylogn,)

Proposed approach for reprojection (computing Ax)

1. Apply nonuniform FFT to compute 2D FT on a polar grid accurately
2. Apply shift-invariant blur h(r) in frequency domain
3. Compute inverse 1D FFT to form each row of reprojection

e Avoids line-integral calculations!
e Routine for A’ is the exact adjoint



Prior work on NUFFT
e [1] Dutt & Rokhlin, SIAM JSC, 1993
Fast Fourier transforms for nonequispaced data.
Gaussian based interpolation
e [2] Beylkin, ACHA, 1995
On the fast Fourier transform of functions with singularities.
B-spline based interpolation in multiresolution framework (N-D)
e [3] Dutt & Rokhlin, ACHA, 1995
Fast Fourier transforms for nonequispaced data, .
fast multipole method
e [4] Anderson & Dahleh, SIAM JSC, 1996
Rapid computation of the discrete Fourier transform.
Taylor series expansion, requiring multiple FFTs
e [5] Nguyen & Liu, SIAM JSC, 1999
The regular Fourier matrices and nonuniform fast Fourier transforms.
least-squares approach to shift-variant Fourier interpolation

e [7] Fessler & Sutton, IEEE T-SP, 2003
Nonuniform fast Fourier transforms using min-max interpolation.



NUFFT Problem Statement (1D)

Given signal x,, n=0,...,N — 1 with (discrete-time) Fourier transform
N—1

X(w) = nZO Xp€ '

and a collection of arbitrary frequencies {wn:- m=1,...,M}, compute
Ym = X(Wn), m=1,..., M.

Direct approach is O(NM); impractical for large M.



NUFFT via linear interpolation

1. Compute K-point FFT of x, (where K > N, possibly oversampled)

2TK
xk=><(7

2. Interpolate from set {21k/K} to set {wm}
K-1

Ym = Z VimkXk
k=0

), k=0,... K—1

Design question: how to choose interpolation coefficients {vmg}?

Scaled variation

1. Start with “weighted” K-point FFT:
N—1
21K

= Z) SXn€ K"
n=

2. Design problem includes choosing scaling factors {s,}.  (Important!)



Interpolators

e Gaussian e Rarely precomputed
1. Shift invariant: e B-spline e Less memory
° .. e More in-line work

2. Shift variant
e Constraint: use the J nearest FFT samples for each wn,

(argminw—2k|) — 2, J odd

e A
Ym= JZlumjxko((Dm)+ja where ko(w) = { (max{k: w>2k}) — g, J even.

100

X(w)
S

T ="p) W 2 2 T

e O(JM) memory if interpolation coefficients are precomputed
e O(KlogK) + O(JM) computation



Min-Max Criterion

Choose interpolation cofficients {um;} to minimize worst-case error.

min max  |Ym— Ym|, where um= (Un,...,Uns).
umeC) zeCN:|jz||<1

Solution (data independent!):

Ni(w) = e lo-Rlo@ i
T _ [C/C]_l c RJXJ
N . [C'C; = So(i—1)
um = A(w)Tr (o), where: v b~ 5Z(w/(2ﬂ/K)_k°(w)_j)
Bo(t) A sin(TtN /K)
0 N sin(mt /K)’

“Modified truncated-Dirichlet interpolation of oversampled FFT"



Equivalent interpolator for J=6, K/N=2
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Equivalent interpolator for J=7, K/IN=2
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Accuracy

. . . Emax
Worst-case error for unit-norm signal is A‘*’) =/1-7'(w)Tr(w).

Maximum error for a = (1)

KIN=1.5
K/IN=2
KIN=2.5
—=- KIN=3 ||
KIN=4
—— K/N=5

17 20



Comparison with Dirichlet

Maximum error for K/N=2
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Comparison with Gaussian (Dutt/Rokhlin)

Maximum error for K/N=2
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Extensions

e Multidimensional NUFFT
Use J x J neighborhood (in 2D, e.g.) around each spatial frequency
location of interest. Straightforward generalization.

e Adjoint operator
1. Hermitian transpose of interpolation matrix
2. K-point inverse FFT

e Adaptive neighborhoods
Neighborhood size J vs distance between wy,, and nearest neighbor.

e Free software: http://www.eecs.umich.edu/ ~fessler



Kaiser-Bessel Interpolator

| \/1—(%>2, K| < J/2

0, otherwise.

