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Part 1: From Physics to Statistics

or
“What quantity is reconstructed?”

(in emission tomography)

Outline
• Decay phenomena and fundamental assumptions
• Idealized detectors
• Random phenomena
• Poisson measurement statistics
• State emission tomography reconstruction problem
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What Object is Reconstructed?

In emission imaging, our aim is to image the radiotracer distribution.

The what?

At time t = 0 we inject the patient with some radiotracer , containing a “large”
number N of metastable atoms of some radionuclide.

Let ~Xk(t) ∈ IR3 denote the position of the kth tracer atom at time t.
These positions are influenced by blood flow, patient physiology, and other
unpredictable phenomena such as Brownian motion.

The ultimate imaging device would provide an exact list of the spatial locations
~X1(t), . . . ,~XN(t) of all tracer atoms for the entire scan.

Would this be enough?
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Atom Positions or Statistical Distribution?

Repeating a scan would yield different tracer atom sample paths
{
~Xk(t)

}N

k=1
.

... statistical formulation

Assumption 1. The spatial locations of individual tracer atoms at any time t ≥ 0
are independent random variables that are all identically distributed according to
a common probability density function (pdf) f~X(t)(~x).

This pdf is determined by patient physiology and tracer properties.

Larger values of f~X(t)(~x) correspond to “hot spots” where the tracer atoms tend to
be located at time t. Units: inverse volume, e.g., atoms per cubic centimeter.

The radiotracer distribution f~X(t)(~x) is the quantity of interest.

(Not
{
~Xk(t)

}N

k=1
!)
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Example: Perfect Detector
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True radiotracer distribution f~X(t)(~x)
at some time t.

A realization of N = 2000 i.i.d.
atom positions (dots) recorded
“exactly.”

Little similarity!
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Binning/Histogram Density Estimator
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Estimate of f~X(t)(~x) formed by histogram binning of N= 2000points.
Ramp remains difficult to visualize.
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Kernel Density Estimator
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Horizontal profiles at x2 = 3 through
density estimates.
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Poisson Spatial Point Process

Assumption 2. The number of injected tracer atoms N has a Poisson distribution
with some mean

µN
4
= E[N] =

∞

∑
n=0

nP[N= n].

Let N(B) denote the number of tracer atoms that have spatial locations in any set
B ⊂ IR3 (VOI) at time t0 after injection.

N(·) is called a Poisson spatial point process.

Fact. For any set B, N(B) is Poisson distributed with mean:

E[N(B)] = E[N]P[~X ∈ B] = µN

∫
B

f~X(t0)(~x)d~x.

Poisson N injected atoms + i.i.d. locations ⇒ Poisson point process
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Illustration of Point Process ( µN = 200)
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Radionuclide Decay

Preceding quantities are all unobservable.
We “observe” a tracer atom only when it decays and emits photon(s).

The time that the kth tracer atom decays is a random variable Tk.

Assumption 3. The Tk’s are statistically independent random variables,
and are independent of the (random) spatial location.

Assumption 4. Each Tk has an exponential distribution with mean µT = t1/2/ln2.

Cumulative distribution function: P[Tk≤ t] = 1−exp(−t/µT)
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Statistics of an Ideal Decay Counter

Let K(t,B) denote the number of tracer atoms that decay by time t,
and that were located in the VOI B ⊂ IR3 at the time of decay.

Fact. K(t,B) is a Poisson counting process with mean

E[K(t,B)] =
∫ t

0

∫
B

λ(~x,τ)d~xdτ,

where the (nonuniform) emission rate density is given by

λ(~x, t) 4= µN
e−t/µT

µT
· f~X(t)(~x).

Ingredients: “dose,” “decay,” “distribution”

Units: “counts” per unit time per unit volume, e.g., µCi/cc.

“Photon emission is a Poisson process”

What about the actual measurement statistics?
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Idealized Detector Units

A nuclear imaging system consists of nd conceptual detector units.

Assumption 5. Each decay of a tracer atom produces a recorded count in at
most one detector unit.

Let Sk ∈ {0,1, . . . ,nd} denote the index of the incremented detector unit for decay
of kth tracer atom. (Sk= 0 if decay is undetected.)

Assumption 6. The Sk’s satisfy the following conditional independence:

P
(

S1, . . . ,SN |N, T1, . . . ,TN, ~X1(·), . . . ,~XN(·)
)
=

N

∏
k=1

P
(

Sk|~Xk(Tk)
)
.

The recorded bin for the kth tracer atom’s decay depends only on its position when
it decays, and is independent of all other tracer atoms.

(No event pileup; no deadtime losses.)



