Part 2. Five Categories of Choices

e Object parameterization: function f(T) vs finite coefficient vector x
e System physical model: {s ()}

e Measurement statistical model y; ~ |?

e Cost function: data-mismatch and regularization
e Algorithm / initialization

No perfect choices - one can critique all approaches!



Choice 1. Object Parameterization
Finite measurements: {y;}.,. Continuous object: f(T). Hopeless?
All models are wrong but some models are useful.

Linear series expansion approach. Replace f(F) by = (xg,...,%,,) Where

f(r)~ f(F) = Zx,- bj(T) < “basis functions”
J:

Forward projection:

/s(?)f(r’) daF — /S(F’) anp | ] [/S d?] %

= Za”xJ Ax|,, where g; _/s j(r)dr

e Projection integrals become finite summations.

e g;; Is contribution of jth basis function (e.g., voxel) to ith detector unit.
e The units of &; and x; depend on the user-selected units of b;(T).

e The ng x N, matrix A = {&; } is called the system matrix.



(Linear) Basis Function Choices

e Fourier series (complex / not sparse)

e Circular harmonics (complex / not sparse)

e Wavelets (negative values / not sparse)

e Kaiser-Bessel window functions (blobs)

e Overlapping circles (disks) or spheres (balls)
e Polar grids, logarithmic polar grids

e “Natural pixels” {s(F)}

e B-splines (pyramids)

e Rectangular pixels / voxels (rect functions)

e Point masses / bed-of-nails / lattice of points / “comb” function
e Organ-based voxels (e.g., from CT), ...

Considerations

e Represent f(T) “well” with moderate n,

e Orthogonality? (not essential)

o “Easy” to compute a;;'s and/or Az

e Rotational symmetry

e If stored, the system matrix A should be sparse (mostly zeros).

o Easy to represent nonnegative functions e.g., if x; > 0, then () > 0.
A sufficient condition is b;(T) > O.



Nonlinear Object Parameterizations
Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models

e Circles / spheres

e Ellipses / ellipsoids

e Superquadrics

e Polygons

e Bi-quadratic triangular Bezier patches, ...

Other models
o Generalized series f(T) = Y ;x;b;(T, 0)
(

o Deformable templates f () = ( 0(T))
o ...

Considerations

e Can be considerably more parsimonious

e If correct, yield greatly reduced estimation error

e Particularly compelling in limited-data problems

e Often oversimplified (all models are wrong but...)

e Nonlinear dependence on location induces non-convex cost functions,
complicating optimization



Example Basis Functions - 1D

Continuous object

6 8 10 12 14

Piecewise Constant Approximation

6 8 10 12

Quadratic B-Spline Approximation




Pixel Basis Functions - 2D

Pixel basis approximation
n —
> i21Xjbj(T)




Discrete Emission Reconstruction Problem
Having chosen a basis an parameterized the emission density...

Estimate the emission density coefficient vector x = (X, ... ,xnp)
(aka “image”) using (something like) this statistical model:

Np
Vi ~ POiSSO{Zainj—Fri}, i=1,...,ng.
J:

e {Vi}2; : observed counts from each detector unit
e A={g;} :system matrix (determined by system models)
e Ii’'s : background contributions (determined separately)

Many image reconstruction problems are “find x given y” where

yi = Gi([Az];) + &, i=1,...,ng.



Choice 2. System Model

System matrix elements: a; = /S(F’)bj (r)dr

e Scan geometry
e collimator/detector response

e attenuation

e scatter (object, collimator, scintillator)
e duty cycle (dwell time at each angle)
e detector efficiency / dead-time losses

e positron range, noncollinearity, crystal penetration, ...
o ...

Considerations
e Improving system model can improve
o Quantitative accuracy
o Spatial resolution
o Contrast, SNR, detectability
e Computation time (and storage vs compute-on-fly)
e Model uncertainties
(e.g., calculated scatter probabilities based on noisy attenuation map)
e Artifacts due to over-simplifications



Measured System Model?

