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Part 2: Five Categories of Choices

• Object parameterization: function f (~r) vs finite coefficient vector x

• System physical model: {si(~r)}

• Measurement statistical model yi ∼ ?

• Cost function: data-mismatch and regularization

• Algorithm / initialization

No perfect choices - one can critique all approaches!
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Choice 1. Object Parameterization

Finite measurements: {yi}
nd
i=1. Continuous object: f (~r). Hopeless?

All models are wrong but some models are useful.

Linear series expansion approach. Replace f (~r) by x= (x1, . . . ,xnp) where

f (~r)≈ f̃ (~r) =
np

∑
j=1

xj bj(~r) ← “basis functions”

Forward projection:
∫

si(~r) f (~r) d~r =
∫

si(~r)

[
np

∑
j=1

xjbj(~r)

]
d~r =

np

∑
j=1

[∫
si(~r)bj(~r)d~r

]
xj

=
np

∑
j=1

ai j xj = [Ax]i, where ai j
4
=
∫

si(~r)bj(~r)d~r

• Projection integrals become finite summations.
• ai j is contribution of jth basis function (e.g., voxel) to ith detector unit.
• The units of ai j and xj depend on the user-selected units of bj(~r).
• The nd×np matrix A= {ai j} is called the system matrix.
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(Linear) Basis Function Choices

• Fourier series (complex / not sparse)
• Circular harmonics (complex / not sparse)
• Wavelets (negative values / not sparse)
• Kaiser-Bessel window functions (blobs)
• Overlapping circles (disks) or spheres (balls)
• Polar grids, logarithmic polar grids
• “Natural pixels” {si(~r)}
• B-splines (pyramids)
• Rectangular pixels / voxels (rect functions)
• Point masses / bed-of-nails / lattice of points / “comb” function
• Organ-based voxels (e.g., from CT), ...

Considerations
• Represent f (~r) “well” with moderate np

• Orthogonality? (not essential)
• “Easy” to compute ai j ’s and/or Ax
• Rotational symmetry
• If stored, the system matrix A should be sparse (mostly zeros).
• Easy to represent nonnegative functions e.g., if xj ≥ 0, then f (~r)≥ 0.

A sufficient condition is bj(~r)≥ 0.
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Nonlinear Object Parameterizations

Estimation of intensity and shape (e.g., location, radius, etc.)

Surface-based (homogeneous) models
• Circles / spheres
• Ellipses / ellipsoids
• Superquadrics
• Polygons
• Bi-quadratic triangular Bezier patches, ...

Other models
• Generalized series f (~r) = ∑ j xjbj(~r,θ)
• Deformable templates f (~r) = b(Tθ(~r))
• ...

Considerations
• Can be considerably more parsimonious
• If correct, yield greatly reduced estimation error
• Particularly compelling in limited-data problems
• Often oversimplified (all models are wrong but...)
• Nonlinear dependence on location induces non-convex cost functions,

complicating optimization
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Example Basis Functions - 1D
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Pixel Basis Functions - 2D
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Discrete Emission Reconstruction Problem

Having chosen a basis an parameterized the emission density...

Estimate the emission density coefficient vector x= (x1, . . . ,xnp)
(aka “image”) using (something like) this statistical model:

yi ∼ Poisson

{
np

∑
j=1

ai j xj+ ri

}
, i = 1, . . . ,nd.

• {yi}
nd
i=1 : observed counts from each detector unit

• A= {ai j} : system matrix (determined by system models)

• ri’s : background contributions (determined separately)

Many image reconstruction problems are “find x given y” where

yi = gi([Ax]i)+ εi, i = 1, . . . ,nd.
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Choice 2. System Model

System matrix elements: ai j =

∫
si(~r)bj(~r)d~r

• scan geometry
• collimator/detector response
• attenuation
• scatter (object, collimator, scintillator)
• duty cycle (dwell time at each angle)
• detector efficiency / dead-time losses
• positron range, noncollinearity, crystal penetration, ...
• ...

Considerations
• Improving system model can improve
◦ Quantitative accuracy
◦ Spatial resolution
◦ Contrast, SNR, detectability

• Computation time (and storage vs compute-on-fly)
• Model uncertainties

(e.g., calculated scatter probabilities based on noisy attenuation map)
• Artifacts due to over-simplifications
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Measured System Model?

