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Image Reconstruction Methods
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Image Reconstruction Methods / Algorithms
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Outline

Part 0: Introduction / Overview

Part 1: From Physics to Statistics (Emission tomography)
• Assumptions underlying Poisson statistical model
• Emission reconstruction problem statement

Part 2: Four of Five Choices for Statistical Image Reconstruction
• Object parameterization
• System physical modeling
• Statistical modeling of measurements
• Cost functions and regularization

Part 3: Fifth Choice: Iterative algorithms
• Classical optimization methods
• Considerations: nonnegativity, convergence rate, ...
• Optimization transfer: EM etc.
• Ordered subsets / block iterative / incremental gradient methods

Part 4: Performance Analysis
• Spatial resolution properties
• Noise properties
• Detection performance

Part 5: Miscellaneous topics (?)
• ...
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History

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Proposals to use Poisson likelihood for emission and transmission tomography
Emission: (Rockmore and Macovski, TNS, 1976)

Transmission: (Rockmore and Macovski, TNS, 1977)

• First expectation-maximization (EM) algorithms for Poisson model
Emission: (Shepp and Vardi, TMI, 1982)

Transmission: (Lange and Carson, JCAT, 1984)

• First regularized (aka Bayesian) Poisson emission reconstruction
Geman and McClure, ASA, 1985

• Ordered-subsets EM algorithm
Hudson and Larkin, TMI, 1994

• Commercial introduction of OSEM for PET scanners
circa 1997
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Why Statistical Methods?

• Object constraints (e.g., nonnegativity, object support)
• Accurate physical models (less bias ⇒ improved quantitative accuracy)

improved spatial resolution?
(e.g., nonuniform attenuation in SPECT)
• Appropriate statistical models (less variance ⇒ lower image noise)

(FBP treats all rays equally)
• Side information (e.g., MRI or CT boundaries)
• Nonstandard geometries (“missing” data)

Disadvantages?
• Computation time
• Model complexity
• Software complexity

Analytical methods (a different short course!)
• Idealized mathematical model
◦ Usually geometry only, greatly over-simplified physics
◦ Continuum measurements

• No statistical model
• Easier analysis of properties (due to linearity)

e.g., Huesman (1984) FBP ROI variance for kinetic fitting
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What about Moore’s Law?
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Benefit Example: Statistical Models
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NRMS Error
Method Soft Tissue Cortical Bone
FBP 22.7% 29.6%
PWLS 13.6% 16.2%
PL 11.8% 15.8%
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Benefit Example: Physical Models
a. True object

b. Unocrrected FBP

c. Monoenergetic statistical reconstruction

0.8 1  1.2

a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction

0.8 1  1.2
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Benefit Example: Nonstandard Geometries
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Truncated Fan-Beam SPECT Transmission Scan

Truncated Truncated Untruncated
FBP PWLS FBP
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One Final Advertisement: Iterative MR Reconstruction


