Part 3. Algorithms
Method = Cost Function + Algorithm

Outline
e |Ideal algorithm
e Classical general-purpose algorithms
e Considerations:
o honnegativity
o parallelization
o convergence rate
o monotonicity
e Algorithms tailored to cost functions for imaging
o Optimization transfer
o EM-type methods
o Poisson emission problem
o Poisson transmission problem
e Ordered-subsets / block-iterative algorithms



Why iterative algorithms?

e For nonquadratic W, no closed-form solution for minimizer.
e For quadratic W with nonnegativity constraints, no closed-form solution.
e For quadratic W without constraints, closed-form solutions:
PWLS: z=[AWA+R] AWy
OLS: z=[AA]"'Ay
Impractical (memory and computation) for realistic problem sizes.
A is sparse, but A’ A is not.

All algorithms are imperfect. No single best solution.



General Iteration

Projection _ _
Measurements Calibration ...

lteration

Parameters

Deterministic iterative mapping: ™D =M ()




ldeal Algorithm

2 argar:r>1iOnLIJ(w) (global minimizer)
Properties
stable and convergent {a:(”)} converges to x* if run indefinitely
converges quickly {:c(”)} gets “close” to =* in just a few iterations
globally convergent lim,z™ independent of starting image x©
fast requires minimal computation per iteration
robust Insensitive to finite numerical precision
user friendly nothing to adjust (e.g., acceleration factors)
parallelizable (when necessary)
simple easy to program and debug
flexible accommodates any type of system model

(matrix stored by row or column or projector/backprojector)

Choices: forgo one or more of the above



Classic Algorithms

Non-gradient based
e Exhaustive search
e Nelder-Mead simplex (amoeba)

Converge very slowly, but work with nondifferentiable cost functions.

Gradient based
e Gradient descent

2D 2 g adW(z™)

Choosing a to ensure convergence is nontrivial.
e Steepest descent

2™ 2 20 _ g 0W(z™) where a,= arg min¥ (w<”> — amLIJ(w<”>))
Computing a, can be expensive.

Limitations
e Converge slowly.
e Do not easily accommodate nonnegativity constraint.



Gradients & Nonnegativity - A Mixed Blessing

Unconstrained optimization  of differentiable cost functions:
W(x) =0 when ===z~

e A necessary condition always.
e A sufficient condition for strictly convex cost functions.
e Iterations search for zero of gradient.

Nonnegativity-constrained minimization

Karush-Kuhn-Tucker conditions

0
—W(x
5 V(@
e A necessary condition always.
e A sufficient condition for strictly convex cost functions.
e |terations search for ???

e 0= X’j*aiijIJ(w*) IS a necessary condition, but never sufficient condition.

: =0, x; >0
r=x* N 20’ XT:O



Karush-Kuhn-Tucker lllustrated
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Why Not Clip Negatives?

WLS with Clipped Newton—Raphson

Newton-Raphson with negatives set to zero each iteration.
Fixed-point of iteration is not the constrained minimizer!



Newton-Raphson Algorithm
" = 2V _ [02@(zM)] oW (™)

Advantage :
e Super-linear convergence rate (if convergent)

Disadvantages

e Requires twice-differentiable W

e Not guaranteed to converge

e Not guaranteed to monotonically decrease W

e Does not enforce nonnegativity constraint

e Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms



Newton’s Quadratic Approximation

2nd-order Taylor series:

WY(z) ~ @x;z™) 2 W(z™) +BW(z™)(z —z™) + %(w — " T02W (M) (z — ™)

Set (™Y to the (“easily” found) minimizer of this quadratic approximation:
2™ 2 argming(z; 2™
= 2z — [02W ()] oW (™)

Can be nonmonotone for Poisson emission tomography log-likelihood,
even for a single pixel and single ray:

W(X) = (Xx+r) —ylog(x+r)
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Consideration: Monotonicity

An algorithm is monotonic if
WMD) <w(e) v,

Three categories of algorithms:

e Nonmonotonic (or unknown)

e Forced monotonic (e.g., by line search)

e Intrinsically monotonic (by design, simplest to implement)

Forced monotonicity

Most nonmonotonic algorithms can be converted to forced monotonic algorithms
by adding a line-search step:

wtempé M (m(n))7 d — wtemp_ w(n)

M 2 20 _q d" where a,2 arg min¥ (:c(”) — O(d(”))

Inconvenient, sometimes expensive, nonnegativity problematic.