Determine ai j ’s by scanning a voxel-sized cube source over the imaging volume
and recording counts in all detector units (separately for each voxel).

• Avoids mathematical model approximations

• Scatter / attenuation added later, approximately

• Small probabilities ⇒ long scan times

• Storage

• Repeat for every voxel size of interest

• Repeat if detectors change
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“Line Length” System Model

x1 x2

ai j
4
= length of intersection

ith ray
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“Strip Area” System Model

x1

xj−1

ai j
4
= area

ith ray
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Sensitivity Patterns

nd

∑
i=1

ai j ≈ s(~r j) =
nd

∑
i=1

si(~r j)

Line Length Strip Area
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Point-Lattice Projector/Backprojector

x1 x2

ith ray

ai j ’s determined by linear interpolation
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Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:
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Forward- / Back-projector “Pairs”

Forward projection (image domain to projection domain):

ȳi =

∫
si(~r) f (~r) d~r =

np

∑
j=1

ai j xj = [Ax]i , or ȳ =Ax

Backprojection (projection domain to image domain):

A′y =

{
nd

∑
i=1

ai j yi

}np

j=1

Often A′y is implemented as By for some “backprojector”B 6=A′

Least-squares solutions (for example):

x̂= [A′A]−1A′y 6= [BA]−1By
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Mismatched Backprojector B 6=A′

x x̂ (PWLS-CG) x̂ (PWLS-CG)

Matched Mismatched
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Horizontal Profiles
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System Model Tricks

• Factorize (e.g., PET Gaussian detector response)

A≈ SG

(geometric projection followed by Gaussian smoothing)

• Symmetry

• Rotate and Sum

• Gaussian diffusion
for SPECT Gaussian detector response

• Correlated Monte Carlo (Beekman et al.)

In all cases, consistency of backprojector withA′ requires care.
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SPECT System Model

Collimator / D
etector

Complications: nonuniform attenuation, depth-dependent PSF, Compton scatter
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Choice 3. Statistical Models

After modeling the system physics, we have a deterministic “model:”

yi ≈ gi([Ax]i)

for some functions gi, e.g., gi(l) = l + ri for emission tomography.

Statistical modeling is concerned with the “ ≈ ” aspect.

Considerations
• More accurate models:
◦ can lead to lower variance images,
◦ may incur additional computation,
◦ may involve additional algorithm complexity

(e.g., proper transmission Poisson model has nonconcave log-likelihood)
• Statistical model errors (e.g., deadtime)
• Incorrect models (e.g., log-processed transmission data)
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Statistical Model Choices for Emission Tomography

• “None.” Assume y−r =Ax. “Solve algebraically” to find x.

• White Gaussian noise. Ordinary least squares: minimize ‖y−Ax‖2

• Non-white Gaussian noise. Weighted least squares: minimize

‖y−Ax‖2
W =

nd

∑
i=1

wi (yi− [Ax]i)
2, where [Ax]i

4
=

np

∑
j=1

ai j xj

• Ordinary Poisson model (ignoring or precorrecting for background)

yi ∼ Poisson{[Ax]i}

• Poisson model
yi ∼ Poisson{[Ax]i+ ri}

• Shifted Poisson model (for randoms precorrected PET)

yi = yprompt
i −ydelay

i ∼ Poisson{[Ax]i+2ri}−2ri
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Shifted Poisson model for PET

Precorrected random coincidences: yi = yprompt
i −ydelay

i

yprompt
i ∼ Poisson{[Ax]i+ ri}

ydelay
i ∼ Poisson{ri}

E[yi] = [Ax]i
Var{yi} = [Ax]i+2ri Mean 6= Variance ⇒ not Poisson!