1.12Fessler, Univ. of Michigan

PET Example
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SPECT Example
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Detector Unit Sensitivity Patterns

Spatial localization:

si (~x)
4
= probability that decay at~x is recorded by ith detector unit.

Idealized Example . Shift-invariant PSF: si(~x) = h(~ki ·~x− ri)
• ri is the radial position of ith ray
• ~ki is the unit vector orthogonal to ith parallel ray
• h(·) is the shift-invariant radial PSF (e.g., Gaussian bell or rectangular function)

ri

h(r− ri)

~ki

x1

x2

~ki ·~x ~x

r
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Example: SPECT Detector-Unit Sensitivity Patterns

s1(~x) s2(~x)

x2

x1

Two representative si(~x) functions for a collimated Anger camera.
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Example: PET Detector-Unit Sensitivity Patterns
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Detector Unit Sensitivity Patterns

si(~x) can include the effects of
• geometry / solid angle
• collimation
• scatter
• attenuation
• detector response / scan geometry
• duty cycle (dwell time at each angle)
• detector efficiency
• positron range, noncollinearity
• . . .

System sensitivity pattern:

s(~x)
4
=

nd

∑
i=1

si(~x) = 1−s0(~x)≤ 1

(probability that decay at location~x will be detected at all by system)
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System Sensitivity Pattern s(~x)

x2

x1

Example: collimated 180◦ SPECT system with uniform attenuation.



1.19Fessler, Univ. of Michigan

Detection Probabilities si(~x0) (vs det. unit index i)

si(~x0)

x2

θ

~x0

x1 r
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Summary of Random Phenomena

• Number of tracer atoms injected N

• Spatial locations of tracer atoms {~Xk}N
k=1

• Time of decay of tracer atoms {Tk}N
k=1

• Detection of photon [Sk 6= 0]

• Recording detector unit {Sk}
nd
i=1
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Emission Scan

Record events in each detector unit for t1≤ t ≤ t2.
Yi
4
= number of events recorded by ith detector unit during scan, for i = 1, . . . ,nd.

Yi
4
= ∑N

k=1 1{Sk=i, Tk∈[t1,t2]}.

The collection {Yi : i = 1, . . . ,nd} is our sinogram. Note 0≤Yi ≤ N.

Fact. Under Assumptions 1-6 above,

Yi ∼ Poisson

{∫
si(~x)λ(~x)d~x

}
(cf “line integral”)

and Yi’s are statistically independent random variables,
where the emission density is given by

λ(~x) = µN

∫ t2

t1

1
µT

e−t/µT f~X(t)(~x)dt.

(Local number of decays per unit volume during scan.)

Ingredients:
• dose (injected)
• duration of scan
• decay of radionuclide
• distribution of radiotracer
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Poisson Statistical Model (Emission)

Actual measured counts = “foreground” counts + “background” counts.

Sources of background counts:
• cosmic radiation / room background
• random coincidences (PET)
• scatter not account for in si(~x)
• “crosstalk” from transmission sources in simultaneous T/E scans
• anything else not accounted for by

∫
si(~x)λ(~x)d~x

Assumption 7.
The background counts also have independent Poisson distributions.

Statistical model (continuous to discrete)

Yi ∼ Poisson

{∫
si(~x)λ(~x)d~x+ ri

}
, i = 1, . . . ,nd

ri : mean number of “background” counts recorded by ith detector unit.
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Emission Reconstruction Problem

Estimate the emission density λ(·) using (something like) this model:

Yi ∼ Poisson

{∫
si(~x)λ(~x)d~x+ ri

}
, i = 1, . . . ,nd.

Knowns:

• {Yi = yi}
nd
i=1 : observed counts from each detector unit

• si(~x) sensitivity patterns (determined by system models)

• ri’s : background contributions (determined separately)

Unknown: λ(~x)
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List-mode acquisitions

Recall that conventional sinogram is temporally binned:

Yi
4
=

N

∑
k=1

1{Sk=i, Tk∈[t1,t2]}.

This binning discards temporal information.

List-mode measurements: record all (detector,time) pairs in a list, i.e.,

{(Sk,Tk) : k= 1, . . . ,N} .

List-mode dynamic reconstruction problem:

Estimate λ(~x, t) given {(Sk,Tk)}.
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Emission Reconstruction Problem - Illustration

λ(~x) {Yi}

x2 θ

x1 r
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Example: MRI “Sensitivity Pattern”

x

y

 

Each “k-space sample” corresponds to a sinusoidal pattern weighted by:
• RF receive coil sensitivity pattern
• phase effects of field inhomogeneity
• spin relaxation effects.

yi =
∫

f (~x)cRF(~x)exp(−ıω(~x)ti)exp(−ti/T2(~x))exp
(
−ı2π~k(ti) ·~x

)
d~x+ εi