Conjugate Gradient Algorithm

Advantages

e Fast converging (if suitably preconditioned) (in unconstrained case)
e Monotonic (forced by line search in nonquadratic case)

e Global convergence (unconstrained case)

e Flexible use of system matrix A and tricks

e Easy to implement in unconstrained quadratic case

e Highly parallelizable

Disadvantages
e Nonnegativity constraint awkward (slows convergence?)
e Line-search awkward in nonquadratic cases

Highly recommended for unconstrained quadratic problems (e.g., PWLS without
nonnegativity). Useful (but perhaps not ideal) for Poisson case too.



Consideration: Parallelization

Simultaneous (fully parallelizable)
update all pixels simultaneously using all data
EM, Conjugate gradient, ISRA, OSL, SIRT, MART, ...

Block iterative (ordered subsets)
update (nearly) all pixels using one subset of the data at a time
OSEM, RBBI, ...

Row action
update many pixels using a single ray at a time
ART, RAMLA

Pixel grouped (multiple column action)

update some (but not all) pixels simultaneously a time, using all data
Grouped coordinate descent, multi-pixel SAGE

(Perhaps the most nontrivial to implement)

Sequential (column action)
update one pixel at a time, using all (relevant) data
Coordinate descent, SAGE



Coordinate Descent Algorithm

aka Gauss-Siedel, successive over-relaxation (SOR), iterated conditional modes (ICM)

Update one pixel at a time, holding others fixed to their most recent values:

ew xnew new oId old s
J _argxrryQLIJ( e X1 X X s+ X ), j=1,...,np
=

Xn

Advantages

e Intrinsically monotonic

e Fast converging (from good initial image)
e Global convergence

e Nonnegativity constraint trivial

Disadvantages

e Requires column access of system matrix A

e Cannot exploit some “tricks” for A

e Expensive “arg min” for nonquadratic problems
e Poorly parallelizable



Constrained Coordinate Descent lllustrated

Clipped Coordinate—Descent Algorithm
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Coordinate Descent - Unconstrained

Unconstrained Coordinate—Descent Algorithm




Coordinate-Descent Algorithm Summary

Recommended when all of the following apply:

e quadratic or nearly-quadratic convex cost function

e nonnegativity constraint desired

e precomputed and stored system matrix A with column access
e parallelization not needed (standard workstation)

Cautions:
e Good initialization (e.qg., properly scaled FBP) essential.
(Uniform image or zero image cause slow initial convergence.)
e Must be programmed carefully to be efficient.
(Standard Gauss-Siedel implementation is suboptimal.)
e Updates high-frequencies fastest = poorly suited to unregularized case

Used daily in UM clinic for 2D SPECT / PWLS / nonuniform attenuation



Summary of General-Purpose Algorithms

Gradient-based

e Fully parallelizable

e Inconvenient line-searches for nonquadratic cost functions
e Fast converging in unconstrained case

e Nonnegativity constraint inconvenient

Coordinate-descent

e \Very fast converging

e Nonnegativity constraint trivial

e Poorly parallelizable

e Requires precomputed/stored system matrix

CD is well-suited to moderate-sized 2D problem (e.g., 2D PET),
but poorly suited to large 2D problems (X-ray CT) and fully 3D problems

Neither is ideal.

. need special-purpose algorithms for image reconstruction!



Data-Mismatch Functions Revisited
For fast converging, intrinsically monotone algorithms, consider the form of W.