Statistical model choices
• Ordinary Poisson model: ignore randoms

[yi]+ ∼ Poisson{[Ax]i}

Causes bias due to truncated negatives
• Data-weighted least-squares (Gaussian model):

yi ∼N
(
[Ax]i , σ̂

2
i

)
, σ̂2

i =max
(
yi+2r̂ i,σ2

min

)
Causes bias due to data-weighting
• Shifted Poisson model (matches 2 moments):

[yi+2r̂ i]+ ∼ Poisson{[Ax]i+2r̂ i}

Insensitive to inaccuracies in r̂ i.
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Shifted-Poisson Model for X-ray CT

Model with both photon variability and readout noise:

yi ∼ Poisson{ȳi(µ)}+N(0,σ2)

Shifted Poisson approximation

yi+σ2∼ Poisson
{

ȳi(µ)+σ2
}

or just use WLS...

Complications:
• Intractability of likelihood for Poisson+Gaussian
• Poisson mixture distribution due to photon-energy-dependent detector signal.
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Choice 4. Cost Functions

Components:
• Data-mismatch term
• Regularization term (and regularization parameter β)
• Constraints (e.g., nonnegativity)

Ψ(x) = DataMismatch(y,Ax)+β ·Roughness(x)

x̂
4
= argmin

x≥0
Ψ(x)

Actually several sub-choices to make for Choice 4 ...

Distinguishes “statistical methods” from “algebraic methods” for “y =Ax.”
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Why Cost Functions?

(vs “procedure” e.g., adaptive neural net with wavelet denoising)

Theoretical reasons
ML is based on minimizing a cost function: the negative log-likelihood
• ML is asymptotically consistent
• ML is asymptotically unbiased
• ML is asymptotically efficient (under true statistical model...)
• Estimation: Penalized-likelihood achieves uniform CR bound asymptotically
• Detection: Qi and Huesman showed analytically that MAP reconstruction out-

performs FBP for SKE/BKE lesion detection (T-MI, Aug. 2001)

Practical reasons
• Stability of estimates (if Ψ and algorithm chosen properly)
• Predictability of properties (despite nonlinearities)
• Empirical evidence (?)
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Bayesian Framework

Given a prior distribution p(x) for image vectors x, by Bayes’ rule:

posterior: p(x|y) = p(y|x)p(x)/p(y)

so
logp(x|y) = logp(y|x)+ logp(x)− logp(y)

• − logp(y|x) corresponds to data mismatch term
• − logp(x) corresponds to regularizing penalty function

Maximum a posteriori (MAP) estimator :

x̂= argmax
x

logp(x|y)

• Has certain optimality properties (provided p(y|x) and p(x) are correct).
• Same form as Ψ
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Choice 4.1: Data-Mismatch Term

Options for PET:
• Negative log-likelihood of statistical model. Poisson emission case:

−L(x;y) =− logp(y|x) =
nd

∑
i=1

([Ax]i+ ri)−yi log([Ax]i+ ri)+ logyi!

• Ordinary (unweighted) least squares: ∑nd
i=1

1
2(yi− r̂ i− [Ax]i)

2

• Data-weighted least squares: ∑nd
i=1

1
2(yi− r̂ i− [Ax]i)

2/σ̂2
i , σ̂2

i =max
(
yi+ r̂ i,σ2

min

)
,

(causes bias due to data-weighting).
• Reweighted least-squares: σ̂2

i = [Ax̂]i+ r̂ i

• Model-weighted least-squares (nonquadratic, but convex!)
nd

∑
i=1

1
2
(yi− r̂ i− [Ax]i)

2/([Ax]i+ r̂ i)

• Nonquadratic cost-functions that are robust to outliers
• ...

Considerations
• Faithfulness to statistical model vs computation
• Ease of optimization (convex?, quadratic?)
• Effect of statistical modeling errors
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Choice 4.2: Regularization

Forcing too much “data fit” gives noisy images
Ill-conditioned problems: small data noise causes large image noise

Solutions :
• Noise-reduction methods
• True regularization methods

Noise-reduction methods
• Modify the data
◦ Prefilter or “denoise” the sinogram measurements
◦ Extrapolate missing (e.g., truncated) data

• Modify an algorithm derived for an ill-conditioned problem
◦ Stop algorithm before convergence
◦ Run to convergence, post-filter
◦ Toss in a filtering step every iteration or couple iterations
◦ Modify update to “dampen” high-spatial frequencies [112]
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Noise-Reduction vs True Regularization

Advantages of noise-reduction methods
• Simplicity (?)
• Familiarity
• Appear less subjective than using penalty functions or priors
• Only fiddle factors are # of iterations, amount of smoothing
• Resolution/noise tradeoff usually varies with iteration

(stop when image looks good - in principle)
• Changing post-smoothing does not require re-iterating

Advantages of true regularization methods
• Stability
• Predictability
• Resolution can be made object independent
• Controlled resolution (e.g., spatially uniform, edge preserving)
• Start with decent image (e.g., FBP) ⇒ reach solution faster.
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True Regularization Methods

Redefine the problem to eliminate ill-conditioning,
rather than patching the data or algorithm!