Determine g;’s by scanning a voxel-sized cube source over the imaging volume
and recording counts in all detector units (separately for each voxel).

e Avoids mathematical model approximations

e Scatter / attenuation added later, approximately
e Small probabilities = long scan times

e Storage

e Repeat for every voxel size of interest

e Repeat if detectors change



“Line Length” System Model

ajj = length of intersection



“Strip Area” System Model




Sensitivity Patterns

Line Length Strip Area



Point-Lattice Projector/Backprojector

ajj's determined by linear interpolation



Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:
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Forward- / Back-projector “Pairs”
Forward projection (image domain to projection domain):
Np
)Ti:/s(?)f(?) dr = 3 ayx; = [Az],, or y= Aw
=1

Backprojection (projection domain to image domain):

Ng fp
Ay{ &M}

Often A'y is implemented as By for some “backprojector” B # A

Least-squares solutions (for example):
& =[A A" Ay #[BA] "By



Mismatched Backprojector B # A

# (PWLS-CG) # (PWLS-CG)
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System Model Tricks

e Factorize (e.g., PET Gaussian detector response)
A~ SG
(geometric projection followed by Gaussian smoothing)
e Symmetry
e Rotate and Sum

e Gaussian diffusion
for SPECT Gaussian detector response

e Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector with A’ requires care.



SPECT System Model

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter



Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model.”

yi ~ 0i([Az])
for some functions g;, e.g., gi(l) = | +r; for emission tomography.

Statistical modeling is concerned with the “ ~ ” aspect.

Considerations

e More accurate models:

o can lead to lower variance images,

o may incur additional computation,

o may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)

e Statistical model errors (e.g., deadtime)
e Incorrect models (e.g., log-processed transmission data)



Statistical Model Choices for Emission Tomography

e “None.” Assume y —r = Ax. “Solve algebraically” to find x.
e White Gaussian noise. Ordinary least squares: minimize ||y — Ax||?
e Non-white Gaussian noise. Weighted least squares: minimize

ly — Az||5, = ZIW, —[Az])%, where [Az] Za,,xJ

e Ordinary Poisson model (ignoring or precorrecting for background)
Vi ~ PoissoR | Ax];}

e Poisson model
yi ~ Poissod[Ax] +ri}

e Shifted Poisson model (for randoms precorrected PET)
— yPOMPL_ €Y | Poisso[Ax] + 2} — 2r,



Shifted Poisson model for PET

Precorrected random coincidences: y; = yPromPt_ ydelay

yWOTPt © Poissod[Ax]; +r;}

ey Poissodr;}
Ely] = [Az],
Var{yi} = [Ax] + 2r; Mean # Variance = not Poisson!

Statistical model choices
e Ordinary Poisson model: ignore randoms

il ~ PoissoR[Az];}

Causes bias due to truncated negatives
e Data-weighted least-squares (Gaussian model):

yi ~N ([Az);,67), 67 = max(y; + 2fi, 05n)

Causes bias due to data-weighting
e Shifted Poisson model (matches 2 moments):

i+ 2], ~ Poisso[Ax], + 2f}

Insensitive to inaccuracies in fj.



Shifted-Poisson Model for X-ray CT

Model with both photon variability and readout noise:
yi ~ Poissoryi ()} +N(0,0%)
Shifted Poisson approximation
yi +0° ~ PoissoRyi(p) + 0°}
or just use WLS...
Complications:

e Intractability of likelihood for Poisson+Gaussian
e Poisson mixture distribution due to photon-energy-dependent detector signal.



Choice 4. Cost Functions

Components:

e Data-mismatch term

e Reqularization term (and regularization parameter 3)
e Constraints (e.g., nonnegativity)

W(x) = DataMismatch(y, Ax) + 3- Roughness(x)

LA .
T = arg;rzuonLIJ(w)

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “y = Ax.”



Why Cost Functions?
(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on minimizing a cost function: the negative log-likelihood

e ML is asymptotically consistent

e ML is asymptotically unbiased

e ML is asymptotically efficient (under true statistical model...)

e Estimation: Penalized-likelihood achieves uniform CR bound asymptotically

e Detection: Qi and Huesman showed analytically that MAP reconstruction out-
performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons

e Stability of estimates (if W and algorithm chosen properly)
e Predictability of properties (despite nonlinearities)

e Empirical evidence (?)



