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Statistical Models for Randoms-Precorrected PET

(Mehmet Yavuz)
IEEE T-MlI, Aug. 1999

Randoms-subtracted measurements (mean # variance):
Y; ~ PoissoRy; + 1} — PoissoHr;}

Exact log-likelihood impractical.
Practical approximate: statistical models:

o Data-weighted LS approach: Y], SN (%, Y+ 2n)
e Ordinary Poisson model: [Y], < PoissoRy; }
e Shifted-Poisson model: YY; + 2r; 2 PoisSsoRy; + 2r;}

Penalized-likelihood reconstruction easy for all three models.



PET Transmission Scans of Thorax Phantom

e One 5-hour scan (ECAT EXACT)

e 100 2-minute scans
Each reconstructed by all three methods and by FBP.



Bias/Variance Comparison

Profile through sample means from 100 2 minute scans Histogram of the ratio of standard deviation of OPmethod to SP method
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e Data-weighted LS (and FBP) are severely biased for low-count transmission scans.

e Ordinary Poisson model yields about 11% higher standard deviation than shifted-Poison.

e Computation time indistinguishable. Programming time almost indistinguishable.

e Robust to crude approximations for randoms (r;’s)

e Attenuation map noise somewhat amplified when propagated into emission images
(observed empirically and verified analytically).

e Collecting separate prompts/randoms nevertheless preferable.



Paraboloidal Surrogate Iterations

(Hakan Erdogan)
IEEE T-MI, Sep. 1999, PMB Nov. 1999

e Replace complicated minimization problem with sequence of easier ones

e Fast: monotonic version (globally convergent for stricly convex cost functions)
e Faster: “usually monotonic” version (precomputed diagonal preconditioner)

e Fastest: ordered-subsets version (not monotonic)

Transmission Algorithms

G—© PS,0,CD (Monotonic)
*—* PS,M,CD (Monotonic)
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PET Transmission Scan

PL-OSTR-16B PL-PSCD
4 iterations 10 iterations

e When monotonicity is desired, use paraboloidal surrogates coordinate descent
e Otherwise, use ordered-subsets separable paraboloidal surrogates
o Benefits of penalized-likelihood attenuation map reconstruction

o Proper transmission scan statistical model (no logarithm!)

o Better attenuation maps than FBP (or OSEM)

o Preferable even if segmentation used



Paralyzable Deadtime Statistics

(ELR(T))
PMB Jul. 2000, NIM 2002

e Deadtime introduces statistical dependencies, . non-Poisson measurements

e Nevertheless, mean ~ variance for
e singles counting with “block” detectors (e.g., Anger camera)
e coincidence counting

e Effect of deadtime should be included in system matrix (not precorrected)



Paralyzable Deadtime Analysis

Singles Counting Coincidence Counting

Ideal mean: E[N()]
—— Type Il mean: E[Y(t)]
- - Type Il variance: Var[Y(t)]

E[Y(®)], Var[Y(t)]
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Resolution Properties and Regularization

(J. Webster Stayman)
TMI June 2000
Local impulse response:
i~ [G'DG+BR]'G'DGe;,

where diagonal D depends on statistical model and data.

For shift-invariant PET systems:

e FBP yields uniform spatial resolution (but higher noise)

e Conventional penalized-likelihood (or PWLS) yields non-uniform & anisotropic
spatial resolution

e Modified (data-dependent) regularization (R) yields nearly uniform & isotropic
resolution



Example PSF Profiles (2D shift-invariant PET)

p=3.950, 0=0.008 p=3.933, 0=0.048 pn=3.949, 0=0.008 p=3.950, 0=0.008
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Conventional Regularization Modified Regularization
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Effects on Noise
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a) Filtered backprojection (+),

b) Penalized unweighted least-squares PULS (V),
c) PLE with conventional regularization (o),

d) PLE with certainty-based penalty (x),
e) PLE with proposed penalty (¢), and
f) PLE with CNLLS penalty (O).




Current Regularization Work

e Highly shift-variant systems

03D SPECT with depth-dependent detector response
oAnimal PET systems (large FOV relative to ring diameter)

e Faster design of regularizer
e Comparisons with post-filter maximum-likelihood estimates
e Hybrid penalized-likelihood / small post-filtering approaches

oRetain convergence speed and stability of regularized methods over ML
olmprove resolution uniformity by modest post-filtering



X-ray CT Image Reconstruction

(Idris Elbakri)
T-MI Feb. 2002

Energy-dependent attenuation Polyenergetic source spectrum

e Beam-hardening artifacts
e FBP iIs dose inefficient
o Additional motivation: PET attenuation correction in PET-CT



X-ray CT Disk Phantom Simulation

a. Density Phantom b. Uncorrected FBP c. Monoenergetic
Statistical

1.2 Reconstruction

a. Soft-tissue b. JS corrected FBP c. Polyenergetic
corrected FBP Statistical
1.2 Reconstruction




X-ray CT Thorax Simulation

a. True object a. Soft-tissue corrected FBP

i

b. Unocrrected FBP b. JS corrected FBP

c. Monoenergetic statistical reconstruction c. Polyenergetic Statistical Reconstruction
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Convergent Ordered-Subsets Algorithms

(Sangtae Ahn)
IEEE T-MI, Submitted 2002

e Ordinary OS methods are not convergent
e Convergence is desired for regularized reconstruction methods

e Relaxation can guarantee convergence if
e appropriate relaxation schedule is used: a, — 0, S o, = », and
e appropriate (subiteration-independent!) diagonal scaling matrix is used.

e TWO versions:
o Multiplicative form, modified version of De Pierro's BSREM
o Additive form, modified version of separable paraboloidal surrogates

2 (MHMED/M) — (/M) _ o (w(n+m/M)) Dwm(w(ner/M)) | m=0,...M—1

where W(z) = MW, (x) decomposes cost-function into subsets.



OS Non-Convergence

| -©- Ordinary gradient method
S —— Ordered subsets method
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Non-relaxed OS Example

-&- SPS

-x-- DPEM

—©— Unrelaxed modified BSREM-40
-+ Unrelaxed OS-SPS-40

—A— Unrelaxed modified BSREM-8
-0 Unrelaxed OS-SPS-8
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e More subsets = faster initial convergence but faster stagnation
e 2D SPECT system with attenuation and depth-dependent detector response
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Relaxed OS Results

-+ Unrelaxed OS-SPS-40
-3 Unrelaxed OS-SPS-8
—— Relaxed OS-SPS-40
—A— Relaxed OS-SPS-8

lteration




MRI Reconstruction with Field Inhomogeneity
(Brad Sutton)

MR signal equation:

s(t) = / £ (R) exp(—100(X)t) exp(—12Tk() - X) dX

e Due to field inhomogeneity, signal is not Fourier transform of object.
e Measure off-resonance field-map w (X) using two displaced echos

e Penalized WLS cost function minimized by conjugate gradient

e System matrix A includes off-resonance effects

e Fast algorithm using NUFFT and time-segmentation



Iterative MRI Reconstruction with Field Inhomogeneity

Conjugate Fhase

= ] in Echo

[terative MUFFT
with min—max

Lincorrected




Other Ongoing Topics

e Confocal microscopy 3D image restoration

e \olume-to-projection registration for radiotherapy treatment positioning

e 3D SPECT reconstruction for I-131 imaging with high-energy collimators
e Signal detection methods for direct brain-computer interfaces

e Dual-energy X-ray CT image reconstruction

e PET-CT image reconstruction

e Design of regularization methods to optimize detectability