WLS:

E;W. [Az])? = inZdhi([Aa:]i), where hi(l) 2 %Wi (yi — 12

Emission Poisson log-likelihood
Ng

—L(:c):ZI([A:c]i+r,) vilog([Az] +T1;) Zh ([Ax])

where h;(l) 2

(I4+r)) —yilog(l +r1;).
Transmission Poisson log-likelihood
Ng Ng

—L(w):Z(bie[Am]iJrri) y.Iog(be Azl +r) Y hi([Az];)

I= I=1

2

where hi(l) = (bie”' +r;) —yilog(bie™' +r1i).

MRI, polyenergetic X-ray CT, confocal microscopy, image restoration, ...
All have same partially separable form.



General Imaging Cost Function

General form for data-mismatch function:

~L(@)= 3 h(Az))

General form for regularizing penalty function:

R(z) = Zwk([C k)

General form for cost function:

W(z) = ~L(z) + BR(@) = 5 h([Az]) +B S i((Cxl

Properties of W we can exploit:

e summation form (due to independence of measurements)
e convexity of h; functions (usually)

e summation argument (inner product of  with ith row of A)

Most methods that use these properties are forms of optimization transfer.



W(x) and @(x; ")

Optimization Transfer lllustrated

— Cost function
- — - Surrogate function




Optimization Transfer

General iteration:

(1) _ i < (1)
T = arggl()ncp(m, T )

Monotonicity conditions (W decreases provided these hold):

o ¢(z;zM) = W(zM) (matched current value)
o M, p(x; ™M) 5= DWW (x) " (matched gradient)
o (z;zM) >W(x) Vx>0 (lies above)

These 3 (sufficient) conditions are satisfied by the Q function of the EM algorithm
(and SAGE).

The 3rd condition is not satisfied by the Newton-Raphson quadratic approxima-
tion, which leads to its nonmonotonicity.



Optimization Transfer in 2d
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Optimization Transfer cf EM Algorithm
E-step: choose surrogate function @(x; z")

M-step: minimize surrogate function

(1) — arg ming(ex; ")

x>0

xr

Designing surrogate functions
e Easy to “compute”

e Easy to minimize

e Fast convergence rate

Often mutually incompatible goals .. compromises



Convergence Rate: Slow

High Curvature
Small Steps
Slow Convergence

Old New




Convergence Rate: Fast

Low Curvature
Large Steps
Fast Convergence




Tool: Convexity Inequality

g convex = g(axi+ (1—a)xx) <ag(xy) + (1—a)g(xz) for a € [0, 1]

More generally: ax > 0and Y oxk=1 = g(>0Xk) < 5 0kd(Xk)- Sum outside!




Example 1: Classical ML-EM Algorithm

Negative Poisson log-likelihood cost function (unregularized):

Ng
LP(CB)I Zhl([Am]l)j hi(l):(l+ri)—yi Iog(l+ri).
|=
Intractable to minimize directly due to summation within logarithm.

Clever trick due to De Pierro (let " = [Az™); +r)):

Np Np ai-x(.”) Ne
[ ; I ; yi n) Xgn) [

Since the hy’'s are convex in Poisson emission model:

Np ai-x(.n) X Np ai-x(.n) X
hi([Az]) = h; 17 J y_én) < N _Jy_en)
| i '(lel yi{n) Xgn) ' JZ yién) ! Xgn) '

Replace convex cost function W(x) with separable surrogate function @(z; ™).

L.




“ML-EM Algorithm” M-step

E-step gave separable surrogate function:

= nzp (xj;2™) (x: ™) 2 an ok Xj —n)
— @i (Xj, , where @i (Xj, — hi Yi .

M-step separates:
(n+1) __

(n+1) -
2™ = arg ming(a: V) = X" = argxrjr;lcr)xp,(xj, "), j=1,...,np
Minimizing:

0

aXJ(PJ (Xj; Zlau. (u XJ/X ) Zlau[ | xJ/X ] )

Solving (in case ri = 0):
Ng
/ ai |, j=1,....,n
] i; j p

4 S

e Derived without any statistical considerations, unlike classical EM formulation.
e Uses only convexity and algebra.

e Guaranteed monotonic: surrogate function @ satisfies the 3 required properties.
e M-step trivial due to separable surrogate.