Bayesian Framework

Given a prior distribution p(x) for image vectors x, by Bayes' rule:

posterior: p(z|y) = p(y|=)p(z)/p(y)

SO
log p(z|y) = log p(y|x) +log p(x) —log p(y)

e —logp(y|x) corresponds to data mismatch term
e —logp(x) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator

x = argmaxogp(x|y)

e Has certain optimality properties (provided p(y|x) and p(x) are correct).
e Same form as W



Choice 4.1: Data-Mismatch Term

Options for PET:
e Negative log-likelihood of statistical model. Poisson emission case:
Ng

—L(z;y) = —logp(y|x) = _Z([Aw]i +1i) —yilog([Ax]; + i) + logy;!

e Ordinary (unweighted) least squares: z,”dlé(y. [Am] )
o Data-weighted least squares: 39, 3(y; — fi — [Az], )2/0,, 67 = max(y; + fi,0%,,) ;

(causes bias due to data-weighting).
o Reweighted least-squares: 67 = [AZ], +
e Model-weighted least-squares (nonquadratic, but convex!)

Ny 1 .
le - [Az];)"/([Az]; +-fi)

e Nonguadratic cost-functions that are robust to outliers
o ...

Considerations

e Faithfulness to statistical model vs computation
e Ease of optimization (convex?, quadratic?)

e Effect of statistical modeling errors



Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
lll-conditioned problems: small data noise causes large image noise

Solutions :
e Noise-reduction methods
e True regularization methods

Noise-reduction methods
e Modify the data
o Prefilter or “denoise” the sinogram measurements
o Extrapolate missing (e.g., truncated) data
e Modify an algorithm derived for an ill-conditioned problem
o Stop algorithm before convergence
o Run to convergence, post-filter
o Toss In a filtering step every iteration or couple iterations
o Modify update to “dampen” high-spatial frequencies [112]



Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
e Simplicity (?)
e Familiarity
e Appear less subjective than using penalty functions or priors
e Only fiddle factors are # of iterations, amount of smoothing
e Resolution/noise tradeoff usually varies with iteration
(stop when image looks good - in principle)
e Changing post-smoothing does not require re-iterating

Advantages of true regularization methods

o Stability

e Predictability

e Resolution can be made object independent

e Controlled resolution (e.g., spatially uniform, edge preserving)
e Start with decent image (e.g., FBP) = reach solution faster.



True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

e Use bigger pixels (fewer basis functions)
oVisually unappealing
oCan only preserve edges coincident with pixel edges
oResults become even less invariant to translations

e Method of sieves (constrain image roughness)
oCondition number for “pre-emission space” can be even worse
oLots of iterations
oCommutability condition rarely holds exactly in practice
oDegenerates to post-filtering in some cases

e Change cost function by adding a roughness penalty / prior
oDisadvantage: apparently subjective choice of penalty
oApparent difficulty in choosing penalty parameters

(cf apodizing filter / cutoff frequency in FBP)



Penalty Function Considerations

o Computation

e Algorithm complexity

e Uniqueness of minimizer of W(x)

e Resolution properties (edge preserving?)

o # of adjustable parameters

e Predictability of properties (resolution and noise)

Choices

e separable vs nonseparable
e quadratic vs nonquadratic
e CONvex VS nonconvex



Penalty Functions: Separable vs Nonseparable

Separable

e Identity norm: R(z) = 3z'Tx =3, x%/2
penalizes large values of x, but causes “squashing bias”

e Entropy: R(z) = ¥?; x;logx;

XJ “J)

e Gaussian prior with mean y;, variance 02 R(x) = Z T2

e Gamma prior R(x) = Z?il p(Xj, Hj,0;) where p(x,H,0) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means |;.

General separable form: R(x Zf (X))

Simple, but these do not explicitly enforce smoothness.



Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

Example
R(@) = (X2 —X1)* + (X3 — X2) + (X5 — Xa)
+ (Xa — X1)2 + (X5 — X2)2

2

R(xz) =06

Rougher images = greater R(x)



Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:
Np 1
Ri@)=> 5 > WX —X)
JZ‘ZKEZNJ'

N; = neighborhood of jth pixel (e.g., left, right, up, down)
) called the potential function

Finite-difference approximation to continuous roughness measure:
2

0. .|° |0 0
O = 2 p— e — _— —
() = [I0fO 2= [| 2 00)] +| Do) + |60 o
Second derivatives also useful: 52 YN | |
(More choices!) 221 () L_rj ~ T (Fja) =28 (7)) + 1(Fj-1)

2



Penalty Functions: General Form

Np

R(CI}) = Zwk([CiL‘]k) where [C:L‘]k = Z Ck j X
=1

Example :




Penalty Functions: Quadratic vs Nonquadratic
R(z) = Zwk([Cw]k)

Quadratic

If Yi(t) =12/2, then R(z) = 32'C’'Cz, a quadratic form.
e Simpler optimization

e Global smoothing

Nonguadratic i

e Edge preserving

e More complicated optimization. (This is essentially solved in convex case.)
e Unusual noise properties

e Analysis/prediction of resolution and noise properties is difficult

e More adjustable parameters (e.g., 0)

2
Example: Huber function. (t) ~ { té‘{‘Z,_ 5/2 m E g



Quadratic vs Nonquadratic Potential Functions

--- Quadratic (parabola)
Nonquadratic (Huber, 06=1)

W(r)
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Lower cost for large differences = edge preservation




Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty

A transmission example would be preferabile...



Penalty Functions: Convex vs Nonconvex

Convex
e Easier to optimize
e Guaranteed uniqgue minimizer of W (for convex negative log-likelihood)

Nonconvex

e Greater degree of edge preservation

e Nice images for piecewise-constant phantoms!

e Even more unusual noise properties

e Multiple extrema

e More complicated optimization (simulated / deterministic annealing)
e Estimator x becomes a discontinuous function of data Y

Nonconvex examples
e “broken parabola”

P(t) = min(t®, t7a)
e true median root prior:

P (xj —median(z))?

R(x) = .
(@) le median(x)

where median(xz) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!



Potential Functions

- - - Paraboloa (quadratic)
Huber (convex)
—— Broken parabola (non—convex)
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Local Extrema and Discontinuous Estimators

Small change in data = large change in minimizer x.
Using convex penalty functions obviates this problem.




Augmented Regularization Functions

Replace roughness penalty R(x) with R(x|b) + aR(b),

where the elements of b (often binary) indicate boundary locations.
e Line-site methods

e Level-set methods

Joint estimation problem:

(Z,b) = arg min(, b), W(x,b) = —L(z;y) + BR(z|b) + aR(b).

Example: by indicates the presence of edge between pixels j and k:

R(z|b) = ,ZkaNj(lb"k);(x" )2

Penalty to discourage too many edges (e.g.):

R(b) = %bjk.

e Can encourage local edge continuity
e Require annealing methods for minimization



Modified Penalty Functions
R@) = 3 2 S Wil — %0
)= ) = > WjKP(X; — X
JZ‘ZKEZNJ' 3 |

Adjust weights {wj} to
e Control resolution properties
e Incorporate anatomical side information (MR/CT)
(avoid smoothing across anatomical boundaries)

Recommendations
e Emission tomography:
o begin with quadratic (nonseparable) penalty functions
o Consider modified penalty for resolution control and choice of 3
o Use modest regularization and post-filter more if desired
e Transmission tomography (attenuation maps)
o consider convex nonquadratic (e.g., Huber) penalty functions
o choose 9 based on attenuation map units
o choice of regularization parameter [3 remains nontrivial,
learn appropriate values by experience for given study type



Choice 4.3: Constraints

e Nonnegativity
e Known support
e Count preserving
e Upper bounds on values
e.g., maximum p of attenuation map in transmission case

Considerations

e Algorithm complexity

o Computation

e Convergence rate

e Bias (in low-count regions)
o ...



Open Problems

Modeling

e Noise in a;’s (system model errors)

e Noise in fj’s (estimates of scatter / randoms)

e Statistics of corrected measurements

e Statistics of measurements with deadtime losses

Cost functions

e Performance prediction for nonquadratic penalties

o Effect of nonquadratic penalties on detection tasks

e Choice of regularization parameters for nonquadratic regularization



Summary

e 1. Object parameterization: function f (') vs vector x
e 2. System physical model: s(x)

e 3. Measurement statistical model Y; ~ |?

e 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method = Cost Function + Algorithm

Naming convention:
e ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...