• Use bigger pixels (fewer basis functions)
◦Visually unappealing
◦Can only preserve edges coincident with pixel edges
◦Results become even less invariant to translations

• Method of sieves (constrain image roughness)
◦Condition number for “pre-emission space” can be even worse
◦Lots of iterations
◦Commutability condition rarely holds exactly in practice
◦Degenerates to post-filtering in some cases

• Change cost function by adding a roughness penalty / prior
◦Disadvantage: apparently subjective choice of penalty
◦Apparent difficulty in choosing penalty parameters

(cf apodizing filter / cutoff frequency in FBP)
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Penalty Function Considerations

• Computation
• Algorithm complexity
• Uniqueness of minimizer of Ψ(x)
• Resolution properties (edge preserving?)
• # of adjustable parameters
• Predictability of properties (resolution and noise)

Choices
• separable vs nonseparable
• quadratic vs nonquadratic
• convex vs nonconvex
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Penalty Functions: Separable vs Nonseparable

Separable

• Identity norm: R(x) = 1
2x
′Ix= ∑np

j=1x2
j/2

penalizes large values of x, but causes “squashing bias”

• Entropy: R(x) = ∑np
j=1xj logxj

• Gaussian prior with mean µj, variance σ2
j : R(x) = ∑np

j=1
(xj−µj)

2

2σ2
j

• Gamma prior R(x) = ∑np
j=1 p(xj,µj ,σ j) where p(x,µ,σ) is Gamma pdf

The first two basically keep pixel values from “blowing up.”
The last two encourage pixels values to be close to prior means µj.

General separable form: R(x) =
np

∑
j=1

f j(xj)

Simple, but these do not explicitly enforce smoothness.
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Penalty Functions: Separable vs Nonseparable

Nonseparable (partially couple pixel values) to penalize roughness

x1 x2 x3

x4 x5

Example

R(x) = (x2−x1)
2+(x3−x2)

2+(x5−x4)
2

+(x4−x1)
2+(x5−x2)

2

2 2 2

2 1

3 3 1

2 2

1 3 1

2 2

R(x) = 1 R(x) = 6 R(x) = 10

Rougher images ⇒ greater R(x)
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Roughness Penalty Functions

First-order neighborhood and pairwise pixel differences:

R(x) =
np

∑
j=1

1
2 ∑

k∈N j

ψ(xj−xk)

N j
4
= neighborhood of jth pixel (e.g., left, right, up, down)

ψ called the potential function

Finite-difference approximation to continuous roughness measure:

R( f (·)) =
∫
‖∇ f (~r)‖2d~r =

∫ ∣∣∣∣ ∂
∂x

f (~r)

∣∣∣∣
2

+

∣∣∣∣ ∂
∂y

f (~r)

∣∣∣∣
2

+

∣∣∣∣ ∂
∂z

f (~r)

∣∣∣∣
2

d~r.

Second derivatives also useful:
(More choices!)

∂2

∂x2 f (~r)
∣∣∣
~r=~r j

≈ f (~r j+1)−2 f (~r j)+ f (~r j−1)

R(x) =
np

∑
j=1

ψ(xj+1−2xj+xj−1)+ · · ·
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Penalty Functions: General Form

R(x) =∑
k

ψk([Cx]k) where [Cx]k=
np

∑
j=1

ck jxj

Example :

x1 x2 x3

x4 x5

Cx=



−1 1 0 0 0

0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0

0 −1 0 0 1







x1

x2

x3

x4

x5


=



x2−x1

x3−x2

x5−x4

x4−x1

x5−x2




R(x)=
5

∑
k=1

ψk([Cx]k)=ψ1(x2−x1)+ψ2(x3−x2)+ψ3(x5−x4)+ψ4(x4−x1)+ψ5(x5−x2)
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Penalty Functions: Quadratic vs Nonquadratic

R(x) =∑
k

ψk([Cx]k)

Quadratic ψk

If ψk(t) = t2/2, then R(x) = 1
2x
′C ′Cx, a quadratic form.