ML-EM iIs Scaled Gradient Descent

(n+1)

(i
X; =

_ Xgn)_|_xgn)

)

() (3)

)

X
— X('n)< 'ﬂdJ N
i—1 Aij

Ng
a
(n)

|

an

P(al"),

This particular diagonal scaling matrix remarkably

e ensures monotonicity,
e ensures nonnegativity.

J



Consideration: Separable vs Nonseparable

Separable Nonseparable
2 2
1 1
< 0 < 0
-1 -1
-2 : -2 .
-2 0 2 —2 0
X1 X1

Contour plots: loci of equal function values.

Uncoupled vs coupled minimization.



Separable Surrogate Functions (Easy M-step)

The preceding EM derivation structure applies to any cost function of the form

- 3 n(iAz))

cf ISRA (for nonnegative LS), “convex algorithm” for transmission reconstruction

Derivation yields a separable surrogate function

W(z) < gx; ™), where @(x;z" Z 0 (X,

M-step separates into 1D minimization problems (fully parallelizable):

w(n+1) — arg |T>\|On(p($, w(n)) s XEH—I—l)

= arg ming; (x;; My, j=1,...,np

X;>0

Why do EM / ISRA / convex-algorithm / etc. converge so slowly?



Separable vs Nonseparable

Separable Nonseparable

Separable surrogates (e.g., EM) have high curvature .. slow convergence.
Nonseparable surrogates can have lower curvature .. faster convergence.
Harder to minimize? Use paraboloids (quadratic surrogates).



hi(l) and Q(I;1")
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1D Parabola Surrogate Function
Find parabola (1) of the form:

: 1
6"(1) = hi(¢™) + (6" (1 = 67+ 51 - 47, where 7 = [A2)
Satisfies tangent condition. Choose curvature to ensure “lies above” condition:

o 2 min{cz 0. g™ (1) >h(l), VI> o}.

Surrogate Functions for Emission Poisson

12H — Negative log-likelihood
- - - Parabola surrogate function
- - EM surrogate function

10

Cost function values

Lower
curvature!




Paraboloidal Surrogate

Combining 1D parabola surrogates yields paraboloida/ surrogate:.
Zlh [Az)) < @(x; ™ Zq, ([Ax]))

Rewriting: @(d +zV;2™) = W(z™) +BaW(z™)s + Eé’A’diag{ci(”)} Ad

Advantages

o Surrogate @(x; ") is quadratic, unlike Poisson log-likelihood
= easier to minimize

e Not separable (unlike EM surrogate)

e Not self-similar (unlike EM surrogate)

e Small curvatures = fast convergence

e Instrinsically monotone global convergence

e Fairly simple to derive / implement

Quadratic minimization
e Coordinate descent
+ fast converging
+ Nonnegativity easy
- precomputed column-stored system matrix
e Gradient-based quadratic minimization methods
- Nonnegativity inconvenient



Example: PSCD for PET Transmission Scans

PL-OSTR-16B PL-PSCD
4 iterations 10 iterations

e square-pixel basis

e strip-integral system model

e shifted-Poisson statistical model

e edge-preserving convex regularization (Huber)

e nonnegativity constraint

e inscribed circle support constraint

e paraboloidal surrogate coordinate descent (PSCD) algorithm



Separable Paraboloidal Surrogate

To derive a parallelizable algorithm apply another De Pierro trick:
Zml [_ X")+ 4" )] 4" = (A",

Provided 15; > 0 and Zj_lT[ij =1, since parabola g; is convex:

np al
q"([Az)) =q (Z“J [f x") +€i(n)]> < Zﬂijqi(”) (Tu—_;(xj—xﬁn))wi(”))
=1

oteia) = Y a"(Al) < daie®) 2 3 3 md” (Lo -x)+4")
I=1]=1 T§

Separable Paraboloidal Surrogate:
i RNNOYE:] ONC
n n n
(”))IZCPJ(XJ';?L‘(”)), o (x;;2) =Y g (_J.(Xj_xj )+ 4 )
J:

Parallelizable M-step (cf gradient descent!):

(n+1) (n) m_ 1 0y m m_ <&
X: =argming; (Xj; ") = | X ———LIJ : d’' =) —c
j ng>0 J(J ) | dJ aXJ ( ) ) | _ |

Natural choice is T5; = |a;|/|al;,

ali = zjil‘ai”



Example: Poisson ML Transmission Problem

Transmission negative log-likelinood (for ith ray):
h(l) = (bie” +r1) —yilog(bie™ +ri).
Optimal (smallest) parabola surrogate curvature (Erdogan, T-Ml, Sep. 1999):

[ [..h(0) — h() + h()I
g =c(q"”,h), c(l,h) = < _2 E I >
[hD], | =0.

Separable Paraboloidal Surrogate Algorithm

Precompute [ali =3, &;, i=1,...,ng

" = [Az™);,  (forward projection)
— et 4, (predicted means)
h" = 1-y/¥"” (slopes)

W — c(¢™,n) (curvatures)

W,

Ny )

0 ah _

_ lxgn)_ ndl 1] I(ﬂ)] 7 j=1,...,np
izla‘ij‘a‘ici +

Monotonically decreases cost function each iteration. No logarithm!



The MAP-EM M-step “Problem”

Add a penalty function to our surrogate for the negative log-likelihood:
LIJ(w) = —L(z )+BR( )
Z @ (xj; ™) + BR(x)

M-step: =™V =argming(x; ") = arg mmZ(pJ xj; ") 4 BR(x) =

x>0

For nonseparable penalty functions, the M-step is coupled .. difficult.

Suboptimal solutions
e Generalized EM (GEM) algorithm (coordinate descent on )
Monotonic, but inherits slow convergence of EM.
e One-step late (OSL) algorithm (use outdated gradients) (Green, T-MlI, 1990)

R

a0z ™) = -0 (x;; ) + B R(x) = 5 ¢j(xj;2™) + By Rz )
Nonmonotonic. Known to diverge, depending on .
Temptingly simple, but avoid!

Contemporary solution

e Use separable surrogate for penalty function too (De Pierro, T-Ml, Dec. 1995)
Ensures monotonicity. Obviates all reasons for using OSL!



De Pierro’'s MAP-EM Algorithm
Apply separable paraboloidal surrogates to penalty function:

R(CI}) < Rspsfiv;w(n)) — Rj (Xj;w(”))

Np Np
Overall separable surrogate: g(z;z™) = 3 @j(x;;2™)+B Y Rj(x;;z")
=1 =1
The M-step becomes fully parallelizable:
I = arg ming (x;;2™) = BR(x;;2™),  j=1,...,np.
J_

Consider quadratic penalty R(z) = ¥, W([Cx]x), where g(t) =t4/2.
If vi; > 0 and Z?ilykj = 1 then

C
C:L‘ k— Zykj [V:: —Xn )—I— [Cw(n)]k] :

Since | is convex:

Y(|Cxlx) = L|J<Zpykj [C—I(J:(Xj—x<_n))_|_[C$(n)]k]>



De Pierro’s Algorithm Continued

So R(z) < R(z;z™) 2 571 Rj(xj;2™) where

s (s 1+ 1)

M-step: Minimizing @;(x;; ™) + BR;(x;; ™) yields the iteration:
n+1) Xgn) {Elaij)’i/yi "

)
B; + \/BJZ+ (x§”> aagyi/y, ”)) (B&Cﬁj/vkj)

J
1_2 i;a” Z Kj CE k ij ) J=4,..., p

and " = [Az™]; +1;.