Im(a f3(K))
Im(a)

F (k) = f7(K) =

, where f;(K)

_/\

e Optimality properties?
e Usually m= 2 so continuous and differentiable on boundaries.

Optimized NUFFT Interpolation Functions, J=10
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Kaiser-Bessel: Optimizing Order

Kaiser—Bessel Error for KIN=2 and a=2.340]

m (Kaiser—Bessler order)



Kaiser-Bessel: Optimizing Width

Kaiser—Bessel Error for K/N=2 and m=0
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a/J (Kaiser—Bessler width)



Kaiser-Bessel: Optimizing Scaling Factors

Kaiser—Bessel Error for K/IN=2, a=2.34 [J, and m=0

max

10

—<— Numerical FT scaling factors
—S— Analytical FT scaling factors

-15

10

4 6 38 10 12 14 16
N



Kaiser-Bessel: Scaling Factors Tradeoff

Kaiser—Bessel Error for KIN=2, a=2.34 [J, and m=0

—<— Numerical FT scaling factors
—©— Analytical FT scaling factors
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w/ (217K)
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Kaiser-Bessel vs Min-Max Interpolators

Maximum error for K/IN=2

Min—Max (uniform)
10°° | Gaussian (best)
—— Min—Max (best L=2)
—o— Kaiser—Bessel (best)
—&— Min—Max (L=13, =1 fit)
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Fourier-Based Tomographic Projection

(Radon Transform)

1. Compute 2x oversampled 2D FFT of object
2. Min-max interpolation onto polar coordinates (5 x 5 neighborhood)

3. Multiply spectrum by effects of
e shift-invariant detector blur
e and (square) pixel basis.

4. 1D inverse FFT for each sinogram row



Forward Projector Simulation
e 128x 128 Shepp-Logan digital phantom
e 160 bins x 192 angles sinogram
e 1-bin rectangular detector PSF
e Exact DSFT-based Fourier projector (no interpolation)
vs NUFFT based on min-max interpolator
e 6.3s precompute time on 1GHz Pentium [l / Linux

Exact DSFT NUFFT/KB(J=4, K/IN=2)

cpu=101.5s cpu=0.15s
Sinograms
max diff = 0.04%




Bilinear Interpolation (“Gridding”) Comparison

Exact DSFT NUFFT/Bilinear NUFFT/KB(J=4)

cpu=101.5s cpu=0.11s cpu=0.15s
Shepp—-Logan

¢

3.2% max 0 0.04% ma



Back-projector (Adjoint) Test

Sinogram

Exact DSFT NUFFT/KB

¢

cpu=144.0s cpu=0.34s

max |error| = 0.08%



NUFFT Projector Time/Accuracy Tradeoff

NUFFT Reprojector vs Exact FT Reprojector

NUFFT (K/N=1)

J=2 —— NUFFT (K/N=2)

—— NUFFT (KIN=3) |
~5— NUFFT (K/IN=4)

J=9

0.2
NUFFT CPUtime

J=3




QPWLS Iterative Reconstruction

Exact DSFT HS NUFFT(J=5)
0

20 iter of CG
20 iter of CG

4799.4 sec 20.2 sec




Summary

Min-max interpolation approach for NUFFT:
minimizes worst-case interpolation error.
Accurate and fast projector/backprojector for 2D tomography.

Future Applications

o MRI with field inhomogeneity
e MRI with multiple coills

e 3D PET

Limitations / Challenges

o Slightly negative a;;'s (in tomography)

e Shift-invariant PSF

e Parallel-beam geometry

e Non-uniform radial sampling in ring PET geometry
e Numerical conditioning for large J

e Ordered-subsets



lterative MRI Reconstruction

Conjugate Phase

= P in Echo

[terative NUFFT
With min—-max

Uncorrected
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