• Simpler optimization
• Global smoothing

Nonquadratic ψk

• Edge preserving
• More complicated optimization. (This is essentially solved in convex case.)
• Unusual noise properties
• Analysis/prediction of resolution and noise properties is difficult
• More adjustable parameters (e.g., δ)

Example: Huber function. ψ(t) 4=
{

t2/2, |t| ≤ δ
δ|t|−δ2/2, |t|> δ
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Edge-Preserving Reconstruction Example

Phantom Quadratic Penalty Huber Penalty

A transmission example would be preferable...



2.39Fessler, Univ. of Michigan

Penalty Functions: Convex vs Nonconvex

Convex
• Easier to optimize
• Guaranteed unique minimizer of Ψ (for convex negative log-likelihood)

Nonconvex
• Greater degree of edge preservation
• Nice images for piecewise-constant phantoms!
• Even more unusual noise properties
• Multiple extrema
• More complicated optimization (simulated / deterministic annealing)
• Estimator x̂ becomes a discontinuous function of data Y

Nonconvex examples
• “broken parabola”

ψ(t) =min(t2, t2
max)

• true median root prior:

R(x) =
np

∑
j=1

(xj−medianj(x))
2

medianj(x)
where medianj(x) is local median

Exception: orthonormal wavelet threshold denoising via nonconvex potentials!
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Local Extrema and Discontinuous Estimators

x̂

Ψ(x)

x

Small change in data ⇒ large change in minimizer x̂.
Using convex penalty functions obviates this problem.
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Augmented Regularization Functions

Replace roughness penalty R(x) with R(x|b)+αR(b),
where the elements of b (often binary) indicate boundary locations.
• Line-site methods
• Level-set methods

Joint estimation problem:

(x̂, b̂) = argmin
x,b

Ψ(x,b), Ψ(x,b) =−L(x;y)+βR(x|b)+αR(b).

Example: bjk indicates the presence of edge between pixels j and k:

R(x|b) =
np

∑
j=1

∑
k∈N j

(1−bjk)
1
2
(xj−xk)

2

Penalty to discourage too many edges (e.g.):

R(b) =∑
jk

bjk.

• Can encourage local edge continuity
• Require annealing methods for minimization
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Modified Penalty Functions

R(x) =
np

∑
j=1

1
2 ∑

k∈N j

wjkψ(xj−xk)

Adjust weights {wjk} to
• Control resolution properties
• Incorporate anatomical side information (MR/CT)

(avoid smoothing across anatomical boundaries)

Recommendations
• Emission tomography:
◦ begin with quadratic (nonseparable) penalty functions
◦ Consider modified penalty for resolution control and choice of β
◦ Use modest regularization and post-filter more if desired

• Transmission tomography (attenuation maps)
◦ consider convex nonquadratic (e.g., Huber) penalty functions
◦ choose δ based on attenuation map units
◦ choice of regularization parameter β remains nontrivial,

learn appropriate values by experience for given study type
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Choice 4.3: Constraints

• Nonnegativity
• Known support
• Count preserving
• Upper bounds on values

e.g., maximum µ of attenuation map in transmission case

Considerations
• Algorithm complexity
• Computation
• Convergence rate
• Bias (in low-count regions)
• . . .
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Open Problems

Modeling
• Noise in ai j ’s (system model errors)
• Noise in r̂ i’s (estimates of scatter / randoms)
• Statistics of corrected measurements
• Statistics of measurements with deadtime losses

Cost functions
• Performance prediction for nonquadratic penalties
• Effect of nonquadratic penalties on detection tasks
• Choice of regularization parameters for nonquadratic regularization
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Summary

• 1. Object parameterization: function f (~r) vs vector x

• 2. System physical model: si(x)

• 3. Measurement statistical model Yi ∼ ?

• 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method = Cost Function + Algorithm

Naming convention:
• ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, . . .