Advantages: Intrinsically monotone, nonnegativity, fully parallelizable.
Requires only a couple % more computation per iteration than ML-EM

Disadvantages: Slow convergence (like EM) due to separable surrogate



Ordered Subsets Algorithms
aka block iterative or incremental gradient algorithms

The gradient appears in essentially every algorithm:

G LI
a—xj”’(w) = i;aijhi([Aw]i)'

This is a backprojection of a sinogram of the derivatives {hi([Aw]i)}.

Intuition: with half the angular sampling, this backprojection would be fairly similar
LS ah()~ s S agh()
ndi; . ‘S|i€Z o

where S is a subset of the rays.

To “OS-ize” an algorithm, replace all backprojections with partial sums.



Geometric View of Ordered Subsets

argmax f,(x) .-

@

« @
X

/-
ot
-

L
argmax f,(x)

Two subset case: W(x) = fi(x) + fo(x) (e.g., odd and even projection views).
For (" far from x*, even partial gradients should point roughly towards x*.

For (" near x*, however, ¥ (x) ~ 0, so I (x) ~ —0f,(x) = cycles!
Issues. Subset balance: MW (x) ~ M f(x). Choice of ordering.




Incremental Gradients (WLS, 2 Subsets)

eve n(X)

O

difference

(full — subset)




Subset Imbalance

(full — subset)




Problems with OS-EM

e Non-monotone
e Does not converge (may cycle)
e Byrne’s RBBI approach only converges for consistent (noiseless) data
e .. Unpredictable

e What resolution after n iterations?

Object-dependent, spatially nonuniform
e What variance after n iterations?
e ROl variance? (e.g., for Huesman’s WLS kinetics)



OSEM vs Penalized Likelihood

e 64x 62 Image

e 66 x 60 sinogram

e 1P counts

e 15% randoms/scatter

e uniform attenuation

e contrast in cold region

e within-region o opposite side




Contrast-Noise Results

OSEM 1 subset
OSEM 4 subset
OSEM 16 subset
PL-PSCA

(64 angles)

Uniform image

Contrast




Horizontal Profile

—x—  OSEM 4 subsets, 5 iterations
—— PL-PSCA 10 iterations
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An Open Problem

Still no algorithm with all of the following properties:
e Nonnegativity easy

e Fast converging

e Intrinsically monotone global convergence

e Accepts any type of system matrix

e Parallelizable

Relaxed block-iterative methods

K=1
2 FD/K) — (K)o Oy (2R, k=0,... K—1
Relaxation of step sizes:
o, — 0as n— o, Op = 0, 02 < oo

o ART
e RAMLA, BSREM (De Pierro, T-Ml, 1997, 2001)
e Ahn and Fessler, NSS/MIC 2001

Proper relaxation can induce convergence, but still lacks monotonicity.
Choice of relaxation schedule requires experimentation.
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OSTR

PL-OSTR-16 PL-PSCD
4 iterations 10 iterations

Ordered subsets version of separable paraboloidal surrogates
for PET transmission problem with nonquadratic convex regularization

Matlab m-file http://www.eecs.umich.edu/ ~fessler
/code/transmission/tpl _0sps.m



Precomputed curvatures for OS-SPS

Separable Paraboloidal Surrogate (SPS) Algorithm

oy _ o Sihahi([Az"])
{Elaij \a\icfm

3 J:].,,np
+

) ]

Ordered-subsets abandons monotonicity, so why use optimal curvatures ci(”)

Precomputed curvature:

¢=h(l), [li=arg mirh (1)

Precomputed denominator (saves one backprojection each iteration!):
Ny
dj:Za”\a\ici, j:1,...,np.
i=1

OS-SPS algorithm with M subsets:

X\ — [l _ Yicsmaihi([Az"])
J J dJ/M y

?



Summary of Algorithms

e General-purpose optimization algorithms
e Optimization transfer for image reconstruction algorithms
e Separable surrogates = high curvatures = slow convergence
e Ordered subsets accelerate initial convergence
require relaxation for true convergence
e Principles apply to emission and transmission reconstruction
e Still work to be done...